Photo by: Fabiano M. Scarpa 12 perspectives. diversefrom very thematicandregional between biodiversity andlandsystems 16 contributions dealingwiththerelations sustaining biodiversity. Thisissuegathers systems akey parameter and inconserving the managementandgovernance ofland terrestrial ecosystems worldwide, making major driver ofbiodiversity lossin Land useandlandcover changeisthe remnants infragmented landscapes management ofdegraded forest A newfocus for ecological restoration: PERSPECTIVE Biodiversity andLandSystems of IGBP&Future Earth GLP -Ajointresearchproject PROJECTLAND OF THEGLOBAL NEWSLETTER ISSUE Nº12|NOVEMBER 2015 ISSN 2316-3747

GLPNEWS | NOVEMBER 2015 1 2

GLPNEWS | NOVEMBER 2015 Email: [email protected] Casilla deCorreo34,(4107)Yerba Buena,Tucumán - Instituto deEcologíaRegional-Universidad NacionaldeTucumán-CONICET Héctor Ricardo Grau Email: [email protected] Unter denLinden6,10099Berlin- Germany Humboldt-Universität zuBerlin,Geography Department/Geomatics Lab Head ofGeomaticsLab,DeputyDirectorGeography Department Patrick H.Hostert Email: [email protected] Voldgade -Denmark 10,1350Copenhagen K. Department ofGeography andGeology, Universityof Copenhagen,Oster Ole Mertz Email: 5064-Australia Ecosystem Sciences,PrivateBag2,GlenOsmond,SA, CSIRO TeamSenior ResearchScientist, Leader, EcosystemSciences CSIRO Neville D. Crossman Email: [email protected], [email protected] Beijing100101-PRChina 11A DatunRoad,ChaoyangDistrict, Deputy DirectorofResearchUnitforResourceEcologyandBiomassResources Institute ofGeographicScienceandNaturalResourcesResearch,Chinese-AcademySciences Lin Zhen Email: [email protected] 1000 HilltopCircle,Baltimore,MD21250-UnitedStatesofAmerica ofGeography &EnvironmentalSystemsDept. -UniversityofMaryland Ellis Erle C. Email: [email protected] Electronics City, HosurRoad,Bangalore-India PremiUniversity-PESInstituteofTechnologyAzim Campus Harini Nagendra Email: [email protected] Hallerstrasse 10,3012Bern,Switzerland Centre forDevelopmentandEnvironment-UniversityofBerne Andreas Heinimann Email: [email protected] 5200 Westland Blvd.TRC 171-MD21227,BaltimoreUnitedStatesofAmerica Northern ResearchStation-USDA ForestService Jonathan Morgan Grove Email: [email protected] 23 KateSheppardPlace,POBox 10362,Wellington 6143-NewZeland fortheEnvironment–Manatu MoTe -Ministry Land UseCarbonAnalysisSystem Taiao (LUCAS) Golubiewski Nancy Email: [email protected] Schottenfeldgasse 29/5t-A-1070ViennaAustria Institute forSocialEcology-UniversityofKlagenfurt Karlheinz Erb Email: [email protected] |[email protected] 02 BP801Abidjan02,Côted’Ivoire Abobo-Adjamé),University ofNanguiAbrogoua(Ex- UFR-SN. Research Pole onEnvironmentandSustainableDevelopment. Souleymane Konaté Email: Suite 3500CollegePark, MD20740 Joint GlobalChangeResearchInstitute5825UniversityCourt, Allison M.Thomson Email: [email protected] ELIC -PlaceLouisPasteur 3bte-L4.03.08à1348Louvain-la-NeuveBelgium Louvain (UCL) SST/ELI -EarthandLifeInstitute(ELI)ELIC&Climate(ELIC)UniversitéCatholiquede Patrick Meyfroidt Email: MA 01610-1477 School ofGeography ClarkUniversityWorcester, Roy Rinku Chowdburry Email: [email protected] De Boelelaan1087-1081HVAmsterdamNetherlands Institute forEnvironmentalStudies-VUUniversityAmsterdam Peter Verburg (Chair ofGLP, 2011-2016) Scientific Steering Committee –SSC [email protected] [email protected] [email protected] 12 Photo byFabiano M.Scarpa biodiversity hotspot the BrazilianCerrado -a Vereda ecosystem in Coverpage Office phone:+551232087942 Project Officer Dr. SébastienBoillat Office phone:+551232087903 INPE LiasonResearcher Building,1 CCST Av. 1758 dosAstronautas, Earth System ScienceCentre -CCST Space Research-INPE National Institute for Balbaud Ometto Jean PierreHenry Peter Verburg Fabiano Micheletto Scarpa Sébastien Boillat Editors: the GlobalLandProject GLP Newsisanewsletter of Dr. Fabiano Micheletto Scarpa Office phone:+551232087931 Executive Officer Balbaud Ometto Dr. JeanPierre Henry Office -GLPIPO International Project www.globallandproject.org Office phone:+551232087938 São Paulo -Brazil São JosédosCampos Jd. Granja-12227-010 st Floor, Room22

EDITORIAL Biodiversity Systems andLand sustainably manage forests, combat desertification, promote sustainable use ofterrestrialecosystems, and restore “Protect, to aims which 15 number goal of sustainabledevelopment atglobalscale.The set upambitiousgoalsinterms oftheachievement Goals launched this year by the United Nations, which normative international recent frameworks, suchastheSustainableDevelopment in reflected are andmanagement ofbiodiversity conservation More holisticandintegrativeapproachestothe the andsustainingbiodiversity. parameter inconserving making 2013), al. management andgovernanceoflandsystemsakey et (Nagendra worldwide major the driver ofbiodiversitylossinterrestrialecosystems as identified been has (LULCC) change social-ecological complex systems. In this framework, land use and land cover- of part as biodiversity approachesthataddress and interdisciplinary ofsinglespecies,tomoresystemic the conservation approachcenteredon switched fromadisciplinary and management has gradually conservation To addresstheseurgentissues,biodiversity regulation (Cardinale 2012). et.al. ofnutrients,andclimate recycling soil conservation, of ofnewmedicines,timber,pest control,discovery preservation including water resources,provisionofpollinatorsforcrops, services) (ecosystem associated toecosystemsandhumanwellbeing benefits to linked strongly is biodiversity as serious the safe limits (Rockstrom 2009). Consequences are beyond already is and 2015) Mantyka-Pringle, 2014, the naturalextinctionrate(Benn,2010;DeVos etal. ranges between1000and10,000timeshigherthan (Haines-Young, species biodiversity lossiscurrentlyhappeningataratethat that estimated is It many 2015). Mantyka-Pringle, 2009; for to habitat destruction leading fiber, and fuel food, for needs areas, pastureandindustrialcropstosupplyhuman conversion ofnaturalecosystemsintoagricultural to grow. These activities include urbanization and as 50years, population andconsumptionstandardscontinue last the have since activities intensified particularly Human way. under still is Century started attheIndustrialRevolutionin18th system Earth the of modification acute and massive the remainingchallengesarehuge.Theprocessof biodiversityandmanageitsustainably, to conserve governments, civilsocietyandtheprivatesector performed efforts since thenbyinternationalorganizations, many Despite Brazil. Janeiro, on BiologicalDiversityenacted1992inRiode in 1988 and was formally defined by the Convention widely usedafterapublicationbyEdward O. Wilson Nearly 30yearsago,thetermbiodiversitybecame Other studies focus on specific demands for demands specific on natural resources, including biodiversity, which focus studies Other and colleagues. water resourceswasassessed byJ.Helmschrot and ecosystems affecting change Land Khanina. Russiaisshown byM.BobrovskyandL. Reserve, forest on succession inKaluzhskieZasekiStateNature fire effects and The abandonment agriculture lowlands. of Amazon Bolivian onhydrology the change of cover land of effects the Tejada Ovando, G. A. and J. Tomasella show Shoemaker Marchant. andR. C. Mustaphi,A. J. C. in theAmboseliregion,Kenya isdiscussedbyC. The interactionbetweenhumansandecosystems rainforest anditsrelationshipwithdeforestation. expansion ofsoybeanproductionintheAmazon for biodiversity. P. Fearnsidewritesaboutthe of landcoverchangeandtheirimplications Several additional studies address the drivers Southwest Australia-isfacing. discusses thethreatsamegadiverseregion- spiny forestsofMadagascar. Finally, H.Lambers the problemsregardingland-coverchangein andclimate Vincke J.GardnerandX. focus on Llopis,C. J. C. use land of change intheforestsofKenya andTanzania. effects the on stress Capitaniandcolleagues in southeasternBrazil.C. restoration ofaremnanttheAtlanticrainforest the to related findings their show colleagues and Africa, Madagascar, Viani andWestern Australia.R. the AfromontaneandCoastalforestsofEastern conducted insuchareas,theAtlanticrainforest, 2015). In this magazine four studies were representing 2,3%ofthelandsurface(Marchese, Thirty-five biodiversity hotspots have been area. identified to date, original their of 60% least at to high levelsofendemismandhavebeenreduced purposesastheyhost crucial forconservation hotspots arenaturalenvironmentsthat thematic andregionalperspectives.Biodiversity diverse biodiversity andlandsystemsfromvery community dealingwiththerelationsbetween issue, wepresentoriginalcontributionsoftheGLP 2012).Inthis functioning (Ahukaemereet.al. and ecosystem security food affecting degraded that about25%oftheworld´sarablelandis International Year ofSoils,andtheobservation management agenda, with 2015 declared the and to protect biodiversity is the soil conservation point biodiversity andlandsystems.Anotherentry interest to address the relationships between 2015)isofparticular biodiversity loss”(ICSU, ISSC, and haltreverselanddegradation

GLPNEWS | NOVEMBER 2015 3 4

GLPNEWS | NOVEMBER 2015 References and Use Policy (26)178–186 and UsePolicy Haines-Young, R. (2009). Land use and biodiversity relationships. Science (ICSU). Development Sustainable for the Council International Paris: Perspective. Science The Goals: of Review (2015): ISSC ICSU, species of rate background Biology. 29(2):452-62. extinction. Conservation normal the Estimating (2014). SL. Pimm PR; Stephens JL; Gittleman, LN; Joppa, JM; Vos, De Nations United humanity. Nature459:59-67. on impact its and biodiversity? loss Biodiversity (2012) al. et B.J. Cardinale, is What (2010). Environment Programme(UNEP). J Benn, and Erosion.2(4):175-179. Soil in International Journal of Forest, the HumidEnvironment. Use Types Land Agricultural by Influenced as Degradation (2012).SoilQualityand et.al. Ahukaemere, C.M. the 2 several synthesisworks,wasinvolvedinorganizing INPE and coordinated18researchprojects,published its During December.period lastingfrom2012to2015,GLPendorsed this conclude will Brazil, Campos, dos José São in (INPE) Research Space for Institute National the by Office Project transition, sincethehostingofGLPInternational This newsletter marks a major organizational threatening wildlifeandlivelihoods. such aswildboarsinChina,whichissurprisingly Yan alsowarnusaboutoverprotectionofspecies, HuaandJ. purposes.FinallyX. for conservation Ximenes as animportant tool is presented by A. Europe. Mapping of mangroves across the world inrural approaches areimportantforconservation Augustyn andcolleaguesshowwhy territorial Africa, presentedbyM.Mück for monitoring ecosystems and floods in Southern include theuseofremotesensingasatechnique solutions toaddressthesechallenges.These papers highlightmonitoringandgovernance for thesebiodiverseandfragileregions.Other major threatincreasingminingactivitiesposes Izquierdo andcolleaguesdiscussthe and ,A. biodiversity. InthehighlandsofArgentina, and its relationship with market trends and Mishradiscusseslandcoverchange boundaries. S. of Switzerland in relation with global planetary Dao andD. Friot showstheecologicalfootprint ThepaperbyH. are increasingacrosstheplanet. et er il pn p e developments new up open will year Next IPO duringthesefouryears. and innovation for having successfully hosted the ofScienceandTechnologythe BrazilianMinistry - November. Therefore, GLP is thankful to INPE and science in Latin Americawhichwilltake place this withaworkshoponlandsystem conclude thiscycle network intheLatinAmericanregionandwill offices. nodal new During thistime,GLPhasalsostrengthenedits created and - Earth Future 2014, madethetransition from IGBP/IHDP to nd OpenScienceMeetinginBerlinMarch

and colleagues. A. andcolleagues.A. Washington D.C., USA Wilson EO (ed) (1988)Biodiversity. NationalAcademy Press, Nature 461,472-475 Asafeoperatingspaceforhumanity Rockström, J.et.al.(2009). Opinion inEnvironmentalSustainability. 5:503–508 Current biodiversity: makingthelinktoecosystemservices. Impactsoflandchangeon Nagendra,H., Reyers,B.,Lavorel,S. 3: 297–309. GlobalEcologyandConservation more complicatedconcept. (2015).Biodiversityhotspots:Ashortcutfora Marchese, C. 187:103–111. Conservation of global biodiversity loss due to land-cover change Biological Rondinini, C.; Rhodes, J.R. (2015). Climate change modifies risk Visconti,P.;Mantyka-Pringle, C.S.; DiMarco,M.;Martin,T.G.; Sincerely, and theNewYear 2016. wish youallthebestforEndofYear 2015 We wishyouenjoyreadingthismagazineand 27 October2016. which willtake placeinBeijing,China,from24to by theChineseAcademyofAgriculturalSciences, will bethe3 Furthermore, a key milestone for GLP next year for itsnextphase. forward them plentyofsuccessinbringingtheproject to hostGLPforthenextfouryearsandwewish These assetsmake theCDEidealinstitute fostering dialoguebetweenscienceandsociety. global NorthandSouth,alargeexperiencein development incollaborationwithpartnersthe research for sustainable on interdisciplinary Bern, Switzerland. The CDE has a strong focus of Environment(CDE) attheUniversityof Office Project will bebasedattheCentreforDevelopment International GLP the onwards, and perspectivesforGLP. 2016 From January rd GLPOpenScienceMeetinghosted Project Officer of the IGBP/Future Earth Global LandProject(GLP) the IGBP/Future of Officer Project Dr. Fabiano Micheletto Scarpa Global LandProject(GLP) Executive Officer of the IGBP/ Future Earth Dr. SébastienBoillat 50 Feature -Article Perspective 06 30 26 22 19 14 10 46 41 37 CONTENTS S. K. Mishra K. S. Millennium and SustainableLandUseinthe New Researching into Bio-EnergyChange Tejada Ovando |G. A. |J.Tomasella Amazon Lowlands (LlanosdeMoxos) Ecosystem intheBolivian Services Environmental changeandWater Marchant Rucina|R. S. M.Muriuki Kariuki|R. N.Githumbi|R. E. Shoemaker C. Mustaphi|A. J.C. C. change atAmboseli,Kenya Historical ecology perspectives of P. M.Fearnside deforestation andits consequences Natural richesofAmazonia, H. Lambers Biodiversity Hotspot Threats to theSouthwest Australian Vincke J.Gardner|X. Llopis|C. J. C. Madagascar priority. Thecaseofthespiny forest of a globalbiodiversity conservation Land-use andland-cover changein I. Malugu|P. Marchant Munishi|R. Mukama|B.Mbilinyi N. Burgess|K. Capitania|O.C. Norfolk|P. Platts analysis scenario an applicationofparticipatory biodiversity-climate nexusinEastAfrica: thefuturelanduse- Exploring P. Brancalion H.S. Viani|F. Chi G. Mello|I.E. A. N.A. R. in fragmented landscapes management ofdegradedforest remnants A newfocus for ecological restoration: H. Dao|D. Friot perspective appliedto Switzerland Boundary of nations?APlanetary How sustainableisthelandfootprint P.E. Kabore/Bontogho J. Helmschrot|H.M.Badjana African water resources for thesustainablemanagementofWest Land cover changeanditsimplication Khanina M. BobrovskyIL. fires andplantdiversity recovery onabandonedarableland: Spatio-temporal patterns offorest 80 79 Announcements Noticeboard News 77 76 75 70 65 62 57 53 X. Hua|J.YanX. Restoration Cropland UseunderEcological between Wildlife Protection and The RiskofProtection: TheDilemma Ximenes deC. A. tool for conservation Global mangrove mapping:acritical Linhart|B.Soldaat Z. Feret Augustyn|J.BrennanS. A. biodiversity inruralEurope Territorial approachesto enhance Nyambe|P.I.A. Mufeti|M.Meinhard M. Wallner |M.Hipondoka M. Mück|J.HelmschrotH.Zimba and biodiversity insouthernAfrica interdependencies withlandcover change assessing water-related risksandits Remote sensingapplicationsfor Casagranda J. Carilla|E. Grau Andrea Izquierdo |E.H.R wetlands inthecontext ofclimate change Lithium miningonhighelevationAndean the potential environmental costs of Side effects ofgreen technologies: System Change Anthropocene: EarlyLandUseandEarth GLP andPages session:Datingthe in achangingworld GLP Session:Emergingperspectivesonland AGU Fall Meeting2015 3 PECS 2015Conference Boillat|F.S. M.Scarpa International Seminar achievements andperspectives Land System ScienceinLatinAmerica: Ecology inananthropogenicbiosphere synthesis andoutlookpaper The GlobalLandProjectpublishes International ProjectOfficeis moving From Brazilto Switzerland: theGLP realities anddevelopingsolutions system science:understanding rd Land GLPOpenScienceMetting-Land

GLPNEWS | NOVEMBER 2015 5 6 GLPNEWS | NOVEMBER 2015 Perspective least 15%ofdegradedecosystems globally. Biodiversity Targets objectivesisto recover at hectares aroundtheglobe whileoneoftheAichi Bonn Challengeaimsto restore150million (Pinto launched inthelastyears withambitiousgoals Many large-scalerestoration programshavebeen (Bullock sustainability ofourhuman-dominatedplanet and strivetolong-term ecosystem services priority toreversebiodiversityloss,provide 2004). Ecosystemrestorationisnowaglobal WorkingInternational Science&Policy Group degraded, damaged,ordestroyed(SER ofanecosystem thathasbeen the recovery Ecological restorationistheprocessofassisting Introduction Pedro HenriqueSantinBrancalion Corresponding author:[email protected] stakeholders involved inrestoration. degraded forestneedtobediscussedwith and policiestoincentiverestorationofthose restorations techniquesneedtobevalidated Lianas cutting,enrichmentplantingsandother the practiceofrestoringdegradedforests. toconsolidate sources. Advancesarenecessary on theseforestfragmentsasbiodiversity embedded infragmentedlandscapesdepends the long-termsustainabilityofrestorationsites wellbeing in fragmented landscapes. Besides, andhuman for biodiversityconservation and biomass,degradedforestsareimportant restoration strategy. Despite lowerbiodiversity effective an that make to challenges main the programs in currently fragmented regions, and the agendaoftropicalforestrestoration forest remnantsshouldbeincorporatedin their restoration.We discusswhy degraded remnants are often neglected regarding reforested intheseregions,degradedforest regions. Althoughclearedsitesarebeing forest restorationinfragmentedtropical recently launchedwithambitiousgoalsfor Large-scale restorationprogramshavebeen Ecosystem restorationisaglobalpriority. Abstract fragmented landscapes degraded forest remnants in restoration: management of A newfocus for ecological Ricardo Augusto GorneViani 2 1 Departamento deCiências Florestais,ESALQ -Universidade deSão Paulo, Piracicaba, SP, Brazil Departamentode BiotecnologiaeProduçãoVegetal eAnimal,Universidade FederaldeSãoCarlos,Araras,SP, Brazil. et al.2014,Suding2015).Until 2020,the et al.2011;AronsonandAlexander2013). 1

| Felipe Nery Arantes Felipe Mello Nery 2 in fragmentedregionsofthetropics. biodiversity to reinforce provisioning andecosystemservices conservation strategy effective an to make restorationof degradedforestremnants restoration programs,and2)themainchallenges be incorporatedintheagendaoftropicalforest discuss 1)why degradedforestremnantsshould (Brancalion in thoselandscapeshavebeenneglected several smallanddegradedforestremnants by otherlanduses.Meanwhile,restorationof forests where they were cleared and substituted restoration programsarefocusedonrecovering forest landscapes, tropical human-modified older more commoninlessfragmentedlandscapes, and forestdegradation(REDD) initiativesare While reducingemissionsfromdeforestation forests have constrains for provision of ecosystem (Duran andGianoli2013).Consequently, degraded (Schnitzer andCarson2010)carbonstocks have a strong reduction in tree species richness degraded forest remnants a result, 2005). As (Schnitzer etal. growth, fecundityandsurvival performance, physiological trees affecting thus compete withtreesbywater, nutrientsandlight, (Schnitzer andBongers2011).Climbersstrongly (Lima bamboos as such groups, plant specific some of experience anincreaseinabundanceandbiomass Remarkably, degraded tropical forest fragments et al.2011;Ferraz2014;Pütz2014). forest patches(AguirreandDirzo 2008;Pütz and composition provisioning intheremaining ecosystem services species affect degradation et al.2012).Bothforestfragmentationand grazing and/or other disturbances (Hosonuma fire, logging, selective by degradation faced have Following fragmentation,many tropicalforests isolated forestfragments(Haddadet al. 2015). tropical regionsinlandscapeswithsmalland leaving small patches) have converted many down inpreviouslycontinuousforesthabitats Forest fragmentation(forestareasarecut fragmented landscapes? about restoring forest remnants in Why shouldwe beconcerned et al.2012)or, morecommonly, climbers et al.2012).Thus,ourobjectiveisto 2 | IsaíEuán Chi 1

ol b i sm css oe cost-effective provisioningatthelandscape level than services more cases some andecosystem for biodiversityconservation in be could 2012). Thus,restoringdegradedforestfragments its successinrecoveringbiodiversity(Maronetal. which isexpensiveandsometimesuncertainin tree seedlingsplantations(Rodriguesetal.2011), forest isfrequentlybasedonhigh-densitynative of landscapes. Insuchrestorationsites,recovery many forestrestorationprogramsinfragmented were completelycleared–currently, thefocusof andresilience are muchgreaterthanthatofareaswhereforest levels biodiversity their effects, were historicallydegradedandexposedtoedge andRodrigues2009).Even thoughthey (Viani sources ofpropagulesforsurroundingareas Joly (Arroyo-Rodríguez are importantlandscapebiodiversityrefugees and degradation,remainingforestpatches fragmentation of effects negative the all Despite unless restorationactionsareimplemented. may remaininasteadystateofdegradation, intensity andduration,theseforestfragments Besides, depending on perturbation frequency, andlandscapebiodiversityconservation. services native tree seedlinggrowing intheenrichment planting experiment (E). forest fragment dominated by (A);awhole climbing plants treecovered by lianas (B);lianasdried somemonthsafter cutting(C-D); anda Figure 1:TheVassununga Project intheVassununga StatePark,SantaRitadoPassa Quatro,SP, Southeastern Brazil: edge ofadegraded A B et al.2014) and, if properly managed, good et al.2009;Tabarelli 2010; C fragments? How to restore degraded forest cleared sitesarestronglyreduced. diversity, chancesofforestrestorationsuccessin have treespeciesseedsavailableinquantityand cannot providesheltertoseed-dispersesnor forest fragmentsareseverelydegradedand disperses insurroundingforestfragments.If dependent onthepresenceofseedsandseed- sustainability ofrestoredsitesandisultimately regeneration isthemainprocessforlong-term WorkingScience &Policy Group2004).Natural and biotic flows and exchanges (SER International landscape, whichinteractswithitthroughabiotic of thesiteunderrestorationintoalargerecological ecological restorationdependsontheintegration areas isthefocusofforestrestorationprograms, Even assumingthatrecoveringforestsincleared longer exist. establishing forests in clearedsiteswhere they no isolation fromsurroundingperturbationsis depend onitsdegradationlevel.Insomecases, Techniques torestoreadegradedforestfragment D E

