The Function of Supplemental Foods for Improved Crop Establishment Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Attract-And-Kill Methods for Control of Indianmeal Moth
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by SHAREOK repository ATTRACT-AND-KILL METHODS FOR CONTROL OF INDIANMEAL MOTH, Plodia interpunctella (Hübner) (LEPIDOPTERA: PYRALIDAE), AND COMPARISONS WITH OTHER PHEROMONE-BASED CONTROL METHODS By MANUEL CAMPOS-FIGUEROA Bachelor of Science in Entomology and Plant Pathology Universidad Autónoma Chapingo Chapingo, State of México, México 1996 Master of Science in Entomology Colegio de Postgraduados Montecillos, State of México, México 1999 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY May, 2009 ATTRACT-AND-KILL METHODS FOR CONTROL OF INDIANMEAL MOTH, Plodia interpunctella (Hübner) (LEPIDOPTERA: PYRALIDAE), AND COMPARISONS WITH OTHER PHEROMONE-BASED CONTROL METHODS Dissertation Approved: Dr. Thomas W. Phillips Dissertation Adviser Dr. Mark E. Payton Dr. Jack W. Dillwith Dr. Brad Kard Dr. A. Gordon Emslie Dean of the Graduate College ii PREFACE I want to extend my gratitude to my major advisor and mentor Dr. Thomas W. Phillips for his time and support given to me during my Ph.D. studies. Also, I appreciate Dr. Phillips for considering me part of your research team. You are an example to follow, a great scientist, a great person and always looking for a solution. I am grateful with Dr. Jack W. Dillwith for being an excellent professor and committee member. Dr. Dillwith has always been very helpful and gave me good suggestions that improved this research. Thank you for being such a great support during all this time. -
ON CRYPTOBLABES GNIDIELLA and ALIENA1 (Lepidoptera : Pyralidae : Phycitinae)
Pacific Insects 14 (2) : 433 20 August 1972 ON CRYPTOBLABES GNIDIELLA AND ALIENA1 (Lepidoptera : Pyralidae : Phycitinae) By Elwood C. Zimmerman2 In Insects of Hawaii 8 : 363, 1958, I wrote that Cryptoblabes aliena Swezey is an "Im migrant, but source not determined. First noticed in Hawaii by Swezey in 1905." The problem of the source of the moth in Hawaii is solved by the following synonymy and details : Cryptoblabes gnidiella (Milliere). Ephestia Gnidiella Milliere, Iconographie et Description de chenilles et LSpidopteres inSdits 2: 308, pl. 83, figs. 4-9, 1867 (sometimes wrongly cited as 1864, which is the date on the title page but which applies only to part of the work). Cryptoblabes gnidiella (Milliere) Ragonot, Monographie des Phycitinae et des Galleriinae. In: N. M. Romanoff's Memoires sur les LSpidopteres 7 : 16, 1893. Heinrich, Proc. U. S. Nat. Mus. 207: 10, figs. 1, 132, 639, 1956. Cryptoblabes aliena Swezey, Hawaiian Sugar Planters' Assoc. Exp. Sta., Ent. Bull. 6: 24, pl. 4, figs. 4-7, 1909. Zimmerman, Insects of Hawaii 8: 360, figs. 298-300, 1958. New synonym. Cryptoblabes gnidiella was described from France, and it is now widely dispersed about the warmer parts of the world. It has been reported from Eurasia, Africa, Malaysia and America, whence it was first recorded by Dyar in 1915 (Insecutor Inscitiae Menstruus 3 : 88) from specimens collected in Bermuda. My manuscript for the pyralid volume of Insects of Hawaii was mostly written before the appearance of Heinrich's 1956 monograph, and although I added various details from his publication before my book was published, the fact that Heinrich (p. -
Efficacy of Pheromones for Managing of the Mediterranean Flour Moth
12th International Working Conference on Stored Product Protection (IWCSPP) in Berlin, Germany, October 7-11, 2018 HOSSEININAVEH, V., BANDANI, A.R., AZMAYESHFARD, P., HOSSEINKHANI, S. UND M. KAZZAZI, 2007. Digestive proteolytic and amylolytic activities in Trogoderma granarium Everts (Dermestidae: Coleoptera). J. Stored Prod. Res., 43: 515-522. ISHAAYA, I. UND R. HOROWITZ, 1995. Pyriproxyfen, a novel insect growth regulator for controlling whiteflies. Mechanism and resistance management. Pestic. Sci., 43: 227–232. ISHAAYA, I., BARAZANI, A., KONTSEDALOV, S. UND A.R. HOROWITZ, 2007. Insecticides with novel mode of action: Mechanism, selectivity and cross-resistance. Entomol. Res., 37: 148-152. IZAWA, Y., M. UCHIDA, T. SUGIMOTO AND T. ASAI, 1985. Inhibition of Chitin Biosynthesis by buprofezin analogs in relation to their activity controlling Nilaparvata