GLPNEWS | NOVEMBER 2015 7 Perspective 8 GLPNEWS | NOVEMBER 2015 Perspective with high abundance ofclimbers (Fig.1).The 1970’s andis inasteadystateofdegradation, the in event fire strong a experienced that Brazil aprotected areainSoutheastern 47°34’-38’W), Vassununga StatePark (VSP, 21°42-43’Sand fragments. Vassununga project islocatedat as restorationtechniques fordegradedforest assisted cutting, natural regeneration and enrichment plantings liana of effectiveness overall of investigatingcosts,operationalfeasibilityand long-term projectestablishedwiththeobjective 2013, theVassununga Itisa10.6ha Project. tropical forestfragments,weestablished,in to validatethepracticeofrestoringdegraded To addressthelackoflarge-scaleprojectsaiming Forestin theAtlantic and The Vassununga project:acase study costs effectiveness, operational feasibilityremain. their regarding not alwayssuccessful, thus severalchallenges from experimentaltestsarenotconclusiveand studies havealreadybeenperformed,results gaps createdbyclimberscutting.Despiteseveral orinthe are plantedintheforestunderstory In enrichmentplantings,nativetreeseedlings fertilization areperformedaroundtreeseedlings. regeneration, controlofinvasivegrassesand cover (Rozza havebeenproposedtoreestablishcanopy light, revolving toexposethesoiltreeseedbank regeneration, enrichment plantings and soil and forestsuccession,suchasassistednatural techniques tostimulatenaturalregeneration severely impacted.Inthatoccasions,restoration natural regenerationintheforestfragmentis cutting may be not enough if the potential of Even when periodically performed, climbers climbing plants(Sfair etal.2015). on managingalloronlythemostabundant and (Gentry Dodson 1987). Thus, there is a debate an importantlifeformfortropicalecosystems remnants, climbers are usually native species and despite beinghyperabundant indegraded periodical cutting may be needed. In addition, grow fastagainaftercutting,whichsuggestthat it seemssimple,climbersfrequentlyresproutand reestablishment oftreecanopycover. Although up andfalldown(Fig.1).Thisprocesshelpsthe from thesoil.Somemonthslater, climbersdry in consist cutting thebaseofclimbers,disconnectingthem procedures field Operational 2005). availability fortreeregeneration(Schnitzer etal. whole trees andthe forest canopy, reducing light reach high densities and biomass, they cover et al.2007;Sfair2015).Whenclimbers suchasclimbers(Rozzabecome hyperabundant, fragments is the management of lifeforms that The maintechnique to restoredegraded active restorationtechniquesareoftenneeded. 2012). However, inseverelydegradedlandscapes, enough to forest self-recovering (Brancalion et al. 2007). In the assisted natural et al. in itsscience andpractice. it isanopportune timetoincludenewapproaches ecological restoration isnowaglobalpriority and fragmented landscapes. Itisalongway to go,but policies tofosterdegraded forestrestorationin restoration stakeholders, aimingtodevelop todiscussthesestrategieswithother necessary of native treeplantingsincleared areas.Finally, itis recommendations traditional than effective degraded forest remnants may be more cost- that insomeconditionsinvestingmanaging next stepistoconvinceenvironmentalbodies restoration regions. Once these techniques are validated, the large-scale that, projects shouldbeimplementedinmany tropical For efficiency. their costs,operational procedures and overall forest remnants, with betterinvestigation of validate themaintechniquestorestoredegraded to forest restoration.Firstly, itisnecessary toconsolidate thepracticeofdegraded necessary biodiversity sources.Nevertheless,advancesare strongly dependontheseforestfragmentsas long-term sustainabilityofotherrestorationareas provisioning atthelandscapelevel.Besides, andecosystemservices biodiversity conservation in thoselandscapes:theyareimportantfor forest intheagendaofrestorationprograms reasons forincludingrestorationofdegraded stated clearly we However, example. for buffers, when restorationsitesarelocatedinriparian provide somewater-related ecosystem services cleared areasiscrucialtoincreaseforestcoverand In fragmentedlandscapes,restoringforestsin Next steps andfinal remarks (Laurance etal.2001,Rice2004). typically foundinlessdegradedforestlandscapes (≤ 1.5cm), which is different from the ticker lianas most oftheclimbershavesmallstemdiameters are severelydegraded.Inaddition,wefoundthat Dodson 1987)thatindicatesthestudysites and forest(Gentry compared towell-conserved ahighrelation each treeabove1mheight, Early inventories estimated 13.7climbers for results will be generated in the following years. collection has just been started and robust We established 54 plots of 45x44 m. Data testing restorationtechniques. of SãoCarlosandUniversityPaulo, whoare actions and;5)researchersfromFederalUniversity VSP; 4) a company implementing the restoration 3) thepublicinstitutionwhichtakes careofthe techniques inVSPdegradedforestremnants; authorized thiscompensationwithrestoration construction; 2)environmentalbodiesthat compensating theimpactscausedbyalicensed several stakeholders: 1)aprivatecompany thatis et al.2009).Theprojecthastheinvolvementof small anddegradedforestremnants(Ribeiro original coverremaininginscattereddistributed (Myers Atlantic Forestisaglobalbiodiversityhotspot study sites are within the Atlantic Forest biome. et al.2000)withlessthan16%ofits References Scientia Agricola66:772–79. Rodrigues,RR(2009).Potential oftheSeedlingCommunityaForestFragmentViani, RAG; forTropical ForestRestoration. Tabarelli, M(2010).Tropical BiodiversityinHuman-Modified Landscapes:WhatIsOur Trump Card?Biotropica42(5):553–54. Committing toecologicalrestoration. Science348:638-640. Higgs, E; Palmer,Suding, K; JB; Anderson, M; CB;Callicott, Baker, M; Gutrich, JJ; LaFevor, Hondula, KL; Larson, BM (2015). MC; on EcologicalRestoration.www.ser.org &Tucson: SocietyforEcologicalRestorationInternational. SER (Society forEcologicalRestoration) Working InternationalScience&Policy Group(2004).TheSERInternationalPrimer &Management11(2):1–7. a searchforlessharmfulmethod.InternationalJournalofBiodiversity Science,EcosystemServices Sfair, Weiser, Rochelle,ALC; JC; vanMelis,J; Martins,FR(2015). Theoreticalapproachestolianamanagement: Rezende, AA; VL; putative mechanisms.EcologyLetters,14:397-406. andF.Schnitzer, Bongers(2011).Increasinglianaabundanceandbiomass intropicalforests:emergingpatternsand S.A. Schnitzer, WP, SA; Carson(2010).Lianassuppress tree regenerationanddiversityintreefallgaps.EcologyLetters,13:849–857. JournalofEcology93(6):1115–1125. a tropicalforest. Schnitzer, Kuzee, M;Bongers,F(2005). Disentanglingabove-andbelow-groundcompetitionbetweenlianastreesin SA; Science Nova S. Gandolfi, SV; Martins, Publishers, 171–96. RR; Rodrigues, eds. Brazil, in projects and methods areas: degraded in restoration Rozza, AF; Farah, FT; Rodrigues, RR(2007).Ecologicalmanagementofdegradedforestfragments.In:Highdiversity ecological Large-scale (2011). PHS CY;Brancalion, Vidal, TE; J;Barreto, restoration ofhigh-diversitytropicalforestsinSEBrazil.ForestEcologyandManagement261(10):1605–13. AG; Aronson, Nave, S; Gandolfi, RR; Rodrigues, 41. Brokaw, ForestEcologyandManagement190:33- Rice, K; N;Thompson,J.(2004)Lianaabundance inaPuertoRicanForest. 142:1141-1153. BiologicalConservation is theremainingforestdistributed?Implicationsforconservation. Ribeiro, M; Metzger, Ponzoni JP; Martensen, A; F; and Hirota how M. (2009). The Brazilian Atlantic Forest: How much is left, Long-Term CarbonLossinFragmented NeotropicalForests.NatureCommunications5. Metz,M;Metzger, Martensen,AC; Knogge,C; Pütz, S;Groeneveld,J; Henle,K; dePaula, MD;Huth,A(2014). JP;Ribeiro,MC; successional states:amodellingstudyforBrazilianAtlanticForests.EcologicalModelling222(12):1986–97. Pütz, S;Groeneveld,J; Alves,LF; Metznger, JP; Huth,A(2011).Fragmentation drivestropicalforestfragmentstoearly Restoration Pact inBrazil.Forests5:2212-2229. César RG; BrancalionPHS(2014).Governinganddelivering abiome-widerestorationinitiative:ThecaseofAtlanticForest CastroP;CarrascosaH;Calmon M;RodriguesRR; Pinto S;MeloF; Tabarelli ScaramuzzaCA; MesquitaA; M;Padovesi A; 403: 853-858. priorities.Nature, Kent J.2000.Biodiversityhotspotsforconservation daFonsecaG, Mittermeier C, Myers N,MittermeierR, Faustian 155:141-148 bargains? Restoration realitiesinthecontextofbiodiversityoffsetpolicies.BiologicalConservation Gardner, Matthews,JW; Christie,K; Moilanen,A; Maron, M;Hobbs,RJ; TA; Keith, Lindenmayer, DA; (2012). DB; McAlpine,CA 147(1):32–39. BiologicalConservation dynamics intheAtlanticForesthotspot. Rother,Lima, RAF; Muler, DC; AE;Lepsch,IF; Rodrigues,RR(2012).Bamboooverabundancealtersforeststructureand forest fragmentationandthestructureofAmazonian lianacommunities.Ecology82(1):105-116. Laurance, WF; Pérez-Salicrup, D;Delamônica,P;Fearnside,D’Angelo, Lovejoy, S;Jerozolinski, Pohl, TE(2001).Rain L; A; Initiatives. NewPhytologist 204(3):459–73. Metzger,Joly, CA; JP;Tabarelli, fromtheBrazilianAtlanticForest:EcologicalFindingsandConservation M(2014).Experiences deforestation andforestdegradationdriversindevelopingcountries.EnvironmentalResearchLetters7:1-12. Hosonuma, N;Herold,M;DeSy, V; DeFries, Romijn,E(2012).Anassessmentof RS;Brockhaus,M;Verchot, Angelsen,A; L; Haddad, NMetal.(2015).HabitatfragmentationanditslastingimpactonEarth’s ecosystems.ScienceAdvances1:1-9. Biotropica19:149-156. (1987).Contributionofnontreestospeciesrichnessatropicalrainforest. AG; Dodson,C. Gentry, provisioning?LandscapeEcology29(2):187–200. good aretropicalforestpatchesforecosystemservices Ferraz, SFB; Ferraz,KMPMB; Brancalion,PHS;daLuz,DTA; Cassiano,CC; TN;Tambosi, Azevedo, Metzger, LR; JP(2014).How Durán, S;Gianoli,E(2013).Carbonstocksintropicalforestsdecreasewithlianadensity. 9:20130301. conflicts andopportunities. Trends inEcologyand Evolution 26(10):541-549. andbiodiversity: RF; Rey-Benayas,JM(2011).Restorationofecosystemservices Pywell, Bullock, JM;Aronson,J.;Newton,AC; secundárias inseridasempaisagensalteradas.BoletimdoMuseuParaense EmílioGoeldi.CiênciasNaturais 7(1):219–34. tropicais florestas de conservação na auxiliar para Estratégias (2012). Cesar,RG RR; Rodrigues, RAG; Viani, PHS

GLPNEWS | NOVEMBER 2015 9 Perspective 10

GLPNEWS | NOVEMBER 2015 Feature - Article Corresponding author:[email protected] participatory scenarioparticipatory analysis. East Africa: anapplication of biodiversity-climate nexusin use- thefuture land Exploring Claudia 5 4 3 2 1 Marchant Mukama the future. local stakeholders’ perceptionsandvisionsfor integrating from benefit could that required sites.Further investigationsareintervention may contributetosetspatialprioritiesfor agriculture interactionunderclimatechange and Anticipating futureconservation forests. specialists remained highest within natural speciesrichnessofrarerforest forest, system supportshigherdiversitythannatural in Taita Hills showed thatthoughagroforestry dataonbirdscommunitydiversity Preliminary would generallyimprovebiodiversitystate. toclimatechange adaptation interventions (Ethiopia), stakeholders expectedthat In Taita Hills (Kenya) andJimmaHighlands impactsonbiodiversity.That mayintensify even moreimportantforlocalcommunities. the mountainslikely toberefugesthatare on wheretheLCLCC aregoingto be, with rainfall andtemperaturearelikely toimpact on protectedareas.Increasingvariabilityof heavily impactedon,withincreasingpressure Arc Mountainsforestsandbiodiversitywillbe usual patternofeconomicgrowth,theEastern Africa. InTanzania, underthebusiness-as- East in scales different at applied we and offs, the biodiversity-climate-land-changetrade- explicit scenariosthatcanbeusedtoanalyse spatially- a frameworktobuildparticipatory needed toreducethoseimpacts.We present and societal will to undertake thechanges trajectories willalsodependonpolitical tropical moistforests,futurebiodiversity impacts onglobalbiodiversity. Inhighlydiverse change (LULCC) areexpectedtohavemajor Climate changeandland-use-land-cover Abstract Sokoine University ofAgriculture,Morogoro, Tanzania Tanzania, WWF Forestprogramme, DaresSaalam,Tanzania Cambridge,UK UNEP_WCMC, UniversityofYork, DepartmentofBiology, York, UK York InstituteforTropical Ecosystems, UniversityofYork, York, EnvironmentDepartment, UK Capitani 4 |BonifaceMbilinyi 1 1 |OliviaNorfolk 5 |IsaacMalugu 1 |PhilipPlatts for REDD+ (Carwardine et al. 2015) and, more for REDD+ (Carwardineet al. 2015) and,more elements to maximize efficiency and opportunities appropriate spatialprioritiesisoneofthecritical biodiversity (andlivelihood)safeguards.Setting have emerged betweencarbonemissionreductionand trade-offs significant started, have phases However,and economicpayment. sincepilot multiple benefits, including biodiversity protection scale carbonemissionreductionsandtopromote Degradation (REDD+)expectedtosupportlarge- and ReducedEmissionsfromDeforestation mitigation (e.g.: Clean Development Mechanism (PES)aswellforclimatechange services include mechanismsforpaymentecosystem that relyonforestresources.Theseincentives and enhancelivelihoodsofthosecommunities forests cansupportbiodiversityconservation haveraisedexpectationthattropical conservation sustainable forestmanagementandbiodiversity win-win outcomeswitheconomicincentivesto markets. Thedevelopment ofpoliciessupporting populations, or to supply commodities for foreign needs fortherapidlygrowinganddeveloping natural resourcesisoccurringeithertomeetbasic income economiesandoverexploitationof Many tropical countries have low-to-middle 2011, Brodieetal.2012,Laurence2014). most oftheglobalbiodiversity(Lambinetal. needed for tropical moist forests, since theyhost and theirsynergisticinteraction,isespecially impacts ofLULCC dynamicsandclimatechange, the (Mantyka-Pringle etal2015).Assessing cover feedbacks,whichremainpoorlyunderstood may be further altered by complex climate-land- effects The expected. are biodiversity global on in conjunctionwithclimatechange,majorimpacts impacted naturalsystemsoverthelastcenturies: Land useandlandcoverchanges(LULCC) have Introduction 4 |Pantaleo Munishi 2 |NeilBurgess 3 | Kusaga |Kusaga 5 | Rob |Rob a for alternativefutureprojections, andtranslate they developsectorial narratives andtrajectories Starting from the situation at present, context. changes, resourcesdepletion) intheregional environmental condition(i.e.landuseandcover economic conditions(i.e.income,production) and socio- between trade-offs on discussions group workshops, participantsareengagedinfocus andbusinesspeople).(farmers, pastoralist, During research institutions,andprivatesectors regional governments, civil society organisations, Stakeholders areselectedamonglocaland results. stakeholders’ validationofpreliminary subsequent following created are outputs final quantitative andspatially-explicitoutputs.The The modellersthentranslatethisinformationinto qualitative andsemi-quantitativeinformation. upgeneral with them fill stakeholders local then and frames set disciplines different in experts approach whereby amodellers’ team including The scenariosbuildingframeworkfollowsamixed Methods climate changeandbiodiversity. possible futureinteractionsbetweenLULCC, land usesandbiodiversity),aswelltoassess between (e.g.: trade-offs policies anticipate to different We presenthowscenariooutputscanbeused under LULCC, policies orenvironmental(climate) conditions. future of scenarios quantitative andspatialanalysestodevelop stakeholders’ participation throughqualitative, We developedaframeworkforintegrating can informdecision-makingprocesses. quantitative andspatially-explicitoutputsthat in implementation,and3)producesappropriate ownership thatbuildscapacitytoactivelyengage developing futurevisions,toenhanceasenseof across scales,2)directlyinvolvelocalactorsin and possiblereactionstoenvironmentalchanges nexus that:1)investigatesocietalperceptions to analysethebiodiversity-climate-land-change Hence, theimportanceofdevelopingapproaches different societal needsandresourcedemands. amongst competition assessing resolving requires and first pathways sustainable agriculture, etc).Yet, establishingalternative climate changemitigation,conservation orindirectly (landmanagement, (conservation) of climatechangeandLULCC, eitherdirectly to undertake the changesneededtoreduceimpacts levels, different at capacity, and regions will also dependonsocietal willingness Biodiversity futuretrajectoriesintropical in relationtobiodiversity. broadly, forpoliciesonlanduseandclimatechange c b over 2041-20700, Plattset al.2015). Projection obtained using AFRICLIM v3.0, RCP4.5 and RCP8.5 representative concentration pathways for mid-century (mean (mean Projectionobtained usingAFRICLIMv3.0,RCP4.5 andRCP8.5 representativeconcentration pathwaysformid-century http://d2ouvy59p0dg6k.cloudfront.net/downloads/wwf___redd__final_project_report___10th_april_2015_1.pdf http://chiesa.icipe.org/ to climate changes were put in place or not (BAU). to climatechangeswereputinplaceornot(BAU). alternative scenarios:eitheradaptationstrategies framework ofaREDD+pilotproject national levelinTanzania mainlandwithinthe We appliedthisframeworkatsub-nationaland studies Case for LULCC forests. Climateprojections inEAM areas areessentialforlimiting thestrongpressure 1b andc).Accordingtoour scenario,protected andcharcoalproduction(Fig. timber harvesting woodland wouldbedegradedasconsequenceof due tofarmlandexpansion.Additionally, 30%of loss ofmontaneforestand26%woodland thiswouldresultinan8% Mountains (EAMs), IntheEasternArc technological improvement. continue intheabsenceoflanduseplanningand onbiomassandfarmlandexpansion dependency since to growattheexpenseofenvironment, In Tanzania, underBAU, theeconomyisexpected Results patterns forthelocalsites projection formeantemperatureandrainfall case study, wepresentedstakeholders climate a business-as-usualscenario(BAU).Inthesecond through REDD+implementations,asopposedto a focusonhaltingdeforestationanddegradation with pathways towardssustainabledevelopment, climate changes. let we In the first case study,and we explored for possiblefuturetrajectoriesofLULCC and/or significantly but scenarios stakeholders develop locallyorientednarratives simple, alternative two different, proposed We Coastal forestsofEasternAfrica. biodiversity hotspotsofEasternAfromontaneand East Africa(CHIESA inmountainecosystems ecosystem services impacts ofclimatechangeonfoodsecurityand Highlands (Ethiopia), inaprojectfocusingon level in the Taita Hills (Kenya) and the Jimma to fulfilltheestimateddemand. risk toallocatespatialchangesthatarerequired of indicators spatial the using created finally are and converted into land surfaces. Scenario maps population growth by the scenario time horizon and woodforenergy)isestimatedaccordingto composite specific Demand formaincommodities(e.g.:foodcrops create to indicators ofLULCC riskforeachvegetationtype. and LULCC of spatialindicators used bythemodellerstoidentify future scenarios(Fig.1a). Thisinformationisthen and “where”“why” they would occur under the provide standardised information on “howmuch”, specific LULCC (Fig. 1a). For each LULCC type, they into forces driving and trajectories identified the b ). The study areas include the ). Thestudyareasincludethe c , and we explored two , andweexploredtwo a , and at local , andatlocal

GLPNEWS | NOVEMBER 2015 11 Feature - Article 12

GLPNEWS | NOVEMBER 2015 Feature - Article Protected areasareshownonly for withinEAMs, graphic clarity. nual moistureindex by etal.2015). 2055(baselineasinPlatts gered andcritically endangered (IUCN2013);d)changes inan- endan- vulnerable, as classified amphibians and birds mammals, of distribution c) loss; biomass by defined deforestation and tion b) LULC changes underBAU by scenario 2025,degrada inEAMs - tains ofTanzania: a) mappingexercise at stakeholders’ workshop; Figure 1.Exploring futurescenarios for theEastern ArcMoun - increase morerapidlyunderthenoadaptation stakeholders debated whetherpopulationwould use. BothinTaita HillsandinJimmaHighlands, includingsustainableforest land management, related toimprovingwatercatchmentand preferred adaptationstrategiesaremainly if adaptionstrategieswereputinplace.Infact, scenario and improvement of biodiversity state decreased biodiversityunderthe“noadaptation” effects, envisaged Stakeholders livelihoods. local affect change unpredictability ofrainfallpatterns,would climate and particularlyincreasedvariability that envisaged In Taita Hills,participatingstakeholders diverse montaneforestcouldincrease. pressure forfurtherencroachmentintohighly the mountainscomparedtolowlands,then ifsuitabilityincreasedon 2011). IntheEAMs, Act 1999),andlandtenureinsecurity(USAID ofTanzaniapermit landlease,Gvt. Village Land following bothlandrights(villageCouncilcan andthereforemigrationoffarmers, the country, produce changesincropsuitabilitypatternover (Fig. 1d).Changingclimaticconditionscould the southern and northern segments of EAMs between differently seasonality precipitation of patterns affecting Tanzania, across temperature suggest increasingvariabilityofrainfalland forest only. specialists Kenya. representspeciesrichness Boxplots ofa)allbirds andb) Figure 2.Theimpact of land useon bird diversityin Taita Hills, threatened forestspecialists. implications forthepersistenceofglobally into montane forests is likely to have negative high levelsofbiodiversity, futureexpansion systems havethepotentialtosupportrelatively natural forests (Fig2b). Thoughagroforestry rarer forestspecialistsremainedhighestwithin generalist speciesandtherichnessof forests, theircommunitiesweredominatedby more diversebirdcommunitiesthannatural systemswerefoundtosupport agroforestry diversity ofbirdcommunities(Fig.2a). Though human landuseishavingstrongimpactsuponthe suggestthat Results frombiodiversitysurveys effective climate conditions. an alternative, “refuge” under adverse and unpredictable better a represent For anumberofthestakeholders theTaita hills scenario ormovetootherplaces(i.e.lowlands). climate conditions throughcurtailedmobility. may undermine speciescapacitytoadapt tofuture fragmentation offorest patches duetoLULCC increased REDD+ mechanisms.Onthe contrary, whichcouldbe supportedthrough engagement, protection enforcement andto community closely relatedtosustainable managementand seems The futureofthebiodiversityonEAMs in thelocalareaaswellatabroaderscale. by communities’responsestoclimateandLULCC affected be could Africa East of forests montane future trajectories of biodiversityhotspots in resultsfrom thisstudysuggestthat Preliminary Conclusions References sites(e.g.REDD+sites). targeting intervention 2014) may contribute to setspatial priorities for interaction under climate change (Estes et al. andagriculture Anticipating futureconservation and eventuallyrecoveringbiodiversity. orrestoration, become availableforconservation crops areas) would lose productivity andmay thus part ofcurrentfarmland(includingmixed wood- montane forestislikely toincrease.However, the riskoffurtherencroachmenthighlydiverse the montaneslopescomparedtolowlands,then In the longer term, if crop suitability increases on profile 2011.Tanzania—property for International Development. United States Agency rights and resource governance applications inAfrica.AfricanJournalofEcology53,103-108. Platts, P.J., P.A. 2015.AFRICLIM:High-resolutionclimateprojectionsforecological Omeny, Marchant. andR. 187:103–111. modifies riskofglobalbiodiversitylossduetoland-coverchange.BiologicalConservation P. S., Mantyka-Pringle, C. Visconti,M.DiMarco,T. Rhodes.2015.Climatechange Rondinini,andJ.R. Martin,C. G. 108(9)3465-3472. PNAS F.Lambin, E. andP. 2011.Global Meyfroidt. landusechange,economicglobalization,andtheloomingscarcity. in ecology&evolution29(2):107–16. Laurance, W. F., J.Sayer, Cassman.2014.Agriculturalexpansionanditsimpacts ontropicalnature.Trends G. andK. IUCN. 2013.“IUCNRedListofThreatenedSpecies.Version iucnredlist.org/. 2013.01.”IUCN,Gland.http://www. (accessed29September2015). documents/The_Village_Land_Act,_5-1999_sw.pdf Government ofTanzania. 1999.VillageLandAct(LawNo.5of1999).http://www.tanzania.go.tz/egov_uploads/ Biology 28(2):427–37. Conservation future climate-induced risk to conservation. 2014. Using changes in agricultural utility to quantify Paroz, Ziv, Oppenheimer, B.a Bradley, Holness, G. D., M. G. J.M. H. Green, D. Hole, S. L.-L. Estes, L. G. and D. Wilcove. S. evolution 27(3):145-150. W.F: Post, Brodie, J.,E. Laurance.2012.Climatechangeandtropicalbiodiversity:anewfocus.Trends inecology& Spatial PrioritiesforRestoringBiodiverseCarbonForests.BioScience65(4):372–382. Hawkins,P. J.,C. Carwardine, Polglase, H.P. Renwick,M.Watts, R. andT. Reeson, A. Possingham, Martin.2015. A. G. major challenges. their visionsonpossiblepathwaystotacklethese stakeholders local perceptions’ onLULCC andclimatedynamics, incorporating from benefit Africa needfurtherinvestigationthatcould biodiversity inmontaneecosystemsofEastern communities, land use,climate change and Interactions acrosstimebetweenhuman

GLPNEWS | NOVEMBER 2015 13 Feature - Article 14

GLPNEWS | NOVEMBER 2015 Feature - Article Corresponding authors: [email protected] these forests provide ecosystem services at these forestsprovideecosystem services construction and energy wood. Furthermore, multiple goodstourbanpopulations,including income needs,whileforestedareasalsosupply resources tomeettheirsubsistenceandcash populations livinginruralareasrelyonforest A largeshareofthetwothirdsMalagasy Benstead 2005). forest(Goodmandeciduous andspiny and dry todry moist rainforestandsub-humidforest, a varietyofforestecosystems,fromevergreen et al.2011).Thisbiodiversityoccursprimarilyin fauna (Goodman andBenstead2005;Callmander with endemism rates of 82% for flora and 84% for Madagascar isahavenforbiologicaldiversity, Introduction which combinetoforcefarmersintotheforest. economic andclimaticfactors,demographic, greatly inthelasttwodecadesasaresultof status. Shiftingcultivationherehasincreased for bothitsbiodiversitywealthandthreatened forest ofMadagascarisparticularlyrelevant this globalpanorama,thecaseofspiny tohumanpopulations.Within needed services capacity of these ecosystems to provide much implications forthisbiologicalrichnessandthe world’s biodiversity, withpotentiallynegative that arehabitatforalargeportionofthe processes oftentake placeuponforests These land-useandland-coverchange dynamics inmany tropicaldevelopingcountries. change in land-cover role significant a play to of eithersubsistenceorcashcrops,continues the world,latterlanduse,forproduction of forestlossinmany forest-frontier areasof shifting cultivationasmajorproximate causes land forindustrialproductionarereplacing Although expansionofagriculturalandpasture Abstract the spiny forest ofMadagascar conservation priority. Thecase of change inaglobalbiodiversity andland-cover Land-use Llopis Jorge C. 3 3 2 1 WWF MadagascarandWestern IndianOceanProgrammeOice,BP738, Antananarivo101,Madagascar WWF BlueVentures Level2Annex,OmnibusBusiness Centre,39-41NorthRoad,LondonN7 9DP, Conservation, UK UK UniversityofKent, andEcology(DICE),SchoolofAnthropology andConservation, DurrellInstituteof Conservation CenterofAfricanStudies.University Copenhagen,Denmark; 1 |CharlieJ.Gardner 1 ; [email protected] 2 ; [email protected] 2 |XavierVincke Land-cover changeinthespiny forest reduces substantially the demand for watering. reduces substantiallythedemand forwatering. while theprimarilyrain-fed condition ofthesystem tasks, clearing, sowing,weedingandharvesting for inputs besidesthelabourandtoolsnecessary slash-and-burn forforestclearing,demandsfew southern Madagascar. Hatsake , whichresortsto yields ontheratherunproductiveuplandsoilsof good relatively obtain to way labour-efficient and their mainlivelihoodstrategies,asaninexpensive employed byruralhouseholdstocomplement for rain-fedmaize productionhasbeentraditionally Regionally knownashatsake, shiftingcultivation change (Casse etal.2004;Waeber etal.2015). cultivation remainsthemaincauseofland-cover the spiny forest’secologicaldynamics,shifting influence also mining) (e.g., activities extractive Although charcoal production, cattle raising and Gardner etal.2008;Harper2007). the fastest of two decades(Figure1)(Waeber etal.2015; some suffered overthelast deforestation ratesinthecountry also have populations, but rural for significance spiritual and while constitutingacentralelementofcultural the highestratesofendemisminMadagascar These forests harboursomeof problematic. of theislandisaprimeexampletoillustratethis occurring inthesouthandsouthwesternregions spiny forest-thicketThe caseofthedry ecoregion always wellunderstood. in theisland,butwhichunderlyingdriversarenot constituting themaincauseofland-coverchange is practicedoverlargeareasofthecountry, socio-economic features,shiftingcultivation At the crossroads between these biological and global scale. to carbonstorageandsequestrationatthe atthelocal-regionallevel, and soilconservation multiple scales, from hydrological regulation 3 3 predominantly throughshiftingcultivation, on theforests ofaregionproducing maize 2006). Thisphenomenon hadasevere impact emerged duringthe1990s (Mintenetal. the south-westofMadagascar toLaRéunion infrastructure, anexportmarket formaize from Within thiscontextofdegrading agricultural al. 2006;Gardneret2015a). into forest-based livelihoodstrategies(Mintenet agricultural activities,pushingthemtoengage access tothewaterresourcesneededfortheir left farmersacrosstheecoregionwithreduced from itsmaintenanceparticularlysincethe1980s, andthedisengagementofstate by cyclones, infrastructure overtheseregionsrecurrentlyhit itisconsideredthatdeteriorationofirrigation First, forest tosupportitsbiodiversity. strongly challengesthecapacityofspiny contributed tothisgrowingtendency,which oriented production. Several factors have mainly subsistence-oriented to more market- in southernMadagascar, alongwithashiftfrom amongstruralpopulations has beenobserved In recentdecades,increasingrelianceonhatsake expansion Underlying causes ofhatsake et al.2015;Elmqvist2007). forest tendstorevertopengrassland(Waeber the spiny and difficult rather is cultivation after informal protectiveinstitutions,forestregrowth or formal effective lacking and clearing, forest of forest frontier. Atthecurrentrateandmanner push farmerstofollowtherapidly-retreating conditions prevailinginsouthernMadagascar employed, theedaphicandsemi-aridclimatic enough landisavailableandselectiveclearing Although asustainableagriculturalsystemif increasing thelabourinputneededforweeding. matter areexhaustedandweedinvasionensues, as thenutrientsprovidedbyburningwooden support maize cultivation for three or four years, where the soils of most years, first the during hectare However, despiteyieldinguptotwotonsper Figure 1a:Thespiny forest ofMadagascar. Photo by Louise Jasper hatsake iscarriedoutareonlyableto

Figure 1b:Thespiny forest ofMadagascar. Photo by Louise Jasper fertilized onceayear by the rises of thewater land in the region, the are linedwith themostproductiveagricultural transport thesedimentsdown totherivers,which hitting cyclones the island. The subsequent floods intense soilerosioninthe event oftheimpact cleared offorestcoverare pronetoexperience scale wherethesechanges take place.Thehilltops might have severe implications far beyond the local land-use land-cover change (LULCC) processes these biodiversity, on effects direct the Besides Ecological andsocialimpactsofhatsake (Tadross etal.2008). change thepotentialscenariosarelessconclusive althoughconcerningrainfall half ofthecentury, the by rises significant with decades, next the in The temperaturetrendisexpectedtocontinue 30 years(Tadross etal.2008;Casse2004). might bebecomingnearlychronicsincethelast and slightdeclineinrainfall,whiledroughtspells in particular increases in temperature last century, climate ofsouthernMadagascaratleastsincethe inthe variability isrelatedwithchangesobserved dependent livelihoods (Gardner rural agricultural practices tomore heavily forest- influencing already be households toshiftfrommoresustainable to considered is variability (e.g., increased rainfall unpredictability) Over thissocio-economicpanorama,climate shrinking livelihoodoptions(Llopis2015). strongly onshiftingcultivationinthefaceof local populationsarealsoturningtorelymore forest coverdynamics(Brinkmannetal.2014), in role significant a playing continues migration and despitethatinsomeareasoftheecoregion (Fenn andRebara2003;Casseetal.2004).However mechanism to gain access to agricultural land forest clearingwasconsideredasalegitimate land-use these influenced change processes,particularlyinareaswhere also southernmost have drought the from and regions oftheisland,triggeredbycyclones flows In-migration wellbeing ofMalagasypopulations. while just slightly and ephemerally improving the or alluvial fields fields alluvial or baiboho et al.2015a). This

GLPNEWS | NOVEMBER 2015 15 Feature - Article 16

GLPNEWS | NOVEMBER 2015 Feature - Article forest might be brought about by the impact of 2015), themost severeimplicationsfor thespiny cover dynamicsarenotnegligible (Waeber etal. effect of these extreme phenomena on the forest intensity (Tadross of theseevents,butinparallel withanincreasing pointtoaslightdecrease inthefrequency cyclones Future expectedchangesintheoccurrenceof forest ecosystems(Gardner etal.2015a). based livelihoods,furtherincreasingpressureon forest- for fishing abandoning already are region of declining marine resources, some fishers in the aresult for theirlivelihoods(Mainaetal.2013).As fisheries these on primarily relying populations the ecosystems’ biodiversityandthecoastalhuman suffocate to likely coral, havingsevereimplicationsforthemarine is process This coast. stretching alongthesouthwesternMalagasy rivers endupsilting the Toliara reef system a largeamountofthesedimentscarriedbythese the affecting that to phenomenon Channel (ONE etal.2013).Moreover, inaparallel several rivers discharging into the Mozambique and 2010(over400,000ha) andcrossedby where moreforestwaslostbetween1990 preciselytheregionofMadagascar south-west, This phenomenonisparticularlyacuteinthe Harunain2013. cyclone left uponthem,asoccurredwiththepassageof their productivity due to thelayer of infertile sand the to siltation of the alluvial plots, severelyreducing lead may floods cyclone-related events, level. Despitebeingrelativelyextraordinary Figure 2:Upland shiftingcultivationfields in Ranobe PK32NPA. Photo by Xavier Vincke 2008). While the direct et al. 2008). While the direct fields, baiboho

in 2008aNPA coveringsome160,000 ha was With theaim ofhaltingtheseLULCC processes, forest onredsandsalongthe coastinthewest. the NPA (Figure2),andcharcoal productioninthe the spiny forestonlimestoneplateauintheeastof Concretely these processes are driven by hatsake in anddrought. above andtheimpactof cyclones with thegrowthofexportmarket reviewed began severely affecting the forest cover, coinciding However, atthattimeincreasingLULCC processes in southernMadagascaruntiltheearly1990s. and lessdisturbedremainingtractsofspiny forest needs, whiletheareahostedoneoflargest area tomeettheirenergyandconstructionwood traditionally reliedontheforestresourcesin in thesouth-westregion.Localcommunitieshave constituting therichestareaforfaunalbiodiversity Channel andtheFiherenaManomborivers, Ranobe PK32islocatedbetweentheMozambique the challenges environmental andeconomicconditions. of underadverse faced bybiodiversityconservation complexity the exemplifies outcomes. The caseof Ranobe PK32 with varying decade onthespiny forestecoregion,although Protected Areas(NPAs) wereestablishedinthelast To halttheseintenseLULCC processes,severalNew Ranobe PK32 on thespiny forest –Thecase of Challenges for NewProtected Areas shifts onthelivelihoodstrategiestheypursue. ontheruralpopulationsandsubsequent cyclones Sawmy (Virah- promoters, theinternationalNGOWWF scaleis a majorchallenge for the necessary of sustainablelivelihoodsprogrammesatthe others withinitsboundaries,thedevelopment 90,000 peoplelivearoundtheNPA andmany has notbeencompletelyrealised.Sinceabout implementation effective their date to although intended tobeprovidedruralcommunities, their permanentagriculturalpracticeswere andsupportfor ecotourism andagroforestry), economic alternatives(e.g.,promotionof use protectedarea.To achievetheseobjectives, management regimewasproposedasamultiple- while protecting its biodiversity wealth, the sustainable exploitationoftheforestresources of enablinglocalpopulationstoengageina etal.2014).Withthegoal surface (Virah-Sawmy objective ofprotectingupto10%Madagascar’s initiative launchedin2003thatentailedthe Vision strategy, acomprehensiveconservation established inRanobePK32withintheDurban in a vulnerable situation subjected to the effect the to subjected situation vulnerable a in to presenttime,andruralpopulationsremain processes havecontinuednearlyunabatedup sensitization oflocalcommunities,theseLULCC oftheNPAthrough aerialsurveillance and Although relativesuccesseswereattained funding toMadagascar. following whichmany donorsreducedtheir exacerbated bythepoliticalcoupof2009, References (01): 73-77. M. and J.P.Goodman, S. Benstead, 2005.Updatedestimates ofbioticdiversityandendemism forMadagascar. 39 Oryx Management ofProtectedAreas.Parks 21 (1):13-28. Monitoring andParticipatory Gardner, RafanomezantsoaandM.Virah-Sawmy, Vincke, 2015b.ObliqueAerialPhotography: J.,X. S. ANovelTool C. forthe a casestudyofcharcoalproduction insouth-westMadagascar. FirstView: 1-11. Oryx Gardner, J.,F. C. Gabriel,F. U. L. V. Davies,2015a.Changing livelihoodsandprotectedareamanagement: A. G. JohnandZ. St. 103. and SpiritualValues. (ed.: J.-M. Mallarach). Kasparek Verlag, Heidelberg, IUCN, GTZ and ObraSocial de CaixaCatalunya: 92- expandedprotectedareasystem:thecaseofAnkodida.regimes intoMadagascar’s in:ProtectedLandscapesandCultural Gardner, J.,B.Ferguson,F. C. N.Ratsifandrihamanana, 2008.Integratingtraditionalvaluesandmanagement Rebaraand A. Nomadic Peoples 7(1):123-137. Fenn, M. and F. Rebara, 2003. Present Migration Tendencies Spiny Forest and Ecoregion. Their Impacts in Madagascar’s PLoSONE2(5):e402. Regeneration ofTropical Forest inMadagascar:TheSocialInstitutionalContext. Dry T.,Elmqvist, M.Tengö, M.Pyykönen, F. Rakotondrasoa, Radimilahy, Rabakonandrianina E. 2007.Patterns andC. ofLossand what doweknow? andEconomics6(1):33-48. ForestPolicy Casse, T., Randriamanarivo,2004.CausesofdeforestationinsouthwesternMadagascar: RanaivosonandJ.R. Milhøj,S. A. flora ofMadagascarupdated.PlantEcologyand Evolution 144(2):121-125. Gautier, Chatelain,L. P.Raharimampionona, C. P. Ii and M.V. L. Callmander, 2011.Theendemicandnon-endemicvascular Callmander, M.W., P. Andriambololonera,M.Rabarimanarivo,N.Rakotonirina, Schatz,S. J. E. B.Phillipson,G. SpeciesinMadagascar.Conserving Biology26(3):408-419. Conservation P. Rasolohery, Cameron,A. Schatz,2012.ClimateChangeandtheCostof Hannah,A. RoehrdanzandG. Dave,L. Busch, J.,R. 195:p.231-243. Environment, Madagascar overthepast40years:whatcanwelearnfromsettlementcharacteristics? Agriculture,Ecosystemsand F.Brinkmann, K., Noromiarilanto,R.Y. Buerkert, 2014.Deforestationprocessesinsouth-western Ratovonamana,andA. et al.2014).Thischallengehasbeen with theexpectedfuturechanges measures tosupportruralpopulationsincoping adaptation effective devise to particular in and anddevelopmentinterventions, conservation operate isneededinordertoinformappropriate 2012). Further researchonhowthesedynamics (Hannahetal.2008;Busch conservation increase thehindrancesandcostsforbiodiversity The combinationofallthesefactorswilllikely of extremeclimaticevents(Tadross etal.2008). effects enhanced potentially the and forest spiny temperature overtheareasofoccurrence of LULCC, particularlyduetoprojectedrisesin the livelihoodsof the rural population main agent change islikely toputadditionalpressureupon causes. Overthepresentpanorama,globalclimate processes driven by a complex range ofunderlying objectivesarechallengedbyLULCCconservation asanillustrationofhowbiodiversity served The spiny forestecoregionofMadagascarhas Conclusion households (Gardner etal.2015a;Llopis2015). floods cyclone-related influencing shifts on the of livelihoods of local effect and variability rainfall land-use changedynamicsinthearea,with regional capitallocatednearbytheNPA, onthe role significant the revealed played by theurban demand from Toliara, the have NPA the in 2015b; Llopis2015).Findingsofrecentresearch of diverseenvironmentalhazards(Gardner etal.

GLPNEWS | NOVEMBER 2015 17 Feature - Article 18

GLPNEWS | NOVEMBER 2015 Feature - Article pressure 17(S2): 127-148. J.-P. forestsinMadagascar:neglectedandunder forestsinMadagascar:neglectedandunderpressure.Dry Sorg,2015.Dry Waeber, P. Kull,J.U. Ganzhornand Garcia,D. A. Wilmé,B.Ramamonjisoa,C. Rakotomalala, O., Rabemananjara,C. Z.H. L. Madagascar. Scales). (ed.:I.R. AbingdonandNewYork, Routledge:216-251. andEnvironmentalManagementin newprotectedareas.in:Conservation governanceofMadagascar’s participatory inthe N.Ratsifandrihamanana,2014.TheDurbanVisioninpractice.Experiences J.GardnerandA. Virah-Sawmy, M.,C. Madagascar. 18pp. future, and past Antananarivo, Office, Meteorological recent National and Africa Town. Madagascar; South Cape of University in Group, Analysis Systems Climate change Climate 2008. Yip, K. Z. and Rabefitia Z. Randriamarolaza, L. M., Tadross, 42 pp. DGF,ONE, MNPandCI,2013.Evolution FTM, delaCouvertureforêtsnaturellesàMadagascar2005-2010.Antananarivo. The CaseOfMadagascar. Madagascar. Antananarivo,WWF 151pp. Minten, B.,P. RandrianarisonandJ.F. Meral,L. M.Swinnen,2006.Trade Liberalization,RuralPoverty AndTheEnvironment: climate changeimpactsofsedimentationoncoralreefs.NatureCommunications4:1-7. Maina, J.,H.deMoel,J.Zinke, J.Madin,T. Vermaat, McClanahanandJ.E. 2013.Humandeforestationoutweighsfuture Madagascar. Paper presentedatthe:6thEuropean ConferenceonAfricanStudies,Paris, 8-10July2015. Perceived 2015.Climatechange,developmentandnature conservation. realitiesandprospectsinsouth-west Llopis, J.C., in Madagascar. 34(4):325–333. EnvironmentalConservation Harper, Steininger, J.,M.K. J.Tucker, G. C. D. JuhnandF. Hawkins,2007.Fiftyyearsofdeforestationandforestfragmentation P. J.Randrianarisoa, in conservation Madagascar. BiologyLetters4:590–594. for adaptation change Climate Randriamahazo, 2008. Wilmé, L. H. and Tadross M. Razafimpahanana, Schatz, E. G. A. Raxworthy, C. Razafinjatovo, Andriambololonera, S. Randrianasolo, H. H. MacKinnon, Dave,P. R. Kremen,J. Hannah, L., Hijmans,C. Cameron,R. P. Andriamaro,A. Andelman,M.Andrianarisata,L. II,S. L. and foxes. Themainmethodtocontrolthemis These include small animals, such as feral cats Introduced mammals intimately linked and interact witheachother. discussed,thesethreatsare and pathogens.As mammals, B) land-usechangeandC)weeds Australian Biodiversity Hotspot: A) introduced There are threemain threats forthe Southwest et al.,2000). to theirshareoftheworld’sspeciesatrisk(Myers strategy, focusingonthesehotspotsinproportion Earth. This opens the way for a conservation 25 hotspots comprising only 1.4% of the land surface of the to confined are groups vertebrate of vascularplantsand35%allspeciesinfour many as44%ofallspecies loss ofhabitat”.As endemic speciesareundergoingexceptional as regions “whereexceptional concentrationsof defined are Hotspots Biodiversity Myers (2000). al. by defined as priorities conservation one ofonly25GlobalBiodiversityHotspotsfor Southwest Australiaisamegadiverseregion, Corresponding author: [email protected] 1 Australian Biodiversity Hotspot Threats to theSouthwest Hans Gastrolobium spinosum (Fabaceae). Gastrolobium is a fluoroacetate-bearing genus common in south-western Australia. insouth-western common genus Photo by Graham Zemunik. fluoroacetate-bearing a is Gastrolobium (Fabaceae). spinosum Gastrolobium Figure 1. SchoolofPlantBiology, UniversityofWestern Australia Lambers 1 et process. Notonlydidthisremovetheoriginal for agriculturehasbeenthemajorthreatening (Coates For plants,thethreatsarecaptured in Figure2 change Land-use in Brazil(Amorimia,Arrabidea andPallicourea). southern Africa (Dichapetalum) andthree genera georginae innorthern Australia), a singlegenus in known foroneAcaciaspeciesinAustralia( are fluoroacetate produce rare. OutsidethegenusGastrolobium, thetraitis relative to known are therefore that are insensitive tothepoison(Twigg 2014).Plants they fluoroacetate; Gastrolobium species(Figure1),whichcontain south-western Australia have co-evolved with mitochondrial metabolism.Nativeanimalsin highly sensitivetothispoison,whichblockstheir by non-targetmarsupials.Exotic animalsare by thetargetanimals,butmayalsobeeaten chicken headsorsausages,whichareconsumed 1080. The chemical is added to bait such as called commonly fluoroacetate, sodium using by et al.,2014).Historically, landclearing

GLPNEWS | NOVEMBER 2015 19 Feature - Article 20

GLPNEWS | NOVEMBER 2015 Feature - Article Australia, aswellnewsaltlakes andsaltscarsin which are a natural element in south-western able rose.Thisgaverisetoexpandingsaltlakes, far lesswateronanannualbasis,thesaline vegetation wasreplacedbyannualcropsthatuse perennial When profile. the in low but landscape, the oceanwithrainhasaccumulatedin rising saline water table. Salt that arrived from salinity, asaresultof also gaverisetodryland vegetation, includingendemicspecies,butit a recent chapter (Coates etal.,2014). covered in threats areas to floracorrespond shaded threatened blue in Western listed The to Australia. threats Proportional Figure 2. in ariseofthesaline watertable. Photoby HansLambers. Figure 3. Effects of dryland salinity, due to clearing of perennial native vegetation and replacing it by annula crops or pastures, resulting saline watertable(Figure3). of nativetreesandshrubsistheresultsrising the landscape(Hattonetal.,2003).Massivedeath high (Fisheret al., 2006).Phytophthora too is that frequency fire a of result a as example foothold oncesoilphosphoruslevelsincrease,for Weeds, inparticularherbaceousspecies,geta WeedsC) andpathogens: cinnamomi, References in vegetation. will inevitablyleadtoeutrophication,andashift not anoption,andcontinueduseofphosphite because simplystoppingtheuseofphosphiteis strategy to combat 2013). Whatisurgentlyneededanalternative (Lambersetal., exactly whathasbeenobserved in vegetationcompositionorcover, andthisis with phosphoruscanbeexpectedtocauseashift lowest (Zemuniketal.,2015),enrichingthesoil where soilphosphorus concentrations are the levels. Sincethegreatestbiodiversityisfound microorganisms, thusincreasingsoilphosphorus is readilyconvertedtophosphatebysoil into trunksofinfestedtrees.However, phosphite over infestedareasinnationalparksorinjected flying aeroplanes small from sprayed commonly currently usedtocombatitisphosphite,which to vehicletiresorfootwear. Theonlytoolthatis invasive species;itiseasilyspreadonsoilattached been listedasoneoftheworld’smostdestructive western Australia(Coates etal.,2014).Ithas threat tothebiodiversityinmostofsouth- an introducedpathogenicoomycete,isamajor long-term ecosystem development. NaturePlants1:10.1038/nplants.2015.1050. long-term ecosystemdevelopment. 2015.Diversityofplant nutrient-acquisition TurnerLambersH,Laliberté E. strategiesincreasesduring Zemunik G, BL, Crawley,Southwest Australia,aGlobalBiodiversityHotspot. Australia: UWA Publishing,225-240. Twigg LE2014.Fluoroacetate,plants,animalsandabiologicalarmsrace.In:LambersHed.PlantLifeontheSandplainsin Nature 403:853-858. priorities. da FonsecaGAB,Kent MittermeierCG, J.2000.Biodiversityhotspotsforconservation Myers N,MittermeierRA, Physiology 1:10.1093/conphys/cot1010. Conservation hotspot. Phosphorus nutritionofphosphorus-sensitiveAustraliannativeplants:threatstoplantcommunitiesinaglobalbiodiversity PearseLambers H,AhmediI,Berkowitz LalibertéE, SJ,Teste O,FinneganPM,HardyGESJ,JostR, DunneC, FP. 2013. Research 25:81-88. 1998.Fox control and rock-wallaby SumnerNR. population dynamics - II. An update. Wildlife Onus ML, Kinnear JE, Plant andSoil257:341-356. Hatton TJ, 2003. Preclearing hydrology of the Western Ruprecht J, George RJ. Australia wheatbelt: target for the future. Banksia woodlandcommunityinvadedbyEhrhartacalycinaandPelargonium capitatum.PlantandSoil284:253-264. 2006.EnhancedsoilandleafnutrientstatusofaWestern Veneklaas Australian LambersH,LoneraganWA. Fisher JL, EJ, Crawley:UWA Publishing,263-284. Australia, aGlobalBiodiversityHotspot. Southwest in Sandplains the on Life Plant ed. H Lambers In: challenges. and threats flora: kwongan the of Conservation GJ, LambersH,MonksLT, GibsonN,Keighery DunnC, Coates DJ, ByrneM,CochraneJA, Yates 2014. ThieleKR, CJ Phytophthora cinnamomi, www.facebook.com/kwonganfoundation). World-Heritage Listing forthe region (https:// Kwongan FoundationvigorouslypursuesUnesco international profile of awareness the region. That is why the local toraise of howspecialtheregionisandtolift required are efforts Rock wallabies(Kinnearet al., 1998),Concerted such asTetratheca deltoidea,whichareeatenby may actuallyendangerthreatened plant species effect of protecting the native animal. The success (Petrogale lateralis) maynotonlyhavethedesired 1080 toprotecttheendangeredRockwallaby must be explored. Likewise, controlling foxes with a long-termsolution,andalternativestrategies Phytophthora cinnamomi with phosphite isnot integrated approach.Controllingtheoomycete Hotspot insouth-westernAustraliarequiresan to thesystem.To theBiodiversity conserve numbers ofendemics,butalsoaboutthreats are notsimplyaboutspeciesrichnessand Biodiversity hotspots sensu Myers et al.(2000)