lugens. Pestic. Biochem. Physiol., 24: 343-347. KLJAJIC, P. UND I. PERIC, 2007. Effectiveness of wheat-applied contact insecticide against Sitophilus granarius (L.) originating from different populations. J. Stored Prod. Res., 43: 523-529. KONNO, T., 1990. Buprofezin: A reliable IGR for the control of rice pests. Soci. Chem. Indus., 23: 212 - 214. KOSTYUKOVSKY, M. UND A. TROSTANETSKY, 2006. The effect of a new chitin synthesis inhibitor, novaluron, on various developmental stages ofTribolium castaneum (Herbst). J. Stored Prod. Res., 42: 136-148. KOSTYUKOVSKY, M., CHEN, B., ATSMI, S. UND E. SHAAYA, 2000. Biological activity of two juvenoids and two ecdysteroids against three stored product insects. Insect Biochem. Mol. Biol., 30: 891-897. LIANG, P., CUI, J.Z., YANG, X.Q. UND X.W. GAO, 2007. Effects of host plants on insecticide susceptibility and carboxylesterase activity in Bemisia tabaci biotype B and greenhouse whitefly, Trialeurodes vaporariorum. -
Biological Control of Two-Spotted Spider Mites Using Phytoseiid Predators
Vkfl Szo i ®8o C Biological control of two-spotted spider mites using phytoseiid predators. Part I Modelling the predator-prey interaction at the individual level M.W. Sabelis NN08201,880 M. W. Sabeljs Biological control of two-spotted spider mites using phytoseiid predators. Part I Modelling the predator-prey interaction at the individual level Proefschrift terverkrijgin g van degraa d van doctor ind e landbouwwetenschappen, op gezagva n derecto rmagnificus , dr. C.C.Oosterlee , hoogleraar ind eveeteeltwetenschap , inhe topenbaa r teverdedige n opvrijda g 19 februari 1982 des namiddags tevie r uur ind e aula van deLandbouwhogeschoo l te Wageningen CURRICULUMVITA E Mouringh Willem Sabelis werd geboreno p 14me i 1950t eHaarlem .Hi j volgde de middelbare school te Den Helder enbehaald ehe tdiplom a Gymnasium-B in 1969.Daarn a studeerdehi j aand eLandbouwhogeschoo l teWageningen .Hi j koos dePlanteziektenkund e als studierichting,waarbi jhe t accent lag op deento mologische en oecologische aspecten van ditvakgebied .D e doctoraalstudie omvatte de hoofdvakken Entomologie en Theoretische Teeltkunde. De inhoud hiervan werd bepaald doorzij nbelangstellin g voor debiologisch e bestrij dingva nplagen :analys eva nprooipreferenti e bijpredatoren , populatiedyna miek van roof- en fruitspintmijten, populatiegroei van mijten in relatie tot hetmicroklimaa t in een appelboomgaard en bemonstering van mijten in boomgaarden.Zij nbegeleider sware nR .Rabbinge ,J . Goudriaan (beidenwerk zaam aan de Landbouwhogeschool) en M. van de Vrie (Proefstation voor de fruitteelt te Wilhelminadorp). Hij behaalde zijn ingenieursdiploma in september 1975e nkree gkor tdaarn ad e gelegenheid om een promotie-onderzoek tedoe nbi jd evakgroe p Theoretische Teeltkunde.Me tdi tonderzoe k werdbe oogd meer inzicht tekrijge n ind emogelijkhede nvoo rbestrijdin g vankas - spintmijten met behulp van roofmijten. -
Download the Full Report Pdf, 424.3
VKM Report 2015:06 Risk assessment of Macrolophus pygmaeus as biological control product Opinion of the Panel on Plant Production Products of the Norwegian Scientific Committee for Food Safety Report from the Norwegian Scientific Committee for Food Safety (VKM) 2015:06 Risk assessment of Macrolophus pygmaeus as biological control product Opinion of the Panel on Plant Production Products of the Norwegian Scientific Committee for Food Safety 18.03.2015 ISBN: 978-82-8259-161-4 Norwegian Scientific Committee for Food Safety (VKM) Po 4404 Nydalen N – 0403 Oslo Norway Phone: +47 21 62 28 00 Email: [email protected] www.vkm.no www.english.vkm.no Suggested citation: VKM (2015). Risk assessment of Macrolophus pygmaeus as biological control product. Opinion of the Panel on Plant Protection Products of the Norwegian Scientific Committee for Food Safety. VKM Report 2015:06, ISBN: 978-82-8259-161-4, Oslo, Norway. Available online: www.vkm.no VKM Report 2015:06 Risk assessment of Macrolophus pygmaeus as biological control product Authors preparing the draft opinion Torsten Källqvist (chair), May-Guri Sæthre Assessed and approved The opinion has been assessed and approved by Panel on Plant Protection Products of VKM. Members of the panel are: Torsten Källqvist (chair), Katrine Borgå, Hubert Dirven, Ole Martin Eklo, Merete Grung, Jan Ludvig Lyche, Marit Låg, Asbjørn M Nilsen, Line Emilie Sverdrup (Panel members in alphabetical order after chair of the panel) Acknowledgment May-Guri Sæthre from the Panel of Plant health of the Norwegian Scientific Committee for Food Safety is acknowledged for her valuable work on this opinion. Project manager from the VKM secretariat has been Edgar Rivedal Competence of VKM experts Persons working for VKM, either as appointed members of the Committee or as external experts, do this by virtue of their scientific expertise, not as representatives for their employers or third party interests. -