GLPNEWS | NOVEMBER 2015 21 Feature - Article 22

GLPNEWS | NOVEMBER 2015 Feature - Article Corresponding author: [email protected]; http://philip.inpa.gov.br National Institutefor ResearchinAmazonia (INPA), Manaus,Amazonas, Brazil. determines what is considered endemic. One One determines whatisconsidered endemic. area geographical this of definition the thus area, which speciesonlyoccurin onlyonegeographical Endemismrefers tothedegree Atlantic forest. forests, suchastheremainingpatchesofBrazil’s high, butitcanbehigherinsomeothertropical (the proportionofspeciesthatonlyoccurhere) is reptiles (daSilvaetal.,2005).Average endemism 1294 birds,427mammals,amphibiansand378 has an estimated 40,000 plant species, 3000 fishes, rise atthefootofAndesMountains.Amazonia reaches a peak where thetopography begins to (in termsofnumbertreespeciesperhectare) largest river:theCongo). Amazonia’s biodiversity to six times larger than that of the world’s second five is River Amazon the of flow annual (the water tropical forestandthelargestamountoffresh both thelargestremainingareaofworld’s with great, natural richnessofAmazonia isvery tropical forestsinVenezuela andtheGuyanas.The Amazonia encompasses Colombia, while “greater” the restbeingsharedbyBolivia,Peru, Ecuadorand About two-thirdsoftheAmazon forestisinBrazil, Biodiversity and are uncertain removed intime. that rewards financial on conserving whereas depends forest forenvironmentalservices profits, immediate and Destructiveusesprovideassured it. conserve the foresthavebeenhigherthanonesto grown muchfaster, sinceincentivestoclear theforcesofdestructionhave these services, maintaining forestbytappingthevalueof While some progress has been made towards (including SãoPaulo), andmaintainbiodiversity. to rainfallinAmazonia andinotherareas waterthatisessential carbon stocks,recycle that wouldbeprovoked byreleasingtheir ecosystems. Theseavoidtheglobalwarming providedbyitsnatural environmental services Amazonia’s greatestrichesareinthe Abstract consequences deforestation andits Natural richesofAmazonia, Philip M.Fearnside 1 NationalInstitutefor ResearchinAmazonia (INPA) 1 et al.,2012). Paraguay andArgentina(Fearnside,2004,Arraut São Paulo) andinneighboringcountriessuchas rain innon-Amazonian partsofBrazil(including key roleinsupplyingwatervaporthatproduces sustains theregion’s whichplaysa watercycle, Amazonian forestavoidsglobalwarmingand in 2013(Nogueiraetal.,2015).Maintaining 121.2 billiontons,or58.6tonsofcarbon to deforestationsincetheearly1970s,wasstill and the total biomass stock, despite loss of 16.7% 338.8 tons, or 163.5 tons of carbon per hectare, of Brazil’s4.2millionkm2“Amazonia biome” was and roots.In2013themeanestimatedbiomass what isaboveground,butalsodeadbiomass which includesnotonlylivetreesand emissions, totalbiomassistheimportantmeasure, trees). From thepointofviewgreenhouse-gas weightofthevegetation(mainly refers tothedry in futureclimateregulation.Forest“biomass” higher inthisregion,givingitanunparalleledrole makes the total biomass and carbon stock much biomass. However, thevastareaofAmazonia havehigherper-hectarethose inSoutheastAsia, biomass, butsomeothertropicalforests,suchas Each hectare of Amazonian foresthas a high Climate about 90% of this clearing having occurred in just Brazil’s portionoftheAmazon forestis now20%, (clear cutting).Thecumulative totalclearedin Amazon forest is threatened by deforestation Deforestation some of the highest levels in the world. some ofthehighestlevelsinworld. and thegreatestendemisminregion, generally hasboththelargestnumberofspecies Either way, thewesternportionofAmazonia distribution to other grid cells (Kress statisticalthresholdforthespreadof arbitrary divide the region into many grid cells and assign an endemism” (daSilvaetal.,2005).Anotheristo approach dividesAmazonia intoeight“areasof , 1998). et al., 1998). to highs and lows, usually as a result of major Brazil’s deforestation haslongbeen subject voting blockintheNational Congress. stroke ofapen,andthisisgoalthe“ruralist” restriction couldberemoved atany timeatthe Unfortunately,inspection andenforcement. the any givenlevelofgovernmentinvestmentin restriction greatlyincreasestheimpactof which fines, can beappealedalmostendlessly. Thecredit IBAMA’s unlike effect, immediate 3.545/2008). Therestrictiononbankloanshas (BACEN Resolution federal environmentalagency the with irregularitiesreportedbyIBAMA, no publicbankloanscanbegiventolandholders is a2008resolutionbyBrazil’sCentralBankthat protection on the longer term. Most important Assunção easily reversedadministrativemeasures(e.g., explained byavarietyofeconomicsetbacksand deforestation ratestothe2012-2014plateauis July 2014isstillasubstantialarea.Thedeclinein 2014. The5012km levelthroughJuly approximately thesame“low” 2004 to2012,afterwhichtherateoscillatedat deforestation ratesinBrazildeclinedfrom of Belgiumwasfelledinasingleyear. Annual Portugal. Atthepeakofclearinganareasize has addedtheareasofAustria,Switzerland and area ofFrance. Continuedclearingthrough2014 and by1995thedeforestedareasurpassed is approximately thesize ofWestern Europe, comparison, Brazil’sportionoftheAmazon forest 2015a).the lastfourdecades(Brazil,INPE, For Figure 1:Deforestation for soybean production , 2012), all of which offer fragile offer which of all 2012), et al., 2 clearedfromAugust2013to Figure 2:Amazonrainforest inManaus 2014 elections: suchupturnspriorto elections factors may be anticipationofBrazil’s October 2015; IMAZON, 2015).Amongthecontributing 2015b;Fearnside, became apparent(Brazil,INPE, After July2014asharpupturn indeforestation inflation) followedthesame pattern. end of2007.Beefpricesin Brazil(correctedfor period, with the exception of a brief rise at the (in dollars) declinedsteadilyoverthe2004-2008 In addition,theinternationalpriceofsoybeans since expenses areinreaisandthereturnsdollars. profitable, less much commodities other R$1.5/US$. Thismadeexportingsoybeansand rate declined from nearly R$4/US$ to a low of downturn mentionedearlierbegan:theexchange weakening oftheBrazilianreal.After2004 with profitable more becoming rose, exports as This Deforestation thenclimbedtoapeakin2004 profitable. so been greatly reduced clearing to defend land claims. previously had that Plan), endingthe generalized land speculation price oflandfellbyhalf(alsoaresulttheReal Deforestation thenplungeduntil1997asthe in short-term money-market investments. large amounts of money that had been held releasing and hyperinflation ending 1994, June package ofeconomicmeasuresimplementedin high in 1995. This peak was due to the “Real Plan” economy recoveredandjumpedtoanall-time economic recession.Theratethenroseasthe year ofannualmonitoring)to1991asaresult first (the 1988 from declined rate deforestation (Fearnside,2005).The economic cycles

GLPNEWS | NOVEMBER 2015 23 Feature - Article 24

GLPNEWS | NOVEMBER 2015 Feature - Article logging andother activities.All havetop- by mining,hydroelectric dams, oilexploitation, deforestation andenvironmentaldestruction All Amazonian countries are the scenes of (e.g., Nepstadetal.,2014,Gibbs et al.,2015a,b). governmental andthrough corporateactors) capabilities andgovernance arrangements(both is somegoodnewsin improved monitoring permits (Brazil,MoP, 2015).Nevertheless,there for Amazonian roadscontinueasfastfunds have lowpriority(Tollefson, 2015), andplans deforesters thatenvironmentalprotectionwill (Leite, 2015),politicalappointmentssignal environmental lawshavebeendrasticallycut al., 2014),governmentexpendituresonenforcing continuetobe degazetted (Bernardet reserves essentially halted(Alencastro,2014),existing took place. Creation of new protected areas is than theywerewhenthedeforestationdecline profitable more far exports beef and soy making real iscurrentlyinfree-fallwithnoendsight, Fearnside &Figueiredo,2015).TheBrazilian system ofprotectedareas(e.g.,Fearnside,2008a; requirements for infrastructure projects, and the as Brazil’s“forestcode”, environmentalimpact has weakened deforestation restrictionssuch power ofagribusinessandranchinginterests investment andpopulation.Thegrowingpolitical continue to grow, including ever more roads, years, theunderlyingforcesdrivingdeforestation Despite thelowerratesofclearinginrecent (see Fearnside,2003). expectation of“amnesties”forpastviolations enforcement of environmental restrictions, and releases ofgovernmentfunds,relaxation are acommonpatternasresultofsudden Figure 3:Amazonrainforest (Aerial view)

(Fearnside &Laurance,2012). degrade forestformany decadesinthefuture motion processesthatcontinuetoremoveand butrathersetin subtractions fromtheforest, on infrastructuredonotrepresentone-time land withmultiplepotentialuses,decisions Becausetheyopenaccessto for theforest. projects inAmazonia withseriousconsequences level governmentalsupportfordevelopment Henry Dougier in a book edited by G. Fourmont. Dougierin abookedited byG. Henry version ofthis textwillbepublishedby Ateliers (INPA: AbrieferFrench-language PRJ15.125). and theNationalInstitutefor ResearchinAmazonia Research inAmazonas (FAPEAM: 708565) Proc. 573810/2008-7), theFoundation forSupportof Development (CNPq: 304020/2010-9; Proc. Technological and Scientific for Council National research issupportedbythe The author’s Acknowledgments destroying it. be basedonmaintainingtheforestratherthan deforestation requiresthatregion’s economy pace of climate change. A lasting solution to forest lossanddegradationtotherapid these issuesdue both to the rapid pace of Unfortunately, thereisnotmuchtimetoresolve (Fearnside,2012a,b).and payfortheseservices surround thepoliticsofhowtoaccountfor (Fearnside, 1997,2008b). Various controversies that offers the hope of changing these priorities inmaintainingclimateandbiodiversity services It istherichnessofAmazonia’s environmental Environmental services Figure 4:Land preparation for soybean production

References Tollefson, J.(2015).Political appointmentsspurconcernsfor Amazon. Nature 517:251-252. Brazilian Amazonia. GlobalChange Biology21:1271–1292.doi: 10.1111/gcb.12798 Yanai, Fonseca,F.O.R.,Nogueira, E.M., A.M., Fearnside, P.M. (2015).Carbonstocklossfromdeforestation through2013in science.1248525 inbeefandsoysupplychains.Science344:1118-1123. doi:10.1126/ andinterventions deforestation throughpublicpolicy Brando,P., Castello,L., Armijo,E., Motta, R., (2014).SlowingAmazon O., McGrath-Horn,M.,Carvalho, Hess,L. Hansen,M.C., Nepstad, D.C., McGrath,D., Stickler, Swette,B.,Bezerra, T., Alencar, A., Azevedo, C., A., DiGiano,M.,Shimada,J., Seroada www1.folha.uol.com.br/ambiente/2015/03/1610479-dilma-corta-72-da-verba-contra-desmatamento-na-amazonia.shtml Leite, M.(2015).Dilmacorta72%daverbacontradesmatamento na Amazônia. FolhadeSãoPaulo, 31March2015.http:// 7:1577-1587. Biodiversity andConservation R.P., prioritieswithtaxonomic data. conservation (1998).Amazonian Weitzman, biodiversity:Assessing S.H. Weitzman, M.J., Kress, Heyer,W.J., W.R., Acevedo, P., Coddington, J., Cole, D., T.L., Pogue, Erwin, H.M., Thorington, R.W., Meggers, B.J., Vari, fevereiro-de-2015-sad/ Ambiente naAmazônia (IMAZON).http://imazon.org.br/publicacoes/boletim-do-desmatamento-da-amazonia-legal- IMAZON. (2015).BoletimdodesmatamentodaAmazônia Legal(fevereirode 2015)SAD. InstitutodoHomemeMeio (2015a). Brazil’ssoymoratorium.Science347:377-378.doi:10.1126/science.aaa0181 Munge,J.,Schelly, I.,Morton,D.C., Rausch,L., Noojipady,Gibbs, H.K., P., Soares-Filho,B.,Barreto, P., Walker, Micol,L., N.F. conl.12175 slaughterhouses respondtozero-deforestation agreementsintheBrazilianAmazon? Letters.doi:10.1111/ Conservation Munger,Gibbs, H.K., J.,L’Roe, J.,Barreto,P., Pereira, Christie,M.,Amaral,T., R., Walker, N.F. (2015b). Didranchers and 87-98. doi:10.1590/S0103-49792012000100007 Fearnside, P.M., Laurance,W.F. liçõesdosplanos plurianuais.CadernoCRH25(64): (2012).InfraestruturanaAmazônia: As http://www.bu.edu/pardeeschool/files/2014/12/Brazil1.pdf Massachusetts, USA. in force Boston, growing University, Boston 2015-3, Papers Discussion A Initiative Governance Economic Global Amazonia: BU Grosso. Mato of Brazilian state the in deforestation on influence China’s (2015). A.M.R. Figueiredo, P.M., Fearnside, Fearnside, P.M. (2015).DeforestationsoarsintheAmazon. Nature521:423.doi:10.1038/521423b Amazon Brazil’s maintaining of CarbonManagement 3(2):145-148.doi:10.4155/CMT.12.9forest. benefits climate the for Accounting battlefield: theoretical The (2012b). P.M. Fearnside, Policy Climate controversies. Unresolved warming: 12(1): 70-81.doi:10.1080/14693062.2011.581571 global mitigating in Forest Amazon Brazil’s (2012a). P.M. Fearnside, Ciências 80(1):101-114.doi:10.1590/S0001-37652008000100006 Fearnside, P.M. (2008b). AnaisdaAcademiaBrasileirade Amazon forestmaintenanceasasourceofenvironmentalservices. 13 (1):23.http://www.ecologyandsociety.org/vol13/iss1/art23/ Fearnside, P.M. (2008a). TherolesandmovementsofactorsinthedeforestationBrazilianAmazonia. EcologyandSociety 680-688. doi:10.1111/j.1523-1739.2005.00697.x Fearnside, P.M. Biology19(3): RatesandConsequences.Conservation (2005).DeforestationinBrazilianAmazonia: History, Fearnside, P.M. (2004).AáguadeSãoPaulo eaflorestaamazônica. CiênciaHoje34(203): 63-65. Ambio 32:343-345. Fearnside, P.M. (2003).DeforestationcontrolinMatoGrosso:AnewmodelforslowingthelossofBrazil’sAmazon forest. Economics 20(1):53-70.doi:10.1016/S0921-8009(96)00066-3 Fearnside, P.M. asastrategyforsustainabledevelopment in ruralAmazonia. Ecological (1997).Environmental services Biology 19:689–694.doi:10.1111/j.1523-739.2005.00705.x (2005).ThefateoftheAmazonian areasofendemism.Conservation daFonseca,G.A.B. Rylands,A.B., da Silva,J.M.C., garante Dilma.PAC Notícias,10March2015.http://www.pac.gov.br/noticia/41db407a Brazil, MoP(MinistériodePlanejamento). (2015).ObrasdoPAC continuarãoeprogramasdeinfraestruturaterãonovafase, Paulo, Brazil.Available at:http://www.obt.inpe.br/deter/nuvens.php; http://www.obt.inpe.br/deter/avaliacao/2015/ Brazil, INPE(InstitutoNacionaldePesquisas Espaciais). (2015b). SãoJosédosCampos, Avaliação DETER2015.INPE, SãoJosédosCampos,Paulo, Brazil.AvailableBrasileira porSatélite.INPE, at:http://www.obt.inpe.br/prodes/ Brazil, INPE(InstitutoNacionaldePesquisas Espaciais). (2015a). ProjetoPRODES:MonitoramentodaFlorestaAmazônica Biology28:939–950.doi:10.1111/cobi.12298. areas inBrazil.Conservation protected of reclassification and degazettement, downsizing, Downgrading, (2014). E. Araújo, L.A.O., Penna, E., Bernard, http://climatepolicyinitiative.org/publication/deforestation-slowdown-in-the-legal-amazon-prices-or-policie/ at: Available pp., 37 Brazil. RJ, Janeiro, de Rio (PUC), Católica Universidade Pontífica Paper,Working (CPI) Initiative Policy J.,Gandour, (2012).DeforestationSlowdownintheLegal

GLPNEWS | NOVEMBER 2015 25 Feature - Article 26

GLPNEWS | NOVEMBER 2015 Feature - Article these components togethercanthese components helpustounderstandwhatcontrols futureland cover andbiodiversity. and the interactions approach are complex. A multi-disciplinary to studyingthe natural history, human history, and processes linking of the natural and human components that influence the land cover and biodiversity. In reality the gradecomponents into one another Figure 1.Aschematic oftheAmboseliecosystem. representation ofthemajorcomponents A crosssectional view attopandplan view human-environmental interactionsispossible. andprocessesof examination ofthehistory lens,anin-depth Through amultidisciplinary from acrossthephysical andsocialsciences. environments by integrating approaches human societies and their social and natural understand thelong-terminteractionbetween A historicalecologyperspectivehelpsus Abstract 3 2 1 of changeatAmboseli,Kenya Historical ecology perspectives Colin J.CourtneyMustaphi ac.uk; [email protected]; [email protected]; [email protected] ac.uk; [email protected];Corresponding authors: [email protected]; [email protected]; rebecca.kariuki@york. Rebecca NationalMuseums of Kenya, Nairobi,Kenya Uppsala University, DepartmentofArchaeology andAncientHistory, Uppsala,Sweden York Institute forTropical University ofYork, Ecosystems,EnvironmentDepartment, York, United Kingdom Kariuki 1 |RebeccaM.Muriuki 1 | Anna C. Shoemaker |AnnaC. 3 the environmentthroughtime. interacting relationships between humans and land use and biodiversity changes and the the possiblefuturetrajectoriesoflandcover/ detailed lookattherecentpasthelpstoinform and local livelihoods. A between conservation and ecologicallandscapetheinteraction Kenya arehavingmassiveimpactsonthesocial of landcoverintheAmboseliareasouthern The rapidandintenseratesoftransformation |StephenRucina 2 |EstherN.Githumbi 3 |RobMarchant 1

1 from Namelok and thenorth part ofKimana (as wasseen in 2008-2009).Newpollen records crucial grazing refugesduringdrought periods form a ‘constant’ supply of water andbecome communities intheregion, particularlyasthey areas supportbothwildlife andpastoralist Meijerink andWijngaarden, 1997).Thesewetland the wetlands in Amboseli(Williams, 1972; springs from between 1120-1220masl elevation thatsupport flowing before bedrock volcanic Amboseli region.Thewaterenterstheporous Kilimanjaro andtheChyulu Hillsthatsurroundthe from theIndianOceanprecipitatesoverMount woodland andscrubland.Moisturederived fed wetlandsspreadacrossthesemi-arid available yearroundinaseriesofgroundwater- Although Lake wateris Amboseliispresentlydry, the with landscape. relationships influenced have agendas, andindustrial and perceptionsofconservation policies, suchasfood(in)security, politicalstability, socio-political aspectsoflandtenureanduse Equallyimportantisunderstandinghow interact. computer modellingofhowlandscapecomponents photo imagesofregionallandcoverchanges,and data, animalpopulationcounts,satelliteandair detail aboutrecentchangescomefromcensus Additional between peopleandtheirenvironment. historical researchthatilluminatestherelationships are examinedtogetherwitharchaeologicaland analyses of the swamp sediments. These data pollen, fungal spore, sedimentological and charcoal examining thevegetationhistoriesthroughplant records fromanumberofswampsitesby investigations involveestablishingpalaeoecological These project. East AfricanLandscapes(REAL) is beingstudiedwithintheongoingResiliencein African HumidPeriod ending (~6000-4000 yrsBP) environment interactionssincetheendof oflandcoverdevelopmentandhuman- This history and climatechangeimpacts? population increases, land privatization pressures, these complexsystemsbelike givencontinued this landscape? Whatwillfuturetrajectoriesof and uses forallstakeholders presenton services the ecosystem available the influenced influenced this has how factors these biodiversity andecosystemsweseetoday? And, of history the interactions (Rucina activities, climaticvariabilityandenvironmental superimposed on the legacies of historical land use 2012).Thesecurrentchangesare al., 2000;MEMR, livelihood strategiesofthepopulation(Turner et ways theseecosystemsareintegratedintothe land useandvegetationcoverthatresultfromthe experienced dramaticchangesinlandtenure, of theAmboseliNationalparkhavenotably recent decades,thewetlandcatchmentsoutside of biodiversityandsocial-ecologicalsystems.In use changeswithimplicationsfortheresilience currently experiencingrapidlandcoverand Kilimanjaro neartheKenya-Tanzania borderandis The AmboseliareaisimmediatelynorthofMount , 2010). But how has et al., 2010). But how has ownership unit) to reside in the basin was ownership unit)to residein the basinwas Maasai first The ecology andlandscape ofAmboseli. during the1800sanddrastically impactedthe tradewhichpeaked included linkstotheivory culturalspheres. This Arab, European, and Asian trade networksstretching across thecontinentto on theAmboselilandscape engagedwithvast area. Yet, people priortoEuropean settlement, source material and oral histories available for the is constrainedbythelimitsofthindocumentary ofhuman-environmental interactions trajectory to fullydiscern.Further understandingofthe impacts andresponsesthatarechallenging millennia (Lane,2013)andenvironmental interaction andexchange that developedover hunter-gatherers, degreesofsocial butvarying event betweenimmigratingherdersandresident pastoralism suggestsnotanimmediateintegration gatherers (Lane,2004).Theunevenadoptionof between herders,cultivators,andhunter- process characterized byshiftingidentities to pastoralisminEastAfricawasanirregular throughout allofEastAfrica;however, transitions BP, Pastoral Neolithicsitesarefounddistributed 2005).After3000years Kusimba, 2005;Wright, eastern Kenya around 3800 years BP (Kusimba and to generalized pastoralismoccurredinsouth- nearby Tsavo regionsuggeststhatatransition of humans.Archaeologicalresearchinthe has changedduetothepresenceandagency landscape interactionsandhowtheecosystem new insightsintothecomplexitiesofhuman- Archaeological studiesintheregionarebringing transition andexpansionofpastoralcommunities. tradeand of elephantpopulationviatheivory ecosystems, throughthehistoricaldecimation composition anddistributionoftheAmboseli populations has beenakey controlonthepresent Holocene; anthropogenicimpactsonanimal been the only major change during the late history, Hydrological variability has not management. fire vegetation, inform ecological,waterandgrazingresource in changes climatic andsedimentologicalprocessesthat the of will providedatatoimproveunderstanding interactions. Thenewpalaeoecologicalrecords drivers, particularlyIndianOcean-terrestrial has beenlinked withregionalscaleclimatic been variable, and thishydroclimatic variability African HumidPeriod, moistureavailabilityhas Thus, over thelateHolocene,sinceendof landscape. flat the upon position their in expanded, contractedandhaveevenshifted is emergingevidencethattheseswampshave have increasedoverthepast500years.There and thatvariabilityinmoistureavailabilitymay has dominatedtopresentwithsomevariability, is evidenceofincreasedmoistureatbothsitesthat (unpublished data). By2000-1700yearsBPthere by grasses,Amaranthaceae,andsemi-aridplants from4000-1700yearsBP,dry beingdominated swamp suggestthattheregionwasrelatively olosho (localorganizing land

GLPNEWS | NOVEMBER 2015 27 Feature - Article 28

GLPNEWS | NOVEMBER 2015 Feature - Article Tsavo totheeastandTanzania tothesouth. This surrounding landscapes, particularly towards migrate out of the protected area through the of largenumberswildlife thatareableto Park spacehasalso enabledthemaintenance infrastructure forlocalpopulations. TheNational as welleducationaland healthfacilitiesand benefits economic some provides also region the agricultural land.Tourism in andconservation the lowestelevationsfrombeingconvertedto a number of the wetlands at has conserved The establishmentofAmboseliNationalPark biodiversity andlandcover. on influences cumulative variable have which of individuals andthroughoutanindividual’slife,all between fluidity great exhibit activities economic pastoral livelihood,historicalandcontemporary while Maasaiidentitycentresinmany waysupona competition overwaterandpasture.Furthermore, regional socioeconomicspheremouldedinpartby 2008). Maasaihadlongbeenshapedbyashifting regionaldefaunation(Håkanssonetal., heavy would havebeenextensiveenoughtoresultin caravan routespassingnearMountKilimanjaro products (Meyer, 1900)andhuntingalong Some Maasai participated in hunting for animal irrigation andrain-fedcultivation(Galaty, 1993). foraging, hunting,trade,agro-pastoralismand regional socio-economicsystem,whichincluded economy haslongbeensituatedwithinawider (Western, 1983;Galaty, 1993).Maasaipastoral the latterwereeitherassimilatedorevicted that whentheKisonko encounteredtheLoogalala of thecentralRiftValley. Ithasbeenproposed attractive permanentwatersourcesandpastures as theywereexpandingsouthwardsthroughthe likely arrivedinthearea duringthe19thcentury, (Galaty,18th century 1993).TheKisonko Maasai probably theLoogalalawhowereresidentby Figure 2.Pastoral herds drinkingwaterinEngongNarokswampduringthedryseason,September2015.Photoby AnnaShoemaker. covering areasof<1kmto45 agriculture anddivertedtoirrigationschemes Kimana swampshavebeenlargelyconvertedto Namelok,Esambuand Since the1980s,Isinet, vegetation assemblages(Hobbsetal.,2009). amongst commercialcrops,producingnovel In someplots,indigenousruderaltaxagrow losses (Maclennanetal.,2009;Okello et al.,2014). cattle inevitable from people Maasai local buffer niche spaces,and compensation schemes that relies onasustainedpopulationprey, available (Western, 2007).Predatorresilienceinparticular grazers, bothwildanddomestic impact migratory and changesonvegetationdistributionsalso lead to intensification of human wildlife conflicts, threat topopulations(Rippleetal.,2015)and herbivores, range contractions can be a serious policies (Western, 1982).Even forthemobilelarge on communitysupportandsoundsustainable regional connectivityofanimalpopulationsrelies aquatic andripariantaxadistributionstoshift plans. Across the region, there is a finite space for must beconsideredwhendraftingmanagement that populations local with conflict for potential human population and migratingwildlifepresents interaction between an increasingly sedentary strategies articulated with wider regional production flexible practiced long have Amboseli must beacknowledgedthat livestockherdersin restructuring ofhuman populations. Whileit 2012),as well associo-economic loss (MEMR, profound implications forbiodiversity and habitat is occurring in other regions of Kenya and has Wholescale conversionofwetlands toagriculture access towateringpointsandpastureland. areashavelimited cultivated andconservation Increasing populationsandtheexpansionof of landaccess,food,andeconomicinsecurity. livestock holdings as herders navigate issues This conversionhascoincidedwithdecreased 2 (KWS, 2008). (KWS, References Socialconsequencesalsoinclude of socialservices. disparities inwealthaccumulationandprovisioning process ofsubdivisionandsaleisexacerbating restrict landaccessandthepoorlyregulated privatization oflandinAmboselicontinuesto droughts. Additionally, thepresenttrendtoward limitationstowateraccessduring and pervasive of animalpopulationsfromincreasingintensive capacity forecosystemrestorationandrecovery are reducedecological resilience andcurtailed gene pools.Theconsequencesofsuchchanges connectivity ofpopulationsandassociated loss, humanpressures,andreductionsinnatural in soilcharacteristics,habitatconversionand the genetic to population levels through changes at biodiversity influence directly changes these human-environment interactions.Theimpactsof had enormousimpactsonwetlandareasand growth oftheagriculturalsectorinAmboselihas in recentyearsisunprecedentedthearea.The markets, therateofexpansioncultivatedland National Park, Kenya. AfricanArchaeological Review22:111-140. D.K.Wright, (2005). NewPerspectives on EarlyRegionalInteractionNetworks ofEastAfricanTraded: AViewfromTsavo 90. DegreeSheet59,SWQuarter. GovernmentPrinter: Nairobi. ofKenya, ReportNo. ofNaturalResources,GeologicalSurvey (1972). GeologyoftheAmboseliarea.Ministry Williams, L.A.J. 310. Western, D. ofhabitatchange inAmboseliNationalPark, Kenya. (2007). Ahalfacentury AfricanJournalofEcology45,302– Western, D. ofAmboseli.GeneralPrinters,Nairobi. (1983). AWildlifeGuideandaNaturalHistory wildlife.Ambio11,302–308. Western, D. migratory (1982).AmboseliNationalPark: Enlistinglandownerstoconserve Ecological-economic analysisofwetlands:scientificintegrationformanagementandpolicy.EcologicalEconomics35,7–23. T., Soderqvist, (2000). vanderStraaten,J.,Maltby,&Ierland, E.C. Turner, E., A., Barendregt, vanderBergh,C.J.C.M., R.K., Kenya. TheHolocene20,667–677. Muiruri, V.M.,Rucina, S.M., (2010). Late-Holocene savannah dynamics in the Amboseli Basin, R., Marchant, Downton, L., largest herbivores.ScienceAdvances1,e1400103. Ripple, Newsome, W.J., T.M., Wolf, Everatt, Dirzo, K.T., R., C., M.W., Galetti, M., Hayward, 6,502-521. Conservation Amboseli ecosystem,Kenya: Insightsfromacarnivore compensationprogramme.InternationalJournalofBiodiversityand Okello, &Hill,T. M.M.,Bonham,R., (2014).Thepatternandcostofcarnivore predationonlivestockinMaasaihomesteadsof Meyer, H.(1900).DerKilimandjaro.Berlin,DietrichReimer. University Press.Pp111-118. Groundwater/surface waterecotones:biologicalandhydrological interactionsandmanagementoptions.Cambridge &Wijngaarden,W. (1997).Contributiontothegroundwaterhydrology oftheAmboseliecosystem,Kenya. Meijerink, A.M.J., MEMR (2012).Kenya Wetlands Atlas.Nairobi:MEMR. 142,2419-2427. pastoralist toleranceoflions.BiologicalConservation Macdonald,D.W.,Maclennan, S.D., Groom,R.J., (2009).Evaluation &Frank, ofacompensationschemeto bring about L.G. andFuture.(eds.) Pastoralism Present, inAfrica:Past, BerghahnBooks,NewYork andOxford.Pp.104-144. Lane, P. (2013).TheArchaeologyofPastoralism inNorthernandCentralKenya. InM.Bollig,Schnegg,andH.P. Wotzka Lane, P. (2004).TheMovingFrontier: andtheTransition toFoodProductioninKenya. 39:243-264. Azania (2008) AmboseliEcosystemManagementPlan,2008-2018.Nairobi,Kenya. KWS. Archaeology: ACriticalIntroduction.Oxford:Blackwell.Pp.392-419. (2005).Mosaicsandinteractions:EastAfrica2000B.P. &Kusimba,S.B. Kusimba, C.M. Stahl(ed.)African InA.B. tothepresent. & evolution24(11),599-605. andrestoration.Trends (2009).Novelecosystems:implicationsforconservation inecology &Harris,J.A. Higgs,E., Hobbs, R.J., Transformations inNortheasternTanzania, 1850-2000.InternationalJournalofAfricanHistoricalStudies41(3),369-382. Håkansson, T., (2008). Introduction: Historical and Regional Perspectives Widgren, M., & Börjeson, L. on Landscape Ethnicity andIdentityinEastAfrica.JamesCurrey, London.Pp61-86. Galaty, andtheNewEastAfricanPastoralism. InT. J.G.(1993).MaasaiExpansion Waller SpearandR. (eds.)BeingMaasai: www.real-project.eu see: For moreinformationabouttheproject, Amboseli landscape. objectivesofthegloballyimportant conservation in sustainablehumanlivelihoodsandstrengthen use changes in the region toinform developments being usedtoguideprojectfuturelandcover/land evolved. Suchahistoricalecologyperspectiveis how thesocial-ecologicalsysteminAmboselihas interactions playsacrucialroleinunderstanding and developmentofhuman-environmental nutritional, financial, their and culturalsecurity. Understandingthehistory of essence the are Maasai inAmboseliwhoespousethattheircattle implications forperceptionsofidentitythe goat populationsincreasing.Thishasenormous holdings in Amboseli are decliningand sheep and cattle landusestrategiesshift, their livestock.As changes intherelationshipbetweenpeopleand et al. (2015). Collapse of the world’s

GLPNEWS | NOVEMBER 2015 29 Feature - Article 30

GLPNEWS | NOVEMBER 2015 Feature - Article landscape, ecosystem functionality and the Amazon, is stronglydependent on the local Human livelihoodandwellbeing,alongthe (Aylward etal.,2005;Bolee,2011). andculturalservices as supporting,regulatory power generation and transportation), as well (domestic use,irrigation, provisioning services including ofmany ecosystemservices, delivery human populations.Water isakey driverinthe support a rich biodiverstity, as well as services, providing freshwater, regulationandcultural change (Falkenmark, 2003).Wetlands, besides ecosystems whilekeeping themresilientto grasslands, croplandsandotherterrestrial functions inforests,woodlands, wetlands, of thebiosphere,drivingcriticalprocessesand Freshwater isconsideredasthe“bloodstream” Introduction deMoxos) (Llanos Lowlands in theBolivian Amazon Water Ecosystem Services Environmental changeand Alex a Corresponding author:[email protected] Earth System ScienceCenter CCST, NationalInstituteforSpaceResearch (INPE) ramsar.org/) andwiseuseofwetlands andtheirresources(http://www. national actionand internationalcooperationfor theconservation or sustainable development. or sustainabledevelopment. useful inputforplanningadaptation-mitigation methods to make vulnerability assessments a conceptualization, terminology, scopeand research achallengingtask.Itdemandsclear of pertinentinformation,makes vulnerability the LlanosdeMoxos togetherwiththelack ecological andsocio-politicalparticularitiesof for addressingvulnerability. We foundthatthe introduce key concepts andresearchneeds the mainenvironmentalchangethreatsand inthisuniqueregion,weidentify Services initial characterizationoftheWater Ecosystem ecosystem. Inthiscontribution,weperforman piece oftheoverallhealthentireAmazon monitored, whileitisbelievedtobeavital because ofitssize andremoteness,ispoorly wetlands inAmazonia, theLlanosdeMoxos, located inSouthwestAmazon. Like other The Llanos de Moxos is a vast savanna floodplain Abstract The conventionon Wetlands, calledtheRamsarConvention, isanintergovernmentaltreaty thatprovidestheframework for Ovando 1

|

Graciela Tejada 1

| Javier the area. and research needs for addressing vulnerability in ecosystems. Finally, weintroducekey concepts main environmentalchangesandthreatstothe intheLlanosde Moxos,the identifying Services characterization oftheWater Ecosystem In thiscontributionweprovideaninitial arestillpoorlyknown. functions andservices, thatmaycompromisetheseecosystems cycle, environmental change impactsinthehydrological the Also, quantified. and characterized properly that they provide are not yet Ecosystem Services importance (WWF, 2013).ThemultipleWater approximately 150000km of floodplain savanna vast a is which Moxos”, de of themajorAmazonian wetlandsisthe“Llanos they provide (Bolee, 2011). One multiple services flood peaks (covering up to 71305 km 71305 to up (covering peaks flood dynamics flood in theLlanos(Ovando regarding etal.,2015)showthat research Ongoing Bolivian Amazon wetlands Water Ecosystem inthe Services Convention has recentlybeendesignatedbytheRamsar ecological healthoftheentireAmazon andit are believedtobeavitalpieceoftheoverall are poorlymonitored.TheLlanosdeMoxos because oftheirextensionandremoteness, Like otherwetlands in Amazonia, the“Llanos”, (Hamilton etal,2004). converted partoftheforestareastopasture has deforestation although areas, non-flooded in forests tropical evergreen and areas, flooded grassland andsavannah vegetation in seasonally (Guyot, 1993).Thenaturalvegetationismixed: 150 mwithameanslopelessthan10cmperkm The mean altitude at the“Llanos”isapproximately the and thePrecambrianBrazilianshield(Figure1). between in Bolivia, eastern ,theadjacentAmazon alluvialfans system fluvial rivers located in the Mamoré-Beni-Guaporé (Iténez) Tomasella a asawetlandofinternational 1 2 (Hamiltonetal.,2004) 2 ) tendto al., 1995).Itis known thatthe Bolivian Amazon by thetopography, soiland vegetation(Merteset addition to rainfall distribution, are also influenced and temporalpatternsof hydrology, which,in biogeochemical dynamics depend onthespatial 2010; Richey consequently carbondioxide (CO al., 2012;Junket1989;Viers2005)and biogeochemical andbioticprocesses(Bouchezet Amazon wetlandsiscrucialintheregulationof et al.,2008).Inaddition,waterresidencetimein and itpromoteslargeevaporativelosses(Bonnet floodplain, and river between water of exchange time inwetlandsaltersriverdischargeduetothe Melack andForsberg,2001).Water residence Guyot river drainagenetworks (Dunne through watersheds upland from fluxes material wateraswelldissolvedandparticulate modifying load, sediment basin Amazon whole the fluxes. affect wetlands water modulate they because biodiversity oftheecosystem(Junk,1997)and role atthewatershedscalebecausetheysupport In general,Amazonian wetlandsplayacrucial water ecosystemservices. dynamics areofbigrelevancefortheprovision peak (forthe2001-2014period). These complex flood minimum the and peak flood maximum the observed, witharangeof50293km observed, conspicuous degreeofinterannualvariabilityis to permanentwaterbodies(lakes andrivers). A August-September, waterpresenceislimited occur betweenMarchandApril,whereasduring Figure 1.TheLlanos deMoxosRamsar sitesinthecentral portionoftheBolivianAmazon(upperMadeira) (CH 4 ) emissions(Abrilet al., 2014;Kayranliet et al.,1996;JunkandWorbes, 1997; et al.,2002). Both sediments and 2 ) andmethane et al.,1998; 2 between (Lombardo etal.,2013). environments flooded seasonally to adaptation human of example an constitute floodplains, the societies. Vestiges ofthesecultures,spreadover were thesettingformany complex pre-Columbian In additiontoitsrichnaturaldiversity, theLlanos Damme,2002). (Van disperse communitiesintheBolivianlowlands transportation, merchandiseexchange between rivers are used for Also secondary waterways. Madre deDioscorridorsarethemostrelevant The Ichilo-Mamore, Itenez-Madera and Beni- bi-oceanic corridors(Alurraldeetal.,2008). have nationalrelevance since theybelongto intheLlanosdeMoxosMost ofthewaterways ecosystems (Pouilly etal.,2004). ecology, spatial segregation of vegetation and sedimentweatheringandconsequentlythe cycle, nutrients for determinant are floodplains, the of together withthehighwaterstoragecapacity al., 2008).Blackandwhitewaterinteractions, loaded “white” waterfromtheAndes(Becket water, generatedinthelowlands,andsediment processes implycomplexinteractionsof“black” and of water sediments fromupstream(Guyot, 1993).These types different retain wetlands provide. Sea surface temperature anomalies they pressure to ecosystems andtheservices activities impactwater processes increasing the Climate changeanditsvariability, aswellhuman Environmental changethreats

GLPNEWS | NOVEMBER 2015 31 Feature - Article 32

GLPNEWS | NOVEMBER 2015 Feature - Article systems following deforestationand mining Sediment load andtransportinto the river wetlands hydrology isapendingtask. of the deforestationimpacts inthe that identifying 41% affect Bolivian Amazon basin(Figure2).Itisclear then, might construction, road for agricultural expansion, oilexploration, and Scenario” in2050,basedonahighland demand et al. (2015), deforestation for a “Fragmentation Amazon (Cuéllar etal.,2012).AccordingtoTejada being 56%inthecentralportionofBolivian between 2000-2010 achieved 1.8Million ha, 2015). DeforestationintheBolivianlowlands 2009; Sampaioetal.,2007;Siqueira-Júnior etal., as al., 2007; Davidson and scales, intensities demonstrated by(Coe etal.,2009;D’Almeida et forms, different in river discharge and groundwater recharge Land changemaypotentiallyimpactprecipitation, impacts intheecosystems. 2015),butlittleisknownabout 2008; UDAPE, 2008 and2014intheBolivianlowlands(CEPAL, were reportedafterextremeeventsof2007, season.Severeeconomicandsocialimpacts dry the rainy seasonandlessprecipitationduringthe regime inthelowlands:moreprecipitationduring 2009) exhibitsanaccentuationoftheprecipitation Regional CirculationModelsinBolivia(Seiler, drier months(JunetoNovember).Resultsfrom 2010-2099, thisreductionattainto19%during an annualprecipitationdecreaseof9%forthe (CMIP3/5), theBolivianLowlandsarelikely tohave 3rd and5thCoupledInter-comparison Project 35 GlobalCirculationModels(GCMs) fromthe According toSeileretal.(2013)whohadanalyzed pulses (Tomasella etal.,2013). floodthe on dependent are which communities, they compromisethelivelihoodsofriverine their resilience limits (Junk, 2013). Inaddition, behavioral changesoflivingorganismsbeyond pushing thephysiological adaptationsand alter thenormalfunctioningofwetlands, forest ecosystems(Phillipset al., 2009)and in theecologicalfunctioningofAmazon have thepotentialtocauseseriousdisruptions It hasbeenshownthattheseextremeevents differences in Amazon peak and minimum flows”. which isresponsiblefor“progressivelygreater of the hydrologicalstarting from the 1990s, cycle intensification an suggest to (2013) et.al. Gloor ofextremes in the Amazonfrequency has led Amazonia (Espinoza etal. , 2014).Theincreased the humiditytransportoverSouthwestern conditions intheAtlanticOcean,whichfavored andexceptionaltropical southAtlantic, warm sub- and Pacific-Indian the in conditions warm to during therainy seasonof2013-2014,wasrelated unprecedented rainfall over theMadeira Basin theBolivian Amazon (Ronchailet al., 2005).Forexample,the in events flood extreme influence et al., 2012; Mei and Wang, is stillacritical need. functionality and theAndes-Amazon connectivity, applicability ofdams,considering thewetland of dams;butacomprehensive evaluationofthe been done to understand the potential impacts had efforts relevant that see can we examples, these With 2012). Jenkins, and (Finer floodplains may altertheconnectivitybetweenAndesand al., 2010).Even damsintheAndean Amazon zone spawning– Dammeet reproduction andlocaleconomy(Van fish on impacting mobilization, and dams will form an artificial barrier to fish migration pollution (Acha large floodplain environments activating mercury upper portionsofthewatershedsaredepositedin Sediments from deforested areas in medium and severe impactsonecosystemsandpublichealth. activities may derive in water pollution with in floodplains may increase greenhouse gases greenhouse emissions (CO increase may floodplains in oforganicmatterdecomposition natural cycles The 2009); (Arnéz, time more for flooded remain and othersmaybeenhancedsincelargeareas like malaria,leishmanioses,dengue,yellowfever et al., 2009).Thespreadofvectorbornediseases pollution(Péreztransformation andthenmercury be constrained deriving inenhancedsedimentdeposition- may flow Sediment area (Pouilly 2009a); al., alarge in dynamics flood alter could that velocity flow in loss consequent a with evenhundredsofkilometersupstream, observed several ways:changesinwaterstage(level)canbe region mayimpactthewetlandsfunctionalityin Jirau damsarealreadyinoperation.Damsthe Amazon. In theBrazilian side, Santo Antonio and most representativedamprojectsintheBolivian River andRositasintheRioGrandeare Hidroelectrica BinacionaldamintheMadera The CachuelaEspezanzadamintheBeniRiver, are operatingorintheirinitialprojectingstages. massivehydroelectric dams Also underIIRSA, impacts intheLlanosdeMoxos. withundetermined (IIRSA) (www.iirsa.org), the IntegrationofSouthAmericanInfrastructure current roadprojects,undertheInitiativefor Isiboro-Secure) protected area areexamplesof the TIPNIS(Territorio IndigenayParque Nacional The bi-oceaniccorridorandthehighwayacross effects. erosion and hydrologic and habitats of (1998), are:speciesdisturbance,fragmentation of effects ecological roads, accordingtoFormanandAlexander major The 2000). et al., processes instreamandripariansystems(Jones interaction may impactbiologicalandecological stream networksatthelandscapescale,this power linesandgasinteractswithnatural for general, linearstructureslike roads,highways, hazard as amajordrivingfactorforlandusechanges.In significant a ecosystems functionalityandhydrology aswell constitute Roads al., 2000;Ovando,2012). 2 andCH et al., 2005; Maurice-Bourgoin 4 ) (Pouilly etal.,2009b); The et et of theIntegrated Water ResourcesManagement Addressing vulnerability through the principles scales. different at science social and biophysical holistic vulnerabilityassessments integrating makerswater managersandpolicy require In ordertotackleenvironmental change, perspective ofwater resources vulnerabilityunder the Assessing contrast betweencurrentroadnetwork(top)andprojected roadnetworkfor 2050(bottom)(fromTejada etal.,2015). ing dominatetheeconomy withlittle environmental governance (bottom);Mainprojected andoperating dams(topandBottom), which istheworstscenario intermsofdeforestation since roadconstruction, oilextraction, mechanized agricultureandcattle ranch- Figure 2.Contrast land betweenobserved cover change in2008(top)andaland cover change “fragmentation” scenario for 2050, without compromising thesustainability of and socialwelfare inanequitable manner in ordertomaximize theresultanteconomic management ofwater, landrelatedresources promotes thecoordinated developmentand Partnership(2003), IWRM is“aprocesswhich (Mitchell, 2005).According totheGlobalWater key variablesandrelationshipsinaholisticway (IWRM) may allow understanding the system, its

GLPNEWS | NOVEMBER 2015 33 Feature - Article 34

GLPNEWS | NOVEMBER 2015 Feature - Article References is requiredtoassess vulnerability. Quantitative Pertinent socio-economicand physical information when addressingwaterresources. highlight potential aggregated impacts, especially a widersetofnon-climaticfactorsinorderto toinclude drivers. Thismeansthatitisnecessary lowlands arefocusedmainlyinclimatechange initiatives foraddressingvulnerabilityinBolivian the Llanos de Moxos. We found that most of the is muchmorethanclimatechangethreatening wesawinprevioussections,there Klein, 2006).As technologic andbiophysical drivers(Füssel and economic, included accounting for demographic, domain, thentheterm“non-climaticdrivers”is climatic factorswerelimitedtoasocio-economic climatic factorsisgrowingconcern;initiallynon- environmental change, therelevance of non- inthecontextofglobal It isnoticeablethat, and actorsperceptions. take into account in function of the scale of study with many subsystemsandparticularimpactsto a wideandholisticrangeofpotentialimpacts 2012). It is a broad axis for analysis, it encompasses (Bellamy JAandJohnson,2000;Plummeretal., and therelevanceofinstitutionsrelatingtowater ecosystem functionality, social-culturalvalues use, waterquality,conservation, management, environmental changewithaspectsofwater vital ecosystems”.IWRMmakes possibletolink floodplain lake (LagoGrandede Curuaí¬). J.Hydrol. 349,18–30.doi:http://dx.doi.org/10.1016/j.jhydrol.2007.10.055 Kosuth, P., S., Calmant, León,J.G.,Roux, E., Seyler,Bourgoin, L., J.L., Guyot, P., 2008.Floodplain hydrology inanAmazon M.P.,Bonnet, Martinez, J.M.,Seyler, Barroux, G., F., Moreira-Turcq, P., Maurice- Melack,J.M.,Boaventura, G., Cochonneau,G., International Water ManagementInstitute. (ed), 2011. Ecosystems for water and food security.Bolee, E. Nairobi: United Nations Environment Programme Colombo: agriculture. Environ.Manage.25, 265–280. 2000.Integratedresource management:movingfromrhetorictopracticeinAustralian Johnson,A.K.L., Bellamy JA, ENSO (ElniñoOscilacióndelSur) en ladiversidadbiológicadeBeniyPando.” Zenteno-Ruiz,F.,Beck, S., Larrea-Alcázar, López R., D., 2008.“Estudiodelimpactofenómeno Uzquiano, J.,Antezana,A., and www.maweb.org. Well-Being: Responses,Volume Policy IslandPress,Washington, CoveloandLondon, 3.MillenniumEcosystemAssessment. in:InEcosystemsandHuman 2005.FreshwaterAylward, B.,Bandyopadhyay, ecosystemservices, J.,Belausteguigotia, J.-C., LaPaz-Bolivia. Rio MaderaEnBolivia.ForoBolivianodeMadioAmbienteFOBOMADE, Molina,J.,Ledezma,F., Novoa;,G., Mamani, E., Vauchel, P., (Eds.), BajoElCaudal- ElImpactodeLasRepresasDel Canese,R. 2009.Elimpactodelaconstrucciónrepresasenlasenfermedades detransmisiónvectorial,in:Arnéz,A.M., Arnéz, A.M., trabajo. Campanini, O.,Alurralde, J.C., Van Herbas,R., Damme,P.A., 2008.ElaguaenBolivia-Documentode Diaz,carlos,Vargas, C., Appl. Environ.Microbiol.71,7531–7535.doi:10.1128/aem.71.11.7531-7535.2005 Floating Macrophyte Rhizospheres fromanAmazonian FloodplainLake withHgMethylation. inBoliviaandTheirAssociation Acha, D., Iniguez,V., 2005.Sulfate-ReducingBacteriain Sanchez,S., Alanoca,L., M.,Guimaraes,J.R.D., Luna,R., Roulet, nature12797 Savoye, N., 2014. Amazon River carbon dioxide outgassing fuelled by wetlands. Nature 505, 395–398. doi:10.1038/ Martinez, J.-M., Artigas,L.F.,Abril, G., Moreira-Turcq, P., Benedetti,M.F., Meziane, T., Vidal,L., Kim,J.-H.,Bernardes, M.C., collective heritage. ofitsecosystemsconstitutesa of conservation in theBolivianAmazon wetlands,wherethestate Resources Managementforfacingvulnerability concepts andstructureoftheIntegratedWater Wedevelopment. highlightthehelpfulnessof planning adaptation-mitigationorsustainable methods tomake theirresultsausefulinputfor conceptualization, terminology, scopeand research achallengingtask.Itdemandsclear pertinent information,makes vulnerability Llanos deMoxos togetherwiththelackof The socio-political particularities of the ecosystem services. possibility toestimatetheirimpactsonwater providingthe land useandwatermanagement, change-variability, of climate scenarios different processes mayderiveinsimulationsunder representation ofthehydrological-hydrodynamic of field new research thatneedstobepromoted.Anaccurate relative a constituting limited, is cultural and supporting services regulatory, Informationfor about provisioningservices. information spatial provide may data streamflow Hydrologic-hydrodynamic modelstogether with importance. areofprimary ecosystem services and qualitativeinformationaboutwater Hidrobiologicos de Un Patrimonio Binacional (Bolivia-Brasil). Editorial INIA, Cochabamba-Bolivia,pp.59–78. Hidrobiologicos de UnPatrimonio Binacional(Bolivia-Brasil). Editorial INIA, por mercurio,in: Van P.A. Damme Maldonado,M.,Pouilly, M.,Doria,C., (Ed.), AguasDelItenez OGuapore,Recursos 2012.Deforestacion eInundacionesenla cuencadelrioItenezcomo indicadores delacontaminacion Ovando, A., Plan. A37,1335–1352. sensingperspective. remote institutionalarrangements,andland-useplanning.Environ. Mitchell, B.,2005.Integratedwater resourcemanagement, froma Brazil in river Amazon the of Geomorphology 13,215–232.doi:10.1016/0169-555X(95)00038-7 floodplain the on vegetation and geomorphology, 1995. Spatialpatternsofhydrology, Forsberg,B.R., Melack,J.M.,Nelson,B.,Martinelli, L.A., Daniel,D.L., Mertes, L.A.K., New York, pp.235–276. oftheAmazon BasinandItsRoleinaChangingWorld. Richey,(Eds.), OxfordUniv. Biogeochemistry J.E. Press, Victoria, R.L., M.E., McClain, in: wetlands, associated and lakes floodplain Amazon of Biogeochemistry 2001. B., Forsberg, J.M., Melack, s00382-009-0592-x Wang,2009.RainfollowsloggingintheAmazon? Clim.Dyn.34,983–996.doi:10.1007/ Mei, R., G., ResultsfromCAM3–CLM3. upper the of exposure inriparianAmazonian populations.Sci.TotalMadeira riversandmercury fishes Environ.260,73–86. and waters in distribution Mercury 2000. P., Courau, J., Chincheros, I., Quiroga, L., Maurice-Bourgoin, Amazonia: 312,109–119. doi:10.1016/j.quaint.2013.01.007 ThecaseoftheLlanosdeMoxos, Int. Bolivia.Quat. Lombardo, U., Denier, Veit, May, J.-H., Rodrigues, L., S., H., 2013. Human–environment interactions in pre-Columbian critical a wetlands: freshwater within fluxes review.and Wetlands 30,111–124.doi:doi:10.1007/s13157-009-0003-4 storage Carbon 2010. A., Hedmark, A., Mustafa, M., Scholz, B., Kayranli, Ontario-Canada, pp.110–127. Proceedings oftheInternationalLargeRiverSymposium. Canadian SpecialPublicationofFisheriesandAquaticSciences, Bayley,Junk, W.J., P.B., 1989. TheFloodPulseConceptinRiver-Floodplain Systems, Sparks,R.E., in:Dodge,D.P. (Ed.), Heidelberg, pp.223–265.doi:10.1007/978-3-662-03416-3_11 Junk, W., Worbes, M.,1997.TheForestEcosystemoftheFloodplains,in:CentralAmazon Floodplain. SpringerBerlin Amazon Floodplain.SpringerBerlinHeidelberg,pp.3–20.doi:10.1007/978-3-662-03416-3_1 Junk, W., ofFloodplainEcologywithSpecial ReferencetoAmazonian Floodplains,in:TheCentral 1997.GeneralAspects 2116. doi:10.1002/hyp.5559 South of floodplains savanna large two in patterns inundation America: the Llanos deMoxos (Bolivia) and the LlanosdelOrinoco (Venezuela and Colombia). Hydrol. Process. 18,2103– Seasonal 2004. J.M., Melack, S.J., Sippel, S.K., Hamilton, basin, fromtheBolivianAndestoAmazon. Eros.SedimentYieldGlob.Reg.Perspect. Fillzola, N.,Quintanilla,J.,Cortez,1996.DissolvedsolidsandsuspendedsedimentyieldsintheRioMadeira J.L., Guyot, Bourdeaux. 1993.HydrogéochemiedesFleuvesdel’amazonie Bolivienne.GéologieGéochimie.UniversitedeBourdeaux, J.L., Guyot, grl.50377/full Intensification of the Amazon hydrologicalcycle over the last two decades. Geophys. Res. Lett. 40, 1729–1733. doi:10.1002/ Gloor, M.,Brienen, R.J.W., Galbraith,D., Feldpausch,T.R., J.,Espinoza, 2013. Lloyd,J.,Phillips,O.L., J.C., J.,Guyot, Schöngart, Global-Water-Partnership, 2003.Effectivewatergovernance:learningfromthedialogues.. 75, 301–329.doi:10.1007/s10584-006-0329-3 Füssel, H.-M., Klein, R.T., 2006. Climate Change Vulnerability An Evolution Assessments: of Conceptual Thinking. Clim. Change Alexander,Forman, R., 1998.RoadsandTheirMajor EcologycalEffects.Annu.Rev. L., Ecol. 29. Syst. Connectivity. PLoSOne7,e35126.doi:10.1371/journal.pone.0035126 Finer, 2012.ProliferationofHydroelectricDamsintheAndeanAmazon andImplicationsforAndes-Amazon M.,Jenkins,C.N., challenges. Philos.Trans. London.Ser. Soc. R. BBiol.Sci.358,2037–2049.doi:10.1098/rstb.2003.1386 Falkenmark, M.,2003.Freshwater assharedbetweensocietyandecosystems:fromdividedapproachestointegrated 9,124007. Environ.Res. Lett. Amazon basin:theroleoftropical-subtropicalSouthAtlanticSSTgradient. Espinoza, J.C., Marengo, Ronchail, J.A., J., Molina, J., Noriega, L., Guyot, J.L., 2014. The extreme 2014 flood in south-western btf>2.3.co;2 plain flood Am.Bull.110,450–467.doi:10.1130/0016-7606(1998)110<0450:eos and channeloftheAmazon RiverinBrazil.Geol.Soc. the between sediment of Exchanges 1998. B.R., Forsberg, J.E., Richey, R.H., Meade, L.A.K., Mertes, T., Dunne, Nature 481,321–328. Longo, M.,Munger, J.W., Schroeder, Wofsy, 2012.TheAmazon basinintransition. Souza,C.M., S.C., W., Soares-Filho,B.S., Artaxo, P., deAraujo,A.C., Brown,I.F., Balch,J.K., Davidson, E.A., Bustamante,M.M.,Coe,M.T., C. Keller, DeFries, R.S., M., deforestation of effects The 2007. B.D., J.Climatol. 27,633–647.doi:10.1002/joc.1475 inAmazonia:on thehydrological areviewonscaleandresolution.Int