A Preliminary Assessment of Amblyseius Andersoni (Chant) As a Potential Biocontrol Agent Against Phytophagous Mites Occurring on Coniferous Plants
insects Article A Preliminary Assessment of Amblyseius andersoni (Chant) as a Potential Biocontrol Agent against Phytophagous Mites Occurring on Coniferous Plants Ewa Puchalska 1,* , Stanisław Kamil Zagrodzki 1, Marcin Kozak 2, Brian G. Rector 3 and Anna Mauer 1 1 Section of Applied Entomology, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02-787 Warsaw, Poland; [email protected] (S.K.Z.); [email protected] (A.M.) 2 Department of Media, Journalism and Social Communication, University of Information Technology and Management in Rzeszów, Sucharskiego 2, 35-225 Rzeszów, Poland; [email protected] 3 USDA-ARS, Great Basin Rangelands Research Unit, 920 Valley Rd., Reno, NV 89512, USA; [email protected] * Correspondence: [email protected] Simple Summary: Amblyseius andersoni (Chant) is a predatory mite frequently used as a biocontrol agent against phytophagous mites in greenhouses, orchards and vineyards. In Europe, it is an indige- nous species, commonly found on various plants, including conifers. The present study examined whether A. andersoni can develop and reproduce while feeding on two key pests of ornamental coniferous plants, i.e., Oligonychus ununguis (Jacobi) and Pentamerismus taxi (Haller). Pinus sylvestris L. pollen was also tested as an alternative food source for the predator. Both prey species and pine pollen were suitable food sources for A. andersoni. Although higher values of population parameters Citation: Puchalska, E.; were observed when the predator fed on mites compared to the pollen alternative, we conclude that Zagrodzki, S.K.; Kozak, M.; pine pollen may provide adequate sustenance for A. -
Population Development of Tuta Absoluta (Meyrick) (Lepidoptera: Gelechiidae) Under Simulated UK Glasshouse Conditions
Insects 2013, 4, 185-197; doi:10.3390/insects4020185 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects/ Article Population Development of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) under Simulated UK Glasshouse Conditions Andrew G. S. Cuthbertson 1,*, James J. Mathers 1, Lisa F. Blackburn 1, Anastasia Korycinska 1, Weiqi Luo 1, Robert J. Jacobson 2 and Phil Northing 1 1 The Food and Environment Research Agency, Sand Hutton, York, YO41 1LZ, UK; E-Mails: [email protected] (J.J.M.); [email protected] (L.F.B.); [email protected] (A.K.); [email protected] (W.L.); [email protected] (P.N.) 2 Rob Jacobson Consultancy Ltd., 5 Milnthorpe Garth, Bramham, LS23 6TH, UK; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +44-01904-462-201; Fax: +44-01904-462-111. Received: 11 March 2013; in revised form: 23 April 2013 / Accepted: 25 April 2013 / Published: 15 May 2013 Abstract: Tomato leafminer Tuta absoluta (Meyrick) is a major pest of tomato plants in South America. It was first recorded in the UK in 2009 where it has been subjected to eradication policies. The current work outlines T. absoluta development under various UK glasshouse temperatures. The optimum temperature for Tuta development ranged from 19±23 °C. At 19 °C, there was 52% survival of T. absoluta from egg to adult. As temperature increased (23 °C and above) development time of the moth would appear to decrease. -
Sticky Plants in Your Garden by Billy Krimmel1