GLPNEWS | NOVEMBER 2015 35 Feature - Article 36

GLPNEWS | NOVEMBER 2015 Feature - Article WWF, 2013.Bolivia designatesworld’slargestprotectedwetland[WWW Document]. Sci. Total Environ. 339, 219–232.doi:10.1016/j.scitotenv.2004.07.034 (Brazil). mainstem River Amazon the of dynamics element trace the on ecosystems floodplain Amazonian the of influence Pinelli,M.,Seyler,Viers, J.,Barroux,G.G., P., Oliva,P., 2005.The Dupré,B.,Boaventura,G.R., Dupré,B.,Boaventura,G.R., Potencialidades YAmenazas.Faunagua, Cochabamba-Bolivia. la Amazonia Boliviana,in:Van Damme,P.A., F., Carvajal, Molina,J.(Eds.), LosPeces deLaAmazonía Boliviana:Hábitats, Van Damme,P.A., F., Carvajal-Vallejos, Sarmiento,J.,Beccerra,P., 2010.Vulnerabilidad delospeceslastierrasbajas Van Damme,P.A., 2002.Disponibilidad,UsoyCalidaddelosRecursosHídricosenBolivia. 2015.EvaluaciónUDAPE, dedañoyperdidasporeventosclimaticos-Bolivia2013-2014.LaPaz -Bolivia. doi:10.1016/j.envres.2015.10.010 “Provision Ecosyst. T., Assis, A., Aguiar, A.P.P., 2015.DeforestationScenariosfortheBolivianlowlands,Inpress:Environ.Res.Spetialissue T.,Tejada, Assis, Cordova, D., Dalla-Nora, E., Ovando, A., Lafortezza, R., G., Aguiar, A.P.P., Cordoba, D., Ovando, Lafortezza, R., hydrological regimeoftheMadeiraRiverbasin.Clim.Change129,117–129.doi:10.1007/s10584-015-1338-x Siqueira-Júnior, Tomasella, 2015. Impacts of future climatic and land cover changes on the J., Rodriguez, D.A., J.L.S., JAMC-D-12-0224.1, Seiler, Hutches,R.W., C., P.-, Kabat, 2013.Likely RangesofClimateChangeinBolivia.Appl.Meteor. Clim.doi:10.1175/ Piraí enBolivia. Seiler, 2009.Función climáticaehidrológicadelacoberturaboscosaAmboró-CarrascoyCuenca C., altaymediadelRío Amazonia 34,L17709.doi:10.1029/2007gl030612 causedbypastureandsoybeancroplandexpansion.Geophys. Res.Lett. Costa,M.H., Satyamurty, P., Nobre,C., Sampaio, G., Cardoso,M.,2007.Regionalclimatechangeovereastern Soares-Filho,B.S., J. Hydrol. 302,223–238.doi:http://dx.doi.org/10.1016/j.jhydrol.2004.07.005 Oceans. Atlantic and Pacific the in temperature sea-surface and Bolivia) - Amazon (south-western basin Mamore the in 2005.Inundations Vauchel, deOliveira,E., P., Cochonneau,G., J.-L., Ronchail, J.,Bourrel,L., Guyot, Castro,A., Phillips,L., wetlands asalargetropicalsourceofatmosphericCO2. Nature416,617–620.doi:10.1038/416617a Ballester,Richey, Melack,J.M.,Audenkampe,A.K., V.M., J.E., 2002.OutgassingfromAmazonian riversand Hess,L.L., de SanAndres(LaPaz) . Limnología yRecursosAcuáticos-UniversidadMayordeSanSimón(Cochabamba), InstitutodeEcologia-UniversidadMayor impactos delproyectohidroeléctricoríoMadera.nstitutdeRecherchepourleDéveloppement(IRD, Francia), Unidadde los de cuantificación una boliviano.Hacia Amazónico Norte el en peces en mercurio de tasa y gas de emisión inundación, de Pérez,Pouilly, T., M.,Martinez,J.M.,Córdova,L., Guérin,F., Caranzas,B.,Ovando,A., 2009b.Dinámica Duprey, J.L., Abril,G., Limnología yRecursosAcuáticos-UniversidadMayordeSanSimón(Cochabamba), LaPaz-Bolivia. Développement (IRD, Francia), InstitutodeHidrologíaeHidráulica-UniversidadmayorSanAndres(LaPaz), Unidadde y ecológicosconsecuentesaloscambioshidrológicosenlacuencaaltadelríoMadera.InstitutdeRecherchepourle WWF, Molina, J.,Ovando,A., 2009a.Escenariosdeimpactosgeoquímicos Martinez,J.-M.,Maurice,L., Pouilly, M.,Córdova,L., Importancia EcológicadelaDinámicaFluvial.SantaCruz-Bolivia. 2004.DiversidadBiológicadelaLlanuraInundacióndelRíoMamoré. Pouilly, Moraes,M.,Ibañez,C., M.,Beck,S., Manag. 26,4327–4346.doi:10.1007/s11269-012-0147-5 Plummer, Armitage,D., Loe,R., 2012.ASystematic R., ReviewofWater VulnerabilityTools. Assessment Water Resour. por elMercurio.SIRENARESistemadeRregulaciónRecurosNatiuralesRenovables,LaPaz -Bolivia. Pérez, T., Paco, Pouilly, P., M.,Maurice,L., 2009.SensibilidaddelNorteAmazónico alacontaminación Córdova,L., Ovando,A., ejrh.2015.11.004 10.1016/j. doi: Stud. Reg. Hydrol. J. Amazon Bolivian press: the In in Wetlands, events VonRandaw,flood Extreme 2015. C., Passy, P., Pinto,G.L.N., Tomasella, Martinez,J.M.,SiqueiraJúnio,J.L., Ovando, A., J.,Rodrigues,D.A., Vauchel, P., Noriega,L., Corresponding authors:[email protected]; [email protected] Moscow region,Russia about 400,000km happening inmany regionsintheworld.InRussia, subsequent naturalregenerationtoforestis Abandonment of agricultural land and to decreaseandthenfallssharply. begins diversity plant the increasing, are fire of case without fire. When frequency and intensity although plantdiversitycanbehigherthanina forest lands, abandoned isdelayedforanundeterminedtime, recovery affect fires When shrubs alsosteadilyoccurintheundergrowth. abandonment; all shade-tolerant trees and former plowedlandsin25-30yearsaftertheir 95% offorestherbaceousspeciessettleon inhabiting plants of flow seed the absence of fire and in the presence of stable inRussia.Resultsshowthat Nature Reserve broadleaf forests in the Kaluzhskie Zaseki State former arablelandssurroundedbyold-growth surroundings agricultural landswastestedonanexampleof vegetation and in forestsuccessionontheabandoned fires of role Our hypothesis abouttheextremely important Abstract diversity fires andplant land: recovery onabandonedarable Spatio-temporal patterns offorest Maxim Bobrovsky 1 frequency of external impacts such as grass fires, grass as such impacts external of frequency literature. Ourhypothesis isthatintensity and lands after abandonment are rarely considered in the the on influences external whereas etc.), al., 2011;Fridley, 2012;Hou,Fu, Wright, 2014, surroundings (Baeten etal.,2010;DeFrenne are previous landuse,soilpropertiesandvegetation recovery forest influence that factors main to forestvegetation.Itisgenerallyknownthat agricultural landsisplantsuccessionleading The mainprocessdevelopingontheabandoned and long-termoutcomes(Munroeetal.,2013). leading to different pathways intensity of varying is notastaticendstatebuttransitionalstage important tounderstandthatlandabandonment propose ecosystemmanagementplans,itis To predictvegetation development and to 2010); givingroomtospontaneousreforestation. abandoned between1980and2000(Ljurietal., Institute of Physico-Chemical and Biological Problems of Soil Sciences of RAS, Institute of Mathematical Problems of Biology of RAS, Pushchino, Pushchino, InstituteofMathematical ProblemsofBiologyRAS, InstituteofPhysico-Chemical and BiologicalProblemsofSoilSciences ofRAS, 2 ofagriculturallandswere 1

I

Larissa Khanina forest, about forest, et 1

lands. Birch woods with willow pass a first stage first a pass willow with woods Birch lands. caprea (willow)fulloccupytheabandoned arable Betula species tree pioneer the first, At recovery. forest offires, the absence in we coulddistinguishthe following stepsofthe area, study first the In be higherthaninacasewithoutfire. undetermined time,althoughplantdiversitycan is delayed on theabandoned arable lands for an recovery forest fires, With undergrowth. the tolerant trees and shrubs also steadily occur in in 25-30yearsaftertheirabandonment;allshade- old-growth forestsettleonformerplowedlands about 95%ofherbaceousspeciesfromnearby plants, forest of flow seed stable of presence the Our results show that in the absence of fire and in 2012-2014 (Moskalenko, Bobrovsky, 2012,2014). leaved treesandforestherbsinthestudyareas We studied plant diversity and spreading of broad- podzolics soils (AlbicLuvisols). Bothareashavesod- growth broadleafforest. andalsosurroundedbyold- Nature Reserve the bordering place a in area, first the from km frequency Thisareaissituatedin3 have beenobserved. different of fires where 1990s early was formerarablelandalsoabandonedinthe A second study site consider as a reference point. we which site study first a as fields these chose completely absentontheselandssincethen.We 1992 there.Fireandlivestockgrazinghavebeen in duetotheproclamationofReserve century pastures abandonedattheendof80s20th and fields plowed some surrounds Tilia cordata Acer platanoides, dominated by fires of A hugearrayofold-growthbroadleafforests absence the during thelast25yearscouldbeestablished. where Russia), region, (Kaluga Kaluzhskie Zaseki StateNatureReserve site ontheEast-European plain located in the To testourhypothesis weselectedaspecial very are plants forest process. important factorsdefiningtherecovery of flow seed steady of grazing orrecreationtogether with existence pendula and Quercus robur, A. campestre , A. B. pubescens (birch) with Fraxinus excelsiorFraxinus , Ulmus glabra and Salix

GLPNEWS | NOVEMBER 2015 37 Feature - Article 38

GLPNEWS | NOVEMBER 2015 Feature - Article , xylosteum glabra cordata, excelsiortolerant broad-leavedtreesFraxinus , theshade- 15 yearsafterthelandabandonment, willow woods;theysettleafterthetrees.In10- occupy thegroundlayerofthesebirchwith firststages, herbaceous speciesofmeadowsandgrasslands At grow. actively some and off die stage thinningoccurs,whensometreeindividuals denseundergrowth,thenatasecond of very area duetofrequentandintensefires excelsior,Fraxinus Acer campestre, platanoides, Ulmusglabra A. andTilia cordata. B-Grassland robus, showingadecreaseinplant diversityper Quercus by dominated forests broadleaf old-growth the bordering area m 100 within located and fires without developed forest Figure 1:Vegetation ontheformer arable lands intheKaluzhskie Zaseki A- StateNatureReserve in25years aftertheabandonment. Birch margin; themaximum rangewas about120m. In In field. herbaceous specieswas 50-70m fromtheforest plowed abandoned the study area, range dispersal of most forest the and forest i.e. theborderbetween old-growthbroadleaf starttopenetratefromtheforestmargin, etc. carthusiana, Aegopodium podagraria,Dryopteris obscura, Galeobdolonluteum, Stellariaholostea, europaeum,Pulmonaria species Asarum theshade-tolerant forest herbaceous After that, Corylus avellana appearintheunderstorey. and shade-tolerant shrubs such as Acer platanoides, Euonymus verrucosa, A. campestre andUlmus A. E. europaeaand Lonicera Tilia per 100 m we registered36vascular species growth forest, forest herbaceous species begin to dominate. per 100 m ground layer;weregistered 44vascularspecies demanding meadowandgrassland speciesinthe undergrowth ofbroad-leaved treesandlight- Betula spp.intheoverstorey, butwithsparse same birchforestdominated by25-30yearsold over 100mfromtheforest margin,thereisthe herbaceous species(Fig.1A).Atadistanceof ground layerconsistingofshade-tolerantforest of allbroad-leavedtreesandwell-developed 25-30-years birchforestwithdenseundergrowth 100 m from the forest margin is covered by a theareawithin the beginningofforestrecovery, of thebroad-leavedtrees.Thus,25-30yearsafter the old-growthforestswithdenseundergrowth dominate inthegroundlayerareaclosedto and other light-demanding species and begin to species winincompetitionforlightwithgrasses the next10-15years,shade-tolerantherbaceous 2 2 there. In theareabordering old- , i.e.plant diversity decreaseswhen B A Figure 2:BiotopsintheZaokskii Section oftheSerpukhov district located inthesouthofMoscow region and frequency. When grass fires are rare and do and rare are fires grass When frequency. and intensity its fires, of time on depend in realized be can scenarios Various fire. without developing may beeven higher thandiversityofvegetation is delayed or terminated whereas plant diversity growth tree lands, abandoned affect fires When registered about50 vascularplants per100 m plant total diversity increases: inthesecondstudy area,we case, this In fire. by created mosaic together with shade-tolerantonesdue tolight andlight-demandingcan survive speciescangrow not extendtolargeareas, sometreeindividuals 2

GLPNEWS | NOVEMBER 2015 39 Feature - Article 40

GLPNEWS | NOVEMBER 2015 Feature - Article References cordata occupyrelativelysmallpartsofthestudy aspen (Populus tremula), QuercusroburorTilia in spring; region the and middle-agedforestsdominatedbybirch, in typical are which fires single trees prevail on vast areas due to grass fires by affected (Fig. 2).Abandonedlandswithouttreesorwith not were them of 1.8% only which totallycomprise40%oftheareaand are largeareasoftheabandonedarablelands There intheKaluzhskieZasekiReserve. observed we which mosaic the from different is lands of south ofMoscowregionwherespatialmosaic Similar researchisnowbeingconductedinthe few speciesper100m plant diversitybeginstodecreaseandfallsa the increasing, are fire of intensity and frequency However, when fires. of number small of cases in consequences andresearchchallenges.Current OpinioninEnvironmentalSustainability. 5(5):471–476. Munroe, D.K., vanBerkel, D.B., Verburg, P.H., (2013).Alternativetrajectoriesoflandabandonment:causes, Olson,J.L. 1(3):48–54.InRussian. DepartmentofRBS. Bryansk Moskalenko, S.V., Bobrovsky, M.V (2014).Tree Bull. renewalonabandonedarablelands in theKaluzhskieZasekiReserve. 14(1):1332–1335.InRussian. IzvestiyaSamarskogo NauchnogoCentraRAN. lands intheKaluzhskieZasekiReserve. Moskalenko,S.V., Bobrovsky,M.V.arable abandoned on forests oak old-growth from plants forest of Resettlement (2012). andpostagrogenicrestorationofvegetationsoil.GEOS, Moscow.in 20thcentury 416pp.InRussian. Ljuri, D.I., S.V., Nefedova,T.G. Goryachkin, Denisenko, E.A., (2010).DynamicsofagriculturallandsinRussia Karavaeva,N.A., different times.Catena115:1-10. Hou, J.,Fu, B.(2014).Researchontherelationshipbetweenvegetationandsoilresourcepatternslandsabandonedat climate, soils,andspeciespools.Oecologia168:1069–1077. Fridley, J.D., J.P. Wright, successionratesacrosstemperatelatitudesoftheEasternUSA: (2012).Driversofsecondary ofpost-agriculturalvariation inthefloristicrecovery forests. JournalofEcology99:600–609. H., Hermy, M.,Diekmann,DeSchrijver,Cousins,S.O., DeSanctis,M.,Decocq,G., Verheyen, A., (2011).Interregional K. De Frenne, P., Jacquemyn, J.,Wulf, Brunet, Jansen,I.,Jamoneau,A., Kolb, Graae,B.J., A., M.,Orczewska, A., Baeten,L., afterintensiveagriculturallanduse.RestorationEcology18(S2): 379–386. vegetation recovery Velghe,Baeten, L., D., Vanhellemont, M.,Frenne, P.D., Hermy, M.,Verheyen, (2010).Earlytrajectoriesofspontaneous K. 2 (Fig.1B). 04-01734, 14-44-03666and15-29-02724). Foundation forBasicResearch(projectsNos.12- The workispartlysupportedbytheRussian the ecosystemprocesses. itsspatialstructureandinputto development, of land scenarios different of accounting area, for ecosystemland-usemanagementthis from forest species sources. The study should provide a base andremoteness fire, by affected plant diversityunderconditionsoflargeareas andtoestimate study featuresofforestrecovery of lands. The objectives of this research are to prevent fire to humid too are forests but fire, of spread the that smallriversandstreamsdonotprevent area (20%intotal).Analysisofthemapshowed spread andtoproviderealprotection Bontogho Corresponding author:[email protected] 42816 673/539, Corresponding author: Dr. BiocentreKleinFlottbek, UniversityHamburg,Ohnhorststr. JörgHelmschrot, 18,22609Hamburg,Germany, Ph/Fax: +4940 higher intensities may affect runoff generation runoff affect may intensities higher of savannahalongwith projected rainfallsof et al.,2014).Forexample,ongoing deforestation Cornelissen (e.g. impacts on the local and regional water cycle are expectedtohaveimmediateandlong-term ecosystems acrossWest Africa.Thesechanges 2011) acceleratethepressureonvulnerable migration andhighfertilityrates(e.g.World Bank, 2015) andanincreasingpopulationcausedby (e.g. Kabore/Bonthogoetal.,2015a,b;Badjana, 2007). Inaddition,changingclimatepattern (e.g.Lietal. , 2007,Wittigetal. conservation with agriculturalexpansion,overgrazingand changes through deforestation in combination have experiencedconsiderableland-use In previousyears,mostWest Africancountries Introduction information towaterresourcesmanagers. integrated researchtopovidescience-based interacting dynamicsunderpintheneedfor to counteractincreasingdischarges.These as wellagrowingdomesticwateruseseem schemes whichhavebeenrecentlyestablished decreasing rainfall,farmdamsandirrigations studies in the region. We argue that slightly the threebasinswhichisincontrasttoother of any for yet observed were pattern runoff in three decades. However, no significant changes savannah wasseverelydegradedoverthelast Our study reveals that 35% up to over 50% of reference three from catchments inBurkinaFaso, BeninandTogo. findings our or present generation better understanding of thesedynamics, we runoff as groundwater recharge.To contributetoa such hydrological affect dynamics vastly to considered are well aschanging climate pattern in West Africa demands forfoodandenergyproductionas driven by population growth and associated Ongoing landusechangeswhichareprimarily Abstract water resources management ofWest African implication for thesustainable coverLand changeandits Jörg Helmschrot 1 UniversityofHamburg, Germany; 2UniversityofAbomey-Calavi, Benin;3UniversityofLome,Togo et al.,2013,Mahe2005,Routier 2 1 |HeouMalékiBadjana relies onsubsistenceagriculture. The populationintheregion ismostlyrural,thus intheKaraandBinahBasins. mm wereobserved and 900 mm in the Massili Basin while about 1250 The meanannualrainfallvariesbetween700mm seasonduringtheremaining periodoftheyear.dry June toOctoberwithhighlyvariablerainfallsanda by a tropical climate with a rainy season from May/ in thesavannahecologicalzone andcharacterized River Basin:1.044km²).Allstudybasinsarelocated Benin and Togo (Kara River Basin: 5.287 km², Binah study basinsinBurkinaFaso (MassiliBasin:2.612km²), West Africa,ourstudyhasbeenconductedinthree To assess land use distribution as well as changes in Study Areas, Data andMethods and Togo studiesinBurkinaFaso,Case Benin regional scale. potentially immediateimpactsatlocaland stakeholder, planers and decision makers on evapotranspiration, butalsotoinforminterested assess the impacts of such changes on runoff and to efforts modelling hydrological for used being at catchmentscale.Theinformationisnotonly information onlandusepatternanditschange catchments, inordertoprovidereliabledataand 30 yearsinvariousWest Africanreference We studiedlandcoverchangesoverthelast water resourcesmanagersanddecisionmakers. and assessmentofsuchdynamicsareessentialfor (e.g. management and climatechange,themonitoring change climate Ibrahim of the offset effects not hydrological do generally changes use ina land and biodiversity long-term perspective.However, tremendous climates local affecting and possiblyaltergroundwaterdynamics,all evapotranspiration (e.g.irrigationagriculture) of tropicalforestswillpresumablyincrease the hand, other expansion ofagriculturalareaandthereduction the On baseflow. reduce and generation flood support thus and mechanisms, 2,3 |EmmaPatricia Kabore / et al., 2015). Given the relevance of land

GLPNEWS | NOVEMBER 2015 41 Feature - Article 42

GLPNEWS | NOVEMBER 2015 Feature - Article found inallthree catchments.Thoseare either additional, but lessdominantconversions were Besides theselarge-scale landusechanges, two catchmentsinTogo andBenin. drier Massili Basin (Burkina Faso) compared to the savannah startedmorethan adecadelaterinthe results indicatethattheextensive cultivationof 59 %asagriculturalarea(Fig.1).However, the and savannah as identified were watershed the this trend was continuing to 2013 when 27 % of of thebasinin2002.Atlowerconversionrates, converted to cultivated land which covered 54 % 1990 and2002about33%ofsavannahwas for theMassiliRiverBasinshowedthatbetween fallow agriculture. The land cover assessment to savannahwhichiscausedbythecommon smaller areasofcultivatedlandwereconverted %(1972) 15 to 24%in1987and432013(Fig.2).Some from expanded significantly has as savannahin2013,whileagriculturalland watershed, only33%ofcatchmentremained % ofthecatchmentin2000.InBinahRiver the areaofsavannahdecreasedtolessthan45 in 1972to26%1987and432000while show anincreaseinagriculturallandfrom19% expansion. IntheKaraRiverBasin,results severe changes,mainlyduetoagricultural In allthethreebasins,savannahhasundergone watershed (Fig.1). water bodies(1%)werelessdominantinthe forest (4%),settlement(3baresoil(1%)and savannah, as classified followed by farm and fallow land (22 %). Gallery were basin the of % 69 the beginningoftimeseriesin1990when pattern wasfoundfortheMassiliRiverbasinat forest coveredabout9%and16resp.Asimilar Basin were identified as savannah vegetation and the KaraRiverBasinand68%ofBinah of therespectivetimeseries.In1972,71% landscape inallthreestudyareasatthebeginning clearly show thatsavannahvegetationdominatedthe results classification the of analysis The Results andDiscussion land coverbetweendifferentdates. change analysiswasusedtoassesschangesin by historic maps and field data. Post-classification using performed object-based imageanalysiswhichwassupported was classification cover land website and the USGS LandsatLook Viewer. The through theGlobalLandCoverFacility’s (GLCF) wasprovided (1972, 1987and2013).Allimagery 1987 and2000)forBinahRiverwatershed were alsoselectedfortheKaraRiverBasin(1972, the years1990,2002and2013.Landsatimages was acquiredfortheMassiliBasinrepresenting 30 yearswereexamined.AsetofLandsatscenes sets coveringselectedperiodsovertheprevious cover andlanduse,multi-temporalLandsatdata For theanalysisandassessmentofchangesinland changes in runoff generation during recent Aguima catchment (Benin), lower infiltration during rates significant generation arguedbyGiertzetal. (2005)forthe decades. As to runoff refers in basins changes all in thresholds basins, thelossofsavanna exceeding these reference our to findings these transfering When surface runoff. particular in and, discharge increase significantly that anexpansionofcultivatedareaby30%will Benin.Theyfound in theOuémécatchment, (2013) whocomparedfourmodelapplications %. 33–91 Similar resultsarepresentedbyCornelissenetal. by streamflow annual in increase an that acompleteremovalofsavannaresultsin Li pattern. runoff the alter significantly to expected is threshold this of percentage remainsbelow50%.Any exceeding aslongdeforestation(thinning) be observed little i.e. impact onthewateryieldandriverdischargecan effect, threshold a exhibits and linear response to large-scale land cover change is non- for theNigerandChadBasins,hydrological byLi As stated generation. runoff affects overgrazing and thinning deforestation, transition ofsavannahtoagriculturalland, Various studieshavedemonstratedthatthe its management Implications for water resources and are ratherhuman-driveninthesebasins. changes use land that confirms which conversion regardingthebeginningofvastland but vary have asimilarspatialdimensioninallcatchments, results alsorevealthatthechangesinlanduse for foodandenergyarethemajordrivers.Our population growthandtheassociateddemand cover aregenerallysocio-economically driven, i.e. change onvegetation,themainchangesinland tothe recent casestudiesrefertotheimpactsofclimate adds notably devastation ofwoodyvegetation.Althoughsome firewood, and charcoal food sufficient secure production, and the need forenergy, i.e. mainly to strategy main the is and energy. Theexpansionofagriculturalland 2014) leadingtoanincreasingdemandforfood growth throughouttheregion(López-Carretal., population significant a been has there decades, duringrecent increase ofpopulation.Infact, agricultural landwhichisstronglyrelatedtothe conversion ofvegetationespeciallysavannahto significant a is there studies, case all in shown As than 3,000hain2008(MERF2002,2008). which increased from 1,000 ha in 2002 to more Togo ledtothereforestationofwoodysavannah and projectsofprotectedareasrehabilitationin awareness-raising campaignsofreforestation (Badjana some cases conservation efforts like reforestation caused byongoingdegradationofforestsorin et al.,2014,2015).Forexample,vast et al.(2007)simulated et al. (2007) transfered through surface runoff, it will only will shortly beavailable foragricultural purposes it runoff, surface through transfered generation. On theotherhand,giventhat thiswaterisrapidly flood support may arable thus on and lands, runoffs surface stronger cause may the MassiliBasin(Kabore/Bonthogo et 2015) al. with moreintenserainfall eventsasfoundfor and alteredstoragecapacitiesofthesoilsalong Figure 1:Land cover change inMassilibasin,Burkina Faso between1990,2002and2013. farm damswhich havebeenrecentlyestablished of thethree basins, slightlydecreasing rainfall, yetforany increase indischargewas observed significant no Since 2006). (Sakurai, Africa West are strategiestoensure foodproductionin agricultural of production aswellincreasing landcultivation intensification the dams, small or domesticuse.Thus,theestablishmentof

GLPNEWS | NOVEMBER 2015 43 Feature - Article 44

GLPNEWS | NOVEMBER 2015 Feature - Article future water security andfoodproduction. resources managements plansinorderto support develop andsupportintegrated landandwater the region to climate change, there is aneed to agricultural expansionand thevulnerabilityof Undertheongoingpopulationgrowth, services. the reductioninecosystem productivityand of soil,alterationhydrological processesand degradation of physical andchemical properties systems includingthelossofbiodiversity, the use havemany consequences on natural changes in land cover and land The observed Conclusion andfurtherneeds assist decisionmakers andplannersaccordingly. provide reliableinformationandassessmentsto allinorderto interacting dynamicsintoaccount, the needforintegratedresearchtakingthese irrgiation schemes.Suchdevelopmentsunderpin in infrastructureslike damconstructionsor the impactonyieldsandmarkets orinvestments implications ofthesedynamicsasforexample given toothereconomicandenvironmental (e.g. Kasei,2009).However, littleattention was increasing dischargesovertheprevious30years growing domesticwateruseseemtocounteract along with agricultural expansion as well as a Figure 2:Degraded savannahintheBinahRiverBasinTogo (Photograph: Badjana, 2013) Association ofHydrologicalSciences(IAHS). Association Rhei ResearchInitiativeoftheInternational conducted withintheframeworkofPanta free ofcharge.Thepresentworkwaspartially as wellalldataprovidersforproviding and localcollaboratorsfortheirvaluablesupport researchers andinstitutions,technicalassistants in Africa. We also acknowledge all participating Centres RegionalScienceService and SASSCAL funding theseactivitiesaspartoftheWASCAL forEducation andResearch(BMBF)for Ministry The authors would like to thank the German Acknowledgements References World Bank(2011):Africadevelopmentindicators.TheWorld Bank,Washington, DC. Environmental ScienceandPollution Research14(3):182–189, doi:http://dx.doi.org/10.1065/espr2007.02.388 M.;Szarzynski,J.(2007):AStudyofClimateChangeandAnthro-pogenicImpactsinWest Schmidt, Africa. König, K.; Wittig, R.; green potential and status present Africa: West in rice production revolution. TheDevelopingEconomies,44:232–251.doi:10.1111/j.1746-1049.2006.00015.x. lowland rainfed of Intensification (2006): Z. Sakurai, Deuxieme CommunicationNationalesurlesChangementsClimatiques,projetnuméro00053108. Ministère del’EnvironnementetdesRessourcesForestièresduTogo (MERF)(2008):EtudesurlesCirconstancesNationales, contre laDésertification(PAN-TOGO). Ministère de l’Environnement et des Ressources Forestières du Togo (MERF) (2002): Programme d’Action National de Lutte Earth System Sciences18:2789–2801.doi:10.5194/hess-18-2789-2014 and Hydrology review. a Africa: West in runoff on impacts change Climate (2014) L. Feyen, A.; P.;Ducharne, Roudier, doi:10.1016/j. 33–43, 300, ofHydrology Journal Burkina-Faso, River, the Nakambe jhydrol.2004.04.028. in modelling flow river and capacity Conway, E.; D.;Dezetter, Servat, Paturel, J.-E.; Mahe, G.; (2005): The impact of land use change on soil water holding A. demographic pressurescoincide.Population Environment35: 323–339. population dynamicsandclimatechangeinAfrica:potentialvulnerabilityhotspotsemergewhereprecipitationdeclines López-Carr, D.; Michaelsen,J.(2014):Aspatialanalysisof Jankowska, Narcisa,G.P.; Husak,G.; M.M.;Funk,, C.; Juliann,E.A.; Journal ofHydrology337:258–268.doi:10.1016/j.jhydrol.2007.01.038. Li, K.Y.; Coe,M.T.; (2007):Modelingthehydrological Ramankutty, impactofland-usechangeinWest N.;DeJong,R. Africa. at RheinischeFriedrich-Wilhelms-Universität Bonn,Germany. (2009):Modellingimpacts ofclimatechangeonwaterresourcesintheVolta A. Basin,West Kasei R. Africa.PhD-Dissertation International JournalofCurrent EngineeringandTechnology 5(3):1846-1852. (IJCET) CanESM2, AFRMPIand44scenariostoassesslong-termclimatetrendsfortheMassiliBasinincentralBurkinaFaso. Kabore/Bontogho, P. J.(2015b): Nikiema,M.;Ibrahim,B.;Helmschrot, MerginghistoricaldatarecordswithMPI-ESM-LR, E.; perception incentralBurkinaFaso. InternationalJournalofCurrent EngineeringandTechnology 5(3):1955-1965. (IJCET) Kabore/Bontogho, P.E.; J.(2015a): B.;Helmschrot, Intra-seasonalvariabilityofclimatechangeandpeasant Ibrahim,B.;Barry, Basin inBurkinaFaso. Climate3,442-458;doi:10.3390/cli3030442. Ibrahim, B.;Karambiri,H.;Polcher, J.(2015):HydrologicalImpactsoftheChangesinSimulatedRainfallFieldsonNakanbe of theEarth30(8–10):485–496. processes inthesub-humidtropicalenvironmentofWest Africa.Physics andChemistry Giertz, S.; Junge, B.; Diekkrüger, B. (2005): Assessing the effects of land use change on soil physical properties and hydrological JournalofHydrology,climate changeondischargeinatropicalcatchment. 498:221-236.doi:10.1016/j.jhydrol.2013.06.016. Cornelissen, Th.;Diekkrüger, (2013):Acomparisonofhydrological modelsforassessingtheimpactoflanduseand B.;Giertz,S. doi:10.1002/2014EA000083. assessment usingobject-based imageanalysisintheBinahRiverwatershed(Togo andBenin). EarthandSpaceScience2. J.;Selsam,P.;Wala,Badjana, H.M.,Helmschrot, (2015):Landcoverchanges Akpagana,K. Flügel,W.-A.;Afouda,A.; K.; Paläontologie; Teil I,2014,Heft1:151-170.doi:10.1127/zgpI/2014/0151-0170. cover dynamics in a sub-catchment of Oti basin (West Africa): A case study of Kara river basin. Zentralblatt für Geologie und Badjana, H.M.;Wala, Selsam,P.; K.; ofland- J.(2014):Assessment Urban,M.;Fink,Helmschrot, Flügel,W.-A.;Afouda,A.; management (ILWRM) inWest Africa.PhD-Thesis atUniversityofAbomey-Calavi,Benin. Badjana, H.M. (2015): River basin assessment and hydrologic processes modeling for integrated land and water resources

GLPNEWS | NOVEMBER 2015 45 Feature - Article 46

GLPNEWS | NOVEMBER 2015 Feature - Article Corresponding author:[email protected] Crossing thesuggestedlimits wouldleadtoa conditions favourableto human development. that shouldberespected inordertomaintain distinct bio-physical limitsoftheEarth system Boundaries areasetofnine area, thePlanetary into onesinglenormalized measureofland various resourcesconsumptionsandpollutions Unlike whichconverts theEcologicalFootprint, of definition the sustainable levelsofenvironmentalimpacts. for approach based science Steffen 2009; al., Boundaries concept(Rockströmet The Planetary coveron land Boundaries perspectiveThe Planetary Environment (Daoetal.,2015). commissioned by the Swiss Federal Office for the Switzerland. Itisbasedontheresultsofastudy to landcoverandonitsapplicationthecaseof related Boundary Planetary specific the on focus environmental performances ofcountries. It will translating thematthenationallevelandassessing limitsforglobalEarthsystem, allows identifying Boundaries, which the concept of Planetary This paperpresentsanapproachbasedon for humandevelopment. of targets environmental dimensionsinglobalpolicy consideration increasing the reflect Nations Sustainable DevelopmentGoalsattheUnited generations. Theon-goingnegotiationsonthe naturally sustainable levels for current and future pollutions of the ecosystems must be lowered to levels thatnaturalcapitalconsumptionand become clearatbothnationalandinternational environmental issues (UNEP, 2012).Ithasnow pollution, to mention some of the maincurrent climate and degradation,biodiversityloss,airwater impacts: global change, soildegradation,ecosystemsdecline negative significant releases intotheenvironmenthavegenerated Growing demand for naturalresources and development Global changeandsustainable Switzerland perspective appliedtoBoundary footprint ofnations? APlanetary How sustainable istheland Hy 2 1 ShapingEnvironmental Action (SEA) UniversityofGeneva &UNEP/GRID-Geneva; UniversitédeGenève-UniCarl Vogt BoulevardCarlVogt, 66-1211Genève 4-SWITZERLAND Dao 1 |DamienFriot et al.,2015)providesanatural 2

(Tukker etal. , 2014). providing theirresourcebase toothercountries countries like BrazilorChinaare,onthecontrary, 1996 to2011(Frischknecht et al., 2014).Other consumption occurabroad,asharerisingfrom the environmentalimpactscausedbySwiss et al.(2011)showedthatmorethanhalfof on therestofworld.AstudybyJungbluth share of its carbon, water and land footprints Footprint of Nations” that the EU has a significant Tukker in Western countries. tropics for the production of palmoilconsumed on Earth,e.g.theforestareasclearedin wherevertheseimpactsoccur of acountry induced bytheconsumptionofinhabitants theenvironmentalimpactsallow quantifying perspective.Theyaccording toalifecycle along globalproduction-consumptionchains FAO statistics.Footprintsaggregateimpacts e.g. theforestcoverchangesasreportedin ofacountry, impacts occurringontheterritory countries. Territorial indicatorsconsider consumersinotherfact generatedtosatisfy isin a risingpartoftheimpactsonterritory In ourinterlinked global economy(Friot, 2009) perspective totheclassicalterritorialindicators. complementary indicators –areanecessary as consumption-basedordemand-based impacts of countries, footprints - also known To measuretheactualenvironmental et al.(2015). Steffen and (2009) slightly fromRockströmetal. differ they (2015), are theoneusedinDaoetal. Loss andChemicalPollution (note:thesenames Use, LandCoverAnthropisation,Biodiversity Losses, AtmosphericAerosolLoading,Freshwater Stratospheric Acidification, Ozone Depletion,NitrogenandPhosphorus Ocean identified: Change butothergloballimitshavebeen isClimate Boundary The mostknownPlanetary economic system. some of the ecological bases of the current socio- drastic changeinhumansocietiesbydisrupting et al.(2014)show in the “Global Resource Table 1:Land Cover Anthropisation:datasources for global values. allocated topeople,throughtime.Thustheper fixed fromthisdate.Thenthe nationallimitis isshare of the resources available per country population atagivenreferencedate.The i.e. by dividing the global limit by the global on an “equal share per capita” calculation, the globallimitisallocatedtocountriesbased We appliedahybrid-allocation approach.First ? each country 2. Howtoallocateafairshareofthelimits are asfollows(Table 1): data sourcesusedforLandCoverAnthropisation availability ofdataonlimitsandfootprints.The as well as to the Boundary, depicting the Planetary was selectedwithrespecttoitsrelevancefor indicator final The experts). of numbers limited than 40participantsand5meetingswithamore consultations (onemajorworkshopwithmore on thebasisofliteraturereviewandexperts The indicatorand global limit were chosen computed fortheworld&Switzerland ? 1. Whatrelevantindicatorsandlimitscanbe Land CoverAnthropisation(Daoetal.,2015): following questionsstructuredourapproachof Boundaries, the for the other Planetary As Methodology BiodiversityLoss. Boundary, another Planetary change impacts,biodiversitybeingcoveredby cultivation and soil sealing). The focus is climate of anthropisedareas(throughdeforestation, to undesiredstatesbylimitingtheexpansion irreversible andwidespreadconversionofbiomes LandCoverAnthropisationistoavoid Boundary In thisstudy, theobjectiveofPlanetary (UNEP, 2012)aswellonglobalbiodiversity. particular throughtheirimpactsonclimatechange in system, Earth global the affect changes cover however beadoptedwhenconsideringhowland perspectivecan or regionalscale.Aplanetary a globalone,sincechangesoccuratlocal usually consideredaregionalissueratherthan Planetary specific relatedtolandcover. the Boundary Landcoveris on focusses article This medium World population(1990-2050) -UN medium National population (1990-2050)UN Cropland area Data Ice andpermanentsnow National (territorialandfootprint) landuse Urbanized land Global 500mMODISmapofurban extent GlobCover (300mspatialresolution) http://due. esrin.esa.int/globcover FAOSTAT http://faostat.fao.org Frischknecht etal. , 2013 Schneider etal. , 2009 by 2050, and (b) a respect of the call published area of0.8%(from1%to1.8%theglobalarea) resulting inanestimatedadditionalshare of urban a stablesurfaceofurbanareapercapitauntil2050, objectives:(a) land coverissetbasedontwopolicy The theoreticallyacceptableshareofanthropised albedo andforcarbonstorage. indicator canbeunderstoodasaroughproxy for to human activities (i.e. footprints). The selected FAO) and the anthropised surface can be linked from time seriesonagriculturallandpercountry areas, becausebetterdataareavailable(e.g. This indicatorhasbeenpreferredtoforested percentage ofice-free land (waterbodiesexcluded). i.e. agricultural and urbanised (sealed) land, as is setintermsofthesurface ofanthropised land, limitforLandCoverAnthropisation global The Indicator andlimits categories basedonaqualitativeassessment: the categoriesarefurtherseparatedintofour the uncertaintyandtrendoffootprint, no overshootssituations.Then,takingintoaccount quantitative distinctionbetweenovershootsand allowing a the ratio of the footprint over the limit, as computed first are scores Swiss and global The 1). (Figure defined are performance of categories footprints attheglobalandnationallevels,four In ordertoassessthesustainabilityof with thecomputedlimitswhenrequired. intovalueswhicharecompatible this inventory approachesarethenusedtoconvert Assessment data and LifeCycleImpact 2.0 data,www.ecoinvent.org). territorial Swiss modelled data for imports and exports (ecoinvent official on based SimaPro 7.3software,www.simapro.co.uk/), the in (implemented Environment the for Office environmental databasefromtheSwissFederal Swiss footprintiscomputedfromaproprietary the samedataasforlimit(seeTable 1).The The globalfootprintiscomputedonthebasisof 3. Howtoassessperformances? population grows). dynamics (e.g.itmightdiminishasnational capita limittakes intoaccountthedemographic Data sources 23 landcover Binary values Binary Inhabitants Inhabitants ha x1000 m classes Units 2 xyear

GLPNEWS | NOVEMBER 2015 47 Feature - Article 48

GLPNEWS | NOVEMBER 2015 Feature - Article and nationalpopulations. capita limitsevolveaccordingtotheyearlyglobal 16’669’000 km Land CoverAnthropisation(Figure2)is Boundary The global footprint for the Planetary Current performance 16’669’000 km The currentanthropisedlandiscomputedas loss offorestcover1%by2050. stabilise beyond,resultinginamaximumadditional global deforestationratebytwountil2050andto by UNEP(Trumper etal.,2009)tocutthecurrent Figure 1:Aperformance definedwith four categories. (Daoet.al. 2015) Figure 2: Land Cover Anthropisation: global and Swiss performances. (Daoet.al. 2015) limit (19’362’000km km resulting yearlylimitforSwitzerland is21’900 byFAOResource Assessment (FAO, 2010).The because itistheyearofGlobalForest i.e. 0.113%.Theyear2010hasbeenselected the global population at thereference year 2010, share of the Swiss to relatively defined is cover The Swiss share of the global anthropised land 2010). (Schneider etal.,2009) + 1%),i.e.19’362’000km set at15%ofthegloballandcover(13%+0.8% Schneider land cover (based on data from FAOSTAT and Cleary Safe Cleary Safe Unsafe Clearly Unsafe Performance Confidence inscore Performance Trend 2 . The limits are fixed for 2010, hence the per the hence 2010, for fixed are limits The . et al.(2009).Thegloballimitishence 2 2 for2010,i.e.12.9%oftheglobal for2010,14%belowtheglobal 2 ). TheSwissfootprintis 2 (2’800m Small tomedium Small tomedium Large overshoot No overshoot No overshoot No overshoot overshoot overshoot Score 2 percapitain Slow evolution Medium World Safe the SwissperformanceisqualifiedasUnsafe. global performance is thus qualified as Safe while evolution oftheSwissfootprintisrapid.The evolution oftheglobalfootprintisslowbut km 17’600 km outside ofSwitzerland (seeFigure3). largest shareoftheSwissfootprintwasoccurring will beattainedinlessthan 10 years.In 2011, the of rate over this period of 1.7%, the Swiss limit At the average growth than the global footprint. The Swiss footprint is growingmuch more rapidly (0.3%), the global limit will be reached in 45 years. to theaveragegrowthrateoflast15years growth rateoftheglobalfootprintequivalent Loss orNitrogenLosses). afutureglobal Assuming Biodiversity Acidification, Ocean Change, Climate Boundaries studiedinDaoetal.(2015)suchas tootherPlanetary Switzerland (contrary currently neithercrossedgloballynorfor The limit for Land Cover Anthroposation is Discussion Switzerland isthesecondattemptofthiskind indicators adaptedtothenationalcontextof Boundaries The production of Planetary Conclusion Confidence inscore 2 Medium tolow Medium tolow Medium tolow Medium tolow ). The evolution is however different: the different: however is evolution The ). High High 2 in2011,20%belowthelimit(21’900 Rapidly deteriorating Switzerland Medium Rapidly deteriorating Rapidly deteriorating Rapidly deteriorating Unsafe Slow evolution Slow evolution Slow evolution Trend References Figure 3:AnthropisedLand Cover (inkm composition, economicsituation,etc.). (demographic specificities territorial account into allocation methods in ordertotake of the country refinement include developments Future world). representing 95%oftheglobalGDP(http://bluedot. the limitsandfootprintsfor40additionalcountries A currentextensionoftheprojectiscomputing global perspective. inalong-term by theconsumptionofacountry, ecological sustainabilityoftheimpactsinduced targets perse,theyprovideanindicationofthe indicators (limitsandfootprints) arenotpolicy after Sweden(Nykvistetal.,2013).Theproposed UNEP (2012) GlobalEnvironment Outlook 5 (GEO-5) [WWW document]. Nairobi,Kenya: UNEPURLhttp://www.unep.org/geo/ UniversityofScienceand TechnologyBusiness /Norwegian and Economics of University Vienna / Research Scientific Applied for Organisation Leiden/Delft/Vienna/Trondheim: Resource 2.1. Global The (2014) R. Wood & K. Stadler M., Simas Footprint of S., Nations. Carbon, Lutter water, A., land and Koning materials embodied de in trade S., and finalGiljum consumptionT., calculated Bulavskaya with EXIOBASE A., Tukker of role The Fix? Natural The (2009) P.Environment Programme,UNEP-WCMC URLhttp://www.unep.org/pdf/BioseqRRA_scr.pdf Manning & M. Jenkins G., Heijden [WWW United Nations document]. der ecosystems inclimatemitigation. AUNEPrapidresponseassessment. Cambridge,UK: van B., Dickson M., Bertzky K., Trumper Planetary (2015) S. Sörlin & B. Reyers V., Science347:1259855 boundaries: Guidinghumandevelopment onachangingplanet. Ramanathan M., L. Persson M., G. Mace J., Heinke D., Wit Gerten de, W. C., Vries Folke R., de, S. A. Carpenter C. R., Biggs M., E. Bennett I., Fetzer E., S. Cornell J., Rockström K., Richardson W., Steffen Research Letters4:044003 &Potere Friedl D. M.A. (2009)Anewmapofglobal urbanextentfromMODISsatellitedata.Environmental Schneider A., M., etal.(2009b) Asafeoperatingspaceforhumanity. Nature461:472–475 Hughes T., A., J., Nykvist B., de Wit C. Snyder Rodhe H., van Sörlin P.der S., Leeuw S., Svedin Costanza R., U., K., Falkenmark Rockström J., Steffen W., NooneK., PerssonÅ., Chapin F.S., LambinE. F., Lenton T. M., Scheffer M., Folke C., Schellnhuber H. naturvardsverket.se/Om-Naturvardsverket/Publikationer/ISBN/6500/978-91-620-6576-8/ [WWW document]. Boundaries.Astudyforthe SwedishEnvironmentalProtectionAgency URLhttp://www. Planetary MobergF.,Nykvist B.,Persson Å., &RockströmJ.(2013)NationalEnvironmentalPerformance CornellS. Persson on L., FOEN Environment the for Office Federal Switzerland: Bern, assessment. cycle life with analysis input-outpout of combination Jungbluth N., StuckiM.&Leuenberger M. (2011)Environmental Impacts of SwissConsumption and Production. A http://www. URL FOEN bafu.admin.ch/publikationen/publikation/01771/index.html?lang=en Environment the for Office Federal Bern: document]. [WWW impact environmental worldwide the for WyssF. IttenR., BüsserKnöpfel S., Frischknecht NathaniC., &Hellmüller P. R., (2014)Development of Switzerland’s Office Federal Bern: document]. [WWW Switzerland in Environment URLhttp://www.bafu.admin.ch/publikationen/publikation/01750/index.html?lang=en application their and fundamentals Methodological (2013)SwissEco-FactorsFrischknecht &BüsserKnöpfelS. R. 2013accordingtotheEcologicalScarcityMethod. document]. Paris: EcoleNationaleSupérieuredesMinesdeParis URLhttps://pastel.archives-ouvertes.fr/pastel-00527496 Environment-Impacts models to evaluate environmental impacts inducedbyEurope inChina, and EU carbontarifs [WWW Friot D. (2009) Environmental Accounting and globalisation. Which models to tackle new challenges? Applying Economics- FAO 2010.Rome:FoodandAgricultureOrganizationoftheUnitedNations (2010)GlobalForestResourcesAssessment http://pb.grid.unep.ch. Boundaries,UNEP/GRID-Genevaand SwissfootprintsbasedonPlanetary &UniversityofGeneva,Switzerland, Dao Hy, Friot Damien,Peduzzi Pascal, BrunoChatenoux,AndreaDeBono,StefanSchwarzer (2015),Environmentallimits 2 ) -Swiss footprint. (Daoet.al. 2015) complementary tonegotiatedtargets. complementary perspective scientific a as Goals, Development contribute tothediscussionsonSustainable more case studies are published, it should As arena. wider recognitionintheglobalpolicy documents,butitneedstogainEuropean policy Europe, itisreferredtoinseveralnationaland Boundariesconceptoriginatedin The Planetary targets and operational measures at a later stage. environmental processes thatcouldbeneededforsettingpolicy on global knowledge scientific The resultsfromthisstudycontributetothe