SNAPSHOT: Sticky Plants in Your Garden by Billy Krimmel1 Sticky plants are widespread in summertime throughout their abdomens, so that if they do contact sticky exudates by California. e oils and resins secreted at the tips of their accident, they can slough it off and move on without becoming glandular trichomes oen shine in the hot sun, and in many entrapped (Voigt and Gorb 2008). instances are strongly fragrant (see definitions below). Some Another common visitor of sticky plants is a group of assassin scientists have argued that UV reflectance may have been why bugs in the subfamily Harpactorini (Reduviidae: Harpactorini). plants evolved glandular and non-glandular trichomes in the first Females in many species have specialized storage structures on place—to mitigate the effects of the hot sun drawing out water their abdomens for collecting and storing sticky exudates from from the plant’s stomata (tiny openings through which plants plants. As females in these species lay eggs, they coat the eggs breathe). Others have argued that plants secrete glandular with these exudates. Newly hatched nymphs then spread the exudates as a way to detoxify (Schilmiller et al. 2008), while still exudates from their egg onto their body—the functions of which others argue that they evolved as a way to repel or defend against is still a bit of a mystery. Investigators speculate that it might would-be insect herbivores (e.g., Duke 1994, Fernandes 1994). provide camouflage, better grip to the plant for the insect, anti- Glandular trichomes are found among diverse plant taxa — an microbial functions, better attachment to prey, some estimated 30% of all vascular plant species have them — and combination of these functions, or something completely likely evolved in response to a diversity of environmental drivers different (Law and Sedigi 2010). -
(Encarsia Formosa) Whitefly Parasite
SHEET 210 - ENCARSIA Encarsia (Encarsia formosa) Whitefly Parasite Target pests Greenhouse whitefly (Trialeurodes vaporariorum) Silverleaf whitefly (Bemesia argentifolia) Sweet potato whitefly (Bemesia tabaci) Description ‘Encarsia’ is a tiny parasitic wasp that parasitizes whiteflies. It was the first biological control agent developed for use in greenhouses. • Adults are black with yellow abdomen, less than 1 mm (1/20 inch) long (they do not sting). • Larval stages live entirely inside immature whiteflies, which darken and turn black as the parasites develop inside. Use as Biological Control • Encarsia are effective controls for greenhouse whitefly on greenhouse cucumbers, tomatoes, peppers and poinsettias (for information on whiteflies, see Sheet 310). • They can control silverleaf/sweet potato whitefly, but only under optimum management using high release rates. • Optimum conditions are temperatures over 20°C (68°F), high light levels (7300 lux) and relative humidity 50-70%. When daytime temperatures are less than 18°C (64°F) Encarsia activity is sharply reduced, making them less effective. • Do not attempt to use Encarsia if high whitefly populations are already established. • The predatory beetle Delphastus avoids feeding on the whiteflies that have been parasitized by Encarsia and Delphastus adults also feed on whitefly eggs therefore they can be used with Encarsia (for information on Delphastus, see Sheet 215). • The predatory bug, Dicyphus hesperus may be used with Encarsia. • The parasitic wasp Eretmocerus californicus may also be used with Encarsia. Monitoring Tips Check the undersides of lower leaves for parasitized whitefly scales. They turn black (for greenhouse whitefly) or transparent brown (for sweet potato whitefly) so are easy to tell from unparasitized scales, which are whitish. -
Cannibalism Among Same-Aged Nymphs of the Omnivorous Predator Dicyphus Errans (Hemiptera: Miridae) Is Affected by Food Availability and Nymphal Density
EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 116: 302–308, 2019 http://www.eje.cz doi: 10.14411/eje.2019.033 ORIGINAL ARTICLE Cannibalism among same-aged nymphs of the omnivorous predator Dicyphus errans (Hemiptera: Miridae) is affected by food availability and nymphal density KONSTANTINA ARVANITI 1, ARGYRO FANTINOU 2 and Dionyssios PERDIKIS 1 1 Laboratory of Agricultural Zoology & Entomology and 2 Laboratory of Ecology & Environmental Sciences, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Hellenic Republic; e-mails: [email protected], [email protected], [email protected] Key words. Hemiptera, Miridae, Dicyphus errans, adult weight, cannibalism, density, development, food availability, omnivorous predator Abstract. Cannibalism, the act of eating an individual of the same species has been little studied in omnivorous