GLPNEWS | NOVEMBER 2015 49 Feature - Article 50

GLPNEWS | NOVEMBER 2015 Feature - Article the NewMillennium Sustainable Usein Land Energy Changeand Researching into Bio- Santosh KumarMishra Corresponding author:[email protected] market-based instruments. management programs and the effectiveness of tells usaboutLUCC change,and(b) analyzes land In broaderterms,it(a) exploreswhatscience addressed toensuresustainable development. change and explores factors which could be et al,2002).ThispaperaimstoassesstheLUCC and otherenvironmentalimpacts(BalmfordA. on the impact of LUCC change on biodiversity price spikes andvolatility)haveraisedconcerns (which arecloselylinked tofoodandenergy global demandforfoodandbio-energychange W.(Sanderson E. etal,2002).Recenttrendson biodiversity andotherformsoflanddegradation and themostimportantdriverofloss the mostvisibleindicatorofhumanfootprint Land useandlandcover(LUCC) changehasbeen Introduction and objectives ofecosystems. LUCC of drivers multiple the capture to economic, geographic and ecological integrated models are required that concludes The manner.paper descriptive a in analyzed been have nature) in qualitative largely data are (which secondary employed, methodology of of terms In management. context and planning use land the in development ensure sustainable to addressed be could which factors explores it Also, change. LUCC the assess to aims paper This impacts. environmental other the impact of LUCC change on biodiversity and on concerns price raised have energy volatility) and and spikes food to linked closely are demand for food and bio-energy change (which global on trends Recent degradation. land of forms other and biodiversity of loss of driver (LUCC) the humanfootprintandmostimportant cover land of indicator visible most and the been has change use land Land terrestrial the global surface. of 83% affected It isestimatedthatthehumanfootprinthas Abstract 1 Women’s University, 1, NathibaiThackerey Road, Mumbai-400020, Maharashtra, India. Population Education ResourceCentre(PERC), N.D. DepartmentofContinuing and AdultEducation Work, andExtension S. T. 1 b) age,gender b) sizeofthehouseholda) , many factors,suchas: of combination a by influenced are it change to Furthermore, the choice of land use and decisions 2003). investment in agriculture (Kuhn A., poor market infrastructureandgenerallylow low agriculturalproductivity, whichinclude to addressconstraintswhichcontribute developing countries. This requires investment wide inSSA(Sub –Sahara Africa) andother The yield gap remains of concern in this context. a long-termgovernmentbond,isanotherareas the dividend yield of an equity and the yield of of ratio the as defined ratio), yield (or gap yield to increase by 70to110percent2050.The yield gapswithaglobal food demandexpecting fill to be also will challenge key a Nevertheless, Comission, 2011). to slightincreasesinforestareas(European increases in the density of forests in addition significant been have there America, North and North Americanregion.ForcountriesinEurope little changetotheareacoveredbyforestsin around 2%respectively. Therewas,however, countriesgrewbyover4%and and 21Asian study. Forestedareasin28Europe countries over thepast20years,accordingtoarecent sequestered carboninEurope andNorthAmerica been responsible for substantially increasing countries. Theincreaseddensityofforestshas countries andgenerallydeclinedinlowincome density andextenthasincreasedinhighincome come. (Santilli, M. et al., 2003). Overall, forest sustainable land use in the years and decades to by 0.1% in 2000-10 which gives hope for more decreased by0.2%peryearin1990-2000and increased globallywhileforestextenthasslightly past twodecades(1990-2010),forestdensityhas policies and other socio-economic factors. In the government driven by economic development, Forest trendsacross the regionsofglobeare Change –SomeReflections Cover useandLand Land (LUCC) A recent studyshowed thatofthe 203.4million andresearchcommunities. environmental policy a greatdeal of debatewithintheenergy and by large-scale bio-fuelsproduction has generated The extentoflandusechanges thatarecaused Bio-Energy Revoredo,2001). the short-run andC. (McCarllaA. to immediateincreaseinbiodiversity–atleast therefore increaseinprotectedareacannotlead is naturallydevelopedoveralongtimeand biodiversity remainsquitehighsince impressive increase in protected area, loss of 38% in2010fromitslevel1992.Despitethe areas. Globally, protectedareaincreasedby its protectiontotheestablishmentofprotected Biodiversity isstronglyrelatedtoforests,and (Chomitz 2004). K., countries intheworldaresignatoriesofCBD consequently humanwelfare,193ofthe194 and its potential impact on ecosystems and 2011). Realizingtherapidlossofbiodiversity Taber A. their and protein N. (Nasi van R., Vliet, for health careandwildmeatsprovide30-80%of fauna and flora wild on rely people of 80% communities fromdevelopingcountries,upto on humanwelfare.Forexample,inmany rural and diversityofspeciesmayhaveseriousimpacts Altieri., 2011). Hence changes in the abundance A. (Koohafkan P.for biotechnology industry and M food andhealthnutritionprovidesmaterial becauseitistherawmaterialfor be conserved Chennai Declarationstatesthatbiodiversitymust ensures morestableandresilientecosystems.The Greaterbiodiversity ignored orundervalued. which,foralongtime,havebeen services, Biodiversity providesavarietyofecosystem Biodiversity land ownership. p) o) land-management practicesn) , publicandprivatefinancialsupport, m) l) product prices, ofproductionk) costs , j) competition, , i) profits transportation costh) , g) site-specific conditions, f) attitudes, e) d) employment, c) education, land tenure,and values and personal traits ofhouseholdvalues andpersonaltraits members , 2012) coversonly22%ofthelandarea. Nelgen, andS. 16% oftheGDP(Anderson,K. Theagriculturalsector,forest. whichcontributes area and Indonesia has the third largest tropical of forestinIndonesiacoversabout53%land the largestlandusetypeinIndonesia.Theextent N.,etal,2008).Furthermore, forestis (Baccini, A. accounts for34.6%oftheregion’s carbonstock thecountry With 68%ofitslandareaunderforest, hand, ishometothelargestrainforestinAfrica. Democratic RepublicofCongo(DRC), ontheother presented inBox –1. description of land use in the Brazilian Amazon is deforestation ratehasfallendramatically. Brief 2006 to6.1%in2010(World Bank,2011)whileits contribution to the GDP has increased from 5% in agricultural sectorhasbeenauniqueexample;its B.Briceno-Garmendia,2010).TheBrazilian C. 2% oftheglobalforestextent(FosterV. and and Indonesiarespectivelyaccountfor4% forest extentof4,033.06millionhawhileDRC Brazil accountsfor13%ofthe2010global and Indonesia: Democratic Republic ofCongo (DRC) –Reflectionfor Land from Brazil, Managing Competing Demands and other anthropogenic ecosystems. and other anthropogenic ecosystems. land allocation tobiodiversity, agriculture, forests ecology and economic principlestodetermine example, ecological economicmodelscan combine drivers ofLUCC andobjectivesofecosystems.For models arerequiredto capture themultiple geographicandecological Integrated economic, Summing up cooperation (Yatich, T., 2008). A., Organization andotherformsofinternational requires aglobalactionthroughtheWorld Trade level policiesonglobalorregionalcommunity Minimizing thenegativeimpactsofcountry- impact onLUCC andthroughthedirect impact. to suchpoliciescouldbefeltthroughtheprice of benefit the to producers. Theimpactofthepricechangedue policies trade changed have to protectconsumerswhileexportingcountries importing countriestochangetheirtradepolicies have shown thatincreasingfoodpriceshaveprompted studies Recent LUCC. on influence large a Policies bothatnationalandgloballevelhave Levels Policies atNationalandInternational cotton (Anseeuw, W. etal,2012). production and5%fornon-foodcropssuchas were acquired production of crops for food, 3% for livestock 40% study, for bio-fuelproductionwhileonly25%was the by verified ha obtained fromAfricaandthatofthe71million ha oflandacquiredgloballysince2000,66%was

GLPNEWS | NOVEMBER 2015 51 Feature - Article 52

GLPNEWS | NOVEMBER 2015 Feature - Article References (2008) Organization Agricultural and Food Source: economic transition. and governance land better to thanks slowed down being however stated is trend As this above, pastures. low-productivity into years. Mostofthisareahasbeentransformed 30 past the in uses land income other to converted and 17 percentoftheAmazon foresthasbeen life of distribution forthelocalpopulation.About quality improving effectively without habitats human-altered resources whichhasresultedinamosaicof by theintenseexploitationofnatural Brazilian Amazon hasbeencharacterized In the past three decades, land use in the UseintheBrazilian AmazonLand Nairobi, Kenya. Yatich, T., Brief. Center Policy LawsinSahelian Countries. World Agroforestry etal. (2008). Moving Beyond Forestry A. World Bank.(2011).World Security, DevelopmentReport2011.Conflict, andDevelopment.World Bank, Washington D.C from http://usaidlandtenure.net/democratic-republic-of-congo. USAID. (2014).PropertyRightsandResource Governance–DemocraticRepublicofCongo,AccessedonAugust 17,2015 December2003,Milan,Italy.UNFCCC, Santilli, M.etal.(2003).Tropical Deforestation andtheKyotoProtocol:anewproposal.Paper presentedatCoP-9, W.Sanderson E. etal.(2002).Thehumanfootprintand thelastofwild.BioScience52(10):891-904. Reviews 13(3):355-368. basins. InternationalForestry Taber, A. Nasi R., (2011).Empty forests, emptystomachs? N.vanVliet. Bushmeat and livelihoods in the Congo andAmazon Predictions. IFPRI2020DiscussionPaper No.35.Washington D. C. Revoredo.(2001).ProspectsforGlobalFoodSecurity. ACriticalAppraisalofPast Projectionsand andC. McCarlla A. Agricultural Policy, Market ResearchandEconomicSociology. (2003).From WorldKuhn A. Market toTrade FlowModelling—The Re-DesignedWATSIM Instituteof Model.Finalreport, Rome. Koohafkan P. Altieri. (2011). Globally Important Agricultural Heritage Systems for the Future. A Legacy and M A. FAO, Developpment andWorld Bank.Paris, Washington. Foster V. Briceno-Garmendia.(2010).Africa’s infrastructure:Atimefortransformation.AgenceFrancaise andC.B. de i0440e03.htm. Amazon: thegood,badandugly, accessedonAugust17,2015fromhttp://www.fao.org/docrep/011/i0440e/ Food andAgriculturalOrganization(FAO). (2008).SustainabledevelopmentandchallengingdeforestationintheBrazilian European Comission.(2011).ScienceforEnvironmentPolicy. European Commission.Brussels,Belgium. Regional Science27:348-373. Analysis,International (2004).TransferableChomitz K. DevelopmentRightsandForest Protection:AnExploratory wildnature.Science297:95-953. etal.(2002).Economicreasonsforconserving Balmford A. Environmental ResearchLetters3(4).doi:10.1088/1748-9326/3/4/045011. N.etal.(2008).AFirstMapofTropicalBaccini, A. Africa’s Above-GroundBiomassDerivedfromSatelliteImagery. International LandCoalition,Rome Research Project. Anseeuw, W. 36-48. Nelgen.(2012).Trade andS. BarrierVolatilityAnderson, K. andAgriculturalPriceStabilization. World Development 40(1): et al. (2012). Land rights and the rush for land. Findings of the Global Commercial Pressures on Land Source: USAID(2014). from governmentleadersatalllevels. leadership and vision demanding challenge, enormous an is governance resource better benefits But there. living people million 65 nearly the it that ensuring prosperity, and greater it, sustaining achieving to critical is base resource a natural than significant the country’s of more governance for the Improving Congo century. in poverty and instability, conflict, of result and cause the Poor resourcegovernancehasbeenboth Republic ofCongo Governance inDemocratic TenureLand andResource Corresponding author:[email protected] (Gallardo, 2011). the functioningoflakes andassociatedpeatbogs water outside the edges of the salt flats, affecting of groundwaterinthebasin, thusreducingfresh obtain lithiumcausesadecrease ofthebaselevel of waterareevaporated. Brinedesiccationto ton ofextractedlithiumaroundtwomillionliters of lithiuminbrinesitisestimatedthatforeach 2008). However, giventhelowconcentrations requieres solarenergy(ArmandandTarascon only flats salt in brines from lithium Harvesting technologies (Scrosati and Garche2010). as oneofthemostpromisingenergystorage Thomas 2001).Lithium-ionbatteriesoutstand comparatively littlepolutants(Desselhausand because theyreduceCO2 emsisions,andrelease “green” alternativestoconventionaltechnologies electric vehicles;whicharemostlybrandedas plug-inhybridhybrid electricandbattery electric, associated totechnologicalinnovationssuchus lithium batteries.Theseapplicationsare in responsetogrowingdemandforrechargeable Global lithiumproductionhasrecentlyboomed these potential conflictsfortheuseofwater. preserve to valuable ecosystemsinthecontextofgrowing priorities and questions relatively require large amountsofwater. We discusstheresearch flats salty of exploitations otherminingoperations,lithium tendencies. As climate modelssuggestpersistentdrying trends duringthepastdecades,andfuture variety of endemicplants,andotheranimals.Climatic arich and , camelids, native valuable biodiversityincludes biodiversity isrelatedtowetlands:thishighly Bolivia andChile.Inthesearidecosystems,most subtropical “Puna” highlandsofArgentina, global lithiumresourcesarelocatedinthe electricvehicles.Nearly 80% of the battery plug-inhybridhybrid electricand electric, of boominggreentechnologies,including Lithium-based batteriesarethekey component Abstract context ofclimate change elevation inthe Andeanwetlands costs ofLithiumminingonhigh the potential environmental Side effects of green technologies: Andrea 1 Institutode EcologíaRegional, UniversityofTucuman Izquierdo 1 |EctorH.Grau the emblematic 1 |JuliertaCarilla west Bolivia. triangle” inthenorthernChile, northwest Argentina andsouth- “lithium the limits that flats salt three the Figure 1:Locationof the main threats of biodiversity and hydrological the mainthreatsofbiodiversityandhydrological combined withtourismandminingprospectsare been affected by grazing; presently climate change (Olson etal.,2002).While historicallytheregionhas phenomena, andglobalrarityofmajorhabitattype of endemism,unusualecologicalorevolutionary biodiversity hostpot(Myers1988)withhighlevels Punaisa and Argentina,(Figure1).TheDry PunaofBolivia,Chile of theCentralAndeanDry batteries (LIB), arelocatedinthe“lithiumtriangle” energetically viableresourcesforlithium-ion (5.4) (USGS2015).Themosteconomicallyand (6.5), southwestBolivia(5)andwesternChina Chile (7.5milliontons), northwestArgentina areconcentratedinnorthern Lithium reserves 1 |ElviraCasagranda 1

GLPNEWS | NOVEMBER 2015 53 Feature - Article 54

GLPNEWS | NOVEMBER 2015 Feature - Article type ecosystemscalled“bofedales”,“vegas”or of Poaceae. Theseplantsoccurinlargesponge- (Eleocharis, Phylloscirpus), and several species andina andDistichiamuscoides), Cyperaceae species ofthefamilyJuncaceae (Oxychloe and communities oftheregionaredominatedby urban affecting agricultural areasdownstream.Vegetation sometimes resources, significant vertebrate populations,andregulatehydrological a contribute productivity, maintain proportion ofprimary Peatbogs 3). (Figure this region, and wetlands are key functional units Water isthemainlimiting ecologicalfactorin extraction (Figure2A). expand rapidlyintheregion,particularlithium and domestic policies suggest that mining will et al 1997), and the combination of global markets ecosystems amongthemostvulnerable(Bensiton high-elevation climate changescenariosidentify with humanactivitiescouldbereversing.Future conflicts decreasing with conservation biodiversity vicuñas); thisrelativelyfavorablesituationfor with anincreaseofwildlifepopulations(e.g. decades (Izquierdo andGrau2009),simultaneously of human population and livestock during past team inNorthwesternArgentinashowedadecrease function. Althoughreviousstudiesofourresearch ber) Vilama-Coruto lake area reconstruction for the periodAD1407–2007 (Morales et al.2015)(B) Figure 2: Increasing trendsofLithium world production (A)anddecreasing trendsof precipitationshowed by annual(January–Decem- prominent amongst mammals; while flamingos flamingos are themostemblematicbirdsthatmigratelong while mammals; amongst prominent vicugna) andguanacos(Lamaguanicoe) aremost South Americancamelids,Vicuñas(Vicugna (Nieto etal2015). amphibians and fish as such organisms other for asfood process oforganicmatterwhileserving freshwater ecosystemsastheycontributetothe and zooplancton, whichareavitalcomponentof present highdiversityofmacroinvertebrates 2014). In addition, these wetlands average. Domic, comparative shannondiversityindex(2.1in al. 2013)andBolivia’s “bofedales”,alsowith of vascularplants,similartoChile(Peñaloza et 34especies et al.2006),wherewasrecordedc. catamarcensis, Festucaargentinensis;Borgnia Catamarca(Argentina) (e.g.Arenaria Reserve, 25% ofendemismsrecordedforLagunaBlanca plant communities,showedapproximately sp. arecommonlyfoundinsaltyshores.Vegas´ plants suchasDistichlishumilis,Sarcocornia e.g. Isoetes,Myriophyllum, Lilaeopsis,Halophytic substrate, where particularaquatic plants grow, related toevapotranspirationratesandmineral Lakes and lagoons present different salinity range, where biodiversityproductivityisconcentrated. peatbogs, with waterloggedand marshy soils, cost estimationofthelithiumextractionin region’s watersupply. Basedonanopportunity ecosystem andalsorepresentathreattothe mayleadtoruinthissensitive mining industry expanding extremely slowly).Inthiscontext, a non-renewableresource(orrenewed Uyuni watershedinBoliviamustbeconsidered concluded thatwaterresourcesintheSalarde populations. ForexampleMesserlietal.(1997) resource forbiodiversitybutalsohuman Water isnotonlythemostvitalandlimited origins oflife(Farias etal.2013). important implicationsontheoriesaboutthe the extreme habitats of salty lakes are having biodiversity andstromatolitecommunitiesin plant andfauna,recentdiscoveriesofmicrobial birds asprey(Cuyckens et al2015).Inadditionto fox, mostlikely becauseitusesaquatic important factordeteminingdistributionofthe (Cuyckens etal2015).Wetlands werethemost of carnivoredistributionintheseenvironments patterns of wetlands are the key determinants (Leopardus jacobita). Seasonalandtemporal and theendemicendangeredAndeancat fox (Lycalopex culpaeus), puma(Pumaconcolor) viscacia), Pampas cat(Leoparduscolocolo), culpeo species aremountainvizcachas (Lagidium (Phoenicopterus chilensis). Amongcarnivores (P. andinus), and the more comun Chilean (Phoenicoparrus flamingo Andean IUCN flamingo by vulnerable the jamesi), Jame´s or Puna are flamingo five worlds´s species areintheregion:rarestandleastknown the of Three wetlands. distances forreproductionandfeedinginthese credits: H.R. Grau and A.E. Izquierdo H.R.Grau andA.E. credits: productivity and biodiversity; and regulate the hydrological cycles (C) and salt flats are a source of minerals including lithium regional of (D). much harbor Picture peatbogs area, the of 1% than less While covering (B). Argentina) flat, salt Muerto (Hombre vicuñas and flats Figure 3:Lakes, peatbogs and salt linkedflats; eco-hydrological systems of the Puna (Polulos basin, Northwest Argentina) and Salt (A), C A

which with a few hundred thousand hectares which withafewhundredthousandhectares Andeanhighelevationwetlands, case intheDry environmental degradation.Thisispotentiallythe specific very geographic locations, they can resultd in major from come technologies these by economic of growth. However, effects whentheresourcesdemanded negative global reducing technologies representamajorprogressin there is no doubt that low-carbon In summary, population vulnerability. (Anderson etal2011)aswellAndeanhuman eutrophication and,increasecarbonemissions affect salinity, promote decreaseoxygen amount, could trend this vegetation range distribution, increase wetlands persistent, If 2015). (Figure 2B; Carillaetal.2013,Morales trendforthelast30years. a cleardrying balance and ecosystem productivity shows on dendroecologicalreconstructionsofwater analysis ofhistoricalrangevariabilitybased et al 2008). Consistently,Andes (Viulle our precipitation andcloudinessforsubtropical most acceptedscenariosuggestadecreasein more uncertaintiesforprecipitationtrends,the seasons (Buytaertetal2010).Whilemodelshave as decreasingwateravailabilityandlongerdry temperature (Urrutia and Vuille 2009), as well ecosystems predict a 2-4 ºC increase in Most climatescenariosforhighelevation cannot simultaneouslytake place. lithiumextractionandcropirrigation input, that concluded (2009) using thesamewatersourceasaproduction Aguilar flat, salt same D B

GLPNEWS | NOVEMBER 2015 55 Feature - Article 56

GLPNEWS | NOVEMBER 2015 Feature - Article References of theseecosystemsandtheirbiodiversitytothe thevulnerability tounderstand needed is effort research Significant demand. lithium global the appear boundedtosupplythelargestpartof Vuille, M., B. Francou, P. Wagnon, I. Juen, G. Kaser, B. G. Mark, R.S. Bradley. 2008. Climate change and tropical Andean tropical and change http://dx.doi. Climate 2008. Bradley. p., R.S. Mark, G. presentandfuture.Earth-Science Reviews89,79–96. glaciers: Past, 196 B. Kaser, G. Juen, Survey, I. Wagnon, P. Francou, Geological B. M., Vuille, U.S. 2015: summaries commodity Mineral 2015. org/10.3133/70140094. ISBN978–1–4113–3877–7 Survey. model: Geological climate regional U.S. a using Andes tropical the for projections change Climate Temperature (2009). JournalofGeophysical andprecipitationsimulationsfortheend ofthe21stcentury. Research114. Vuille. M. and R. Urrutia, Scrosati, B. and J. Garche. (2010). Lithium batteries: Status, prospects and future. Journal of Power Sources 195: 2419-2430. comunidades demacroinvertebradosacuáticoslaPunaArgentina. BiologíaTropical inprenss en espaciales Patrones (2015). Grau. R. and Zannier M. Cuello, S. Rodríguez, J. Izquierdo, A. Carilla, J. Malizia, A. C., Nieto, priorities. Nature403:835-858. elevation – high Myers, N., R. A. Andean Mittermeier, C. G. Mittermeier, the G. A. B. in da Fonseca, and J. changes Kent. (2000). Biodiversity hotspots area for conservation lake Multi-century (2015). Villalba. R. ecosystems oftheSouthernAltiplano.Clim.Past Discuss,11:1821-1855. Grau, H.R. Carilla, J. M., Morales, . MountainResearchandDevelopment17:229-238. desert Andean the in resources natural and areas protected availability, Water (1997). Vuille. M. Grosjean, M. B.; Messerli, 356 páginas. . Nacional Parque del Vegetación y Flora (2013). Frugone F & Cavieres L Marticorena, A Pardo, V APG, Peñaloza P.; Hedao, W.W.; Wettengel, Terrestrial.Kassem, K. J.F.; (2001).Ecoregionsoftheworld:Anewmaplifeonearth.BioScience 51:933–938. Lamoreux, Y.; Kura, T.H.; T.F.;Ricketts, Allnutt, I.; C.J.; Itoua, Loucks, J.A.; J.C.; Morrison, D’amico, H.E.; E.C.; Strand, Underwood, G.V.N.; Powell, N.D.; Burgess, E.D.; Wikramanayake, E.; Dinerstein, D.M.; Olson, Argentina”. JournalofEnvironmentalManagement90(2). Northwestern in areas protected and transition ecological “Agriculture adjustment, (2009). Grau. H.R: and E. A. Izquierdo, peatbogs. Andean High Argentine of Wetlandscharacterization EcologyandManagementDOI10.1007/s11273-015-9433-3 spatial and Mapping (2015). Grau. H.R. Foguet, J. E., A. Izquierdo, BuenosAires,N°48,pp.26-29. divulgación científica,FCEN-UBA, Gallardo, Susana. (2011). Extracción de litio en el Norte argentino. La fiebre comienza. En Revista EXACTAmente. Revista de 8(1): e53497.doi:10.1371/journal.pone.0053497 and L. Polerecky. (2013). Discovery of Stromatolites Developing under Extreme Conditions in the Andeans Lakes. PLOS ONE Farías, M. E., N. Rascovan, D. Toneatti, V. Albarracín, R. Flores, O. Ordoñez, D. Poiré, M. M. Collavino, O. M. Aguilar, M. Vazquez de Bolivia,LaPaz, Bolivia. Domic , Alejandra. 2014. Rol de los Bofedales en el Ciclo Hidrológico de la Cuenca del Desaguadero. Informe Final. Herbario Desselhaus, MSandILThomas.(2001).AlternativeEnergiesTechnologies. Nature414:332-337 carnivore to related interactions biological and wetlands are How (2015). distributions athighaltitude?. JournalofAridEnvironments115:14-18 Cristobal. L. and Perovic P. GAE, Cuyckens, in High-Elevation TropicalLong-Term andAlpineResearch45(2):179–189. Variability Antarctic, AndeanEcosystems.Arctic, and Productivity, Plant Fluctuations, Lake Morales.(2013). M. and Paolini L. Grau, R. H. J., Carilla, Newcastle. in thetropicalAndes.BHSThirdInternational Sympsium, ManagingConsequences of aChangingGlobalEnvironmental, resources water on impact change climate of assessment regional A (2010). Arnillas. C.-A. and TovarIngar C. W., Buytaert, de Reserva la en vegetación la de Caracterización (2006). Cassini. Biosfera LagunaBlanca(Catamarca, Argentina). EcologíaAustral16:29-45. M. Vila, B. Aued, B. Arriaga, M. Maggi, A. M., Borgnia, (1997).Climaticchangeathighelevationsites.Anoverview.Change36,233-251. Beniston M,DiazH,BradleyR. Armand, M.andJ.Tarascon. 2008.Buldingbetterbatteries.Nature451:652-657 Master Bolivia. Uyuni, thesis, Duke Universitypp58 de Salar the in Extraction Lithium of Cost Opportunity the Estimating 2009. R. Aguilar-Fernandez, Research (IAI)&ScientificCommitteeonProblemsoftheEnvironment( P. M.,Tiessen,H.2011.CambioclimáticoybiodiversidadenlosAndesTropicales. Inter-american InstituteforGlobalChange Jorgensen, ecosistémicosinlosAndesTropicales. Martínez,R., cambio climáticoparaecosistemasyservicios In:Herzog, S.K., Anderson, E.P., Halloy, B. Young,J. Marengo, J. Villalba, S. D. Cordero, F. Jaimes, D. E. Gast, Ruiz (2011). Consecuencias del the sustainable development of the region. the sustainabledevelopmentofregion. clear transnationalplanningguidelinestoensure with coupled be should effort these and change; climate and expansion mining of effect combined SCOPE). http://www.iai.int/?p=5922 Corresponding author: [email protected] 1 precondition todevelop sustainable management and societyaswelltheir driversisneededasa understanding ofthelinkages betweenecosystems regions ofSouthernAfrica.Thus,animproved practices andbiodiversityinwaterstressed affect considerably water availabilityandquantity, landmanagement to expected are expansion pressures like populationgrowthandagricultural Projected climatechangeandsocio-economic Introduction and biodiversityinSouthernAfricanlandscapes. and associatedimpactsonlandcoverchange satellite productstoassesswater-related risks demonstrate the potential of optical and radar and Adaptive Land Management) region CentreforClimateChange Science Service (Southern African recharge intheSASSCAL monitoring, flood wetland inundationvariabilityandgroundwater addressing studies case techniques canbesuccessfullyapplied.Three Africa, innovativeremotesensingdataand phenomena in data scarce regions like southern To monitorandassesssuchinterrelated land management pattern and biodiversity. will createevenmorepressureonexisting or changeingroundwaterlevels,whichturn of increasing flood frequencies and magnitudes hydrological affect pattern insouthernAfrica,forexampleterms severely will conditions and for human use. Changing and services the stabilityofecosystems,withtheirfunctions water at sufficient quality and quantity for both the Africansub-Saharancountriesistosecure projected climatescenarios,akey challengein changes inlandmanagementaswell Given theongoingpopulationgrowthand Abstract southern Africa cover changeandbiodiversity in its interdependencies withland assessing water-related risksand Remote sensingapplications for Matthias 4 Forestry (MAWF), Namibia; Forestry Markus Meinhard Martin FederalInstitutefor GeosciencesandNaturalResources(BGR