insect predators. Dicyphus errans (Wolff) (Hemiptera: Miridae) is a generalist omnivorous predator that commonly occurs in tomato greenhouses and fi eld crops in the Mediterranean basin. In this work cannibalism among same-aged neonate nymphs of D. errans was studied when 1, 2, 4, 8 or 16 individuals were placed in a Petri dish along with or without heterospecifi c prey. Although nymphs were un- able to complete their development in the absence of prey they survived longer when there were initially 2 individuals per dish than in any other treatment including a single individual. This may indicate that cannibalism in this predator has positive effect on nymphal survival, which however was not the case at higher densities. The presence of heterospecifi c prey increased nymphal survival and individuals were as equally successful in completing their development as when kept singly. -
Dicyphus Hesperus) Whitefly Predatory Bug
SHEET 223 - DICYPHUS Dicyphus (Dicyphus hesperus) Whitefly Predatory Bug Target Pests Greenhouse whitefly (Trialeurodes vaporariorum), Tobacco whitefly (Bemisia tabaci). Dicyphus will feed on two-spotted spider mite (Tetranychus urticae), Thrips and Moth eggs but will not control these pests. Plants Note: Since Dicyphus is also a plant feeder it should not be used on crops such as Gerbra which can be damaged. Most of the work with Dicyphus has been on vegetable crops such as tomato, pepper and eggplant where it will not cause plant damage by plant feeding. Description The predatory bug, Dicyphus hesperus is similar to Macrolophus caliginosus, which is being used in Europe to control whitefly, spider mites, moth eggs and aphids. The use of Dicyphus is being studied by D. Gillespie (Agriculture and Agri-Foods Canada Research Station, Agassiz, BC). Dicyphus should not be used on its own to replace other biological control agents. It is best used along with other biological control agents in greenhouse tomato crops that have, or (because of past history) are expected to have. whitefly, spider mite, or thrips problems. • Eggs are laid inside plant tissue and are not easily seen. • Adults are slender (6mm), black and green with red eyes and can fly • Nymphs are green with red eyes Use in Biological Control • Release Dicyphus as soon as whiteflies are found, early in the season at a rate of 0.25-0.5 bugs/m2 (10 ft2) of infested area; repeat in 2-3 weeks. • Release batches of 100 adults together in one area where whitefly is present or add supplementary food (frozen moth eggs: i.e. -
Life Table of Orius Insidiosus (Hemiptera: Anthocoridae) Feeding on Sitotroga Cerealella (Lepidoptera: Gelechiidae) Eggs
Research article http://www.revistas.unal.edu.co/index.php/refame Life table of Orius insidiosus (Hemiptera: Anthocoridae) feeding on Sitotroga cerealella (Lepidoptera: Gelechiidae) eggs Tabla de vida de Orius insidiosus (Hemiptera: Anthocoridae) alimentado con huevos de Sitotroga cerealella (Leideoptera: Gelechiidae) doi: 10.15446/rfna.v69n1.54745 Jhon Alexander Avellaneda Nieto1, Fernando Cantor Rincon1, Daniel Rodríguez Caicedo1* ABSTRACT Key words: To use a natural enemy to control an insect pest, it is important to determine the biological parameters Biological control of the native populations of the predator. The goal of this study was determinate the biological Pirate bugs parameters of O. insidiosus fed on Sitotroga cerealella eggs. A batch of 225 O. insidiosus eggs were Stock colony laid into bean pods. The bean pods were kept in glass jars, and the eggs and first instar nymphs were Sabana de Bogotá counted daily. All nymphs were extracted and individualized in Petri dishes. The presence/absence of exuvie was observed daily as a way to assess the emergence of adults from the nymphal stage. Seventeen adult couples were placed into Petri dishes with a segment of bean pod. The bean pod segments were extracted and replaced daily, counting the number of eggs present on the pods. The life cycle, survival percentage, sex ratio, male/female longevity, pre ovoposition, ovoposition and post ovoposition periods were determined. Finally, fertility life table parameters were estimated. The nymphal development time was 12.0 ± 0.22 days, with 80.47% ± 3.23 survival, while the total development time was 15.0 ± 0.23 days, with 66.67% ± 1.90 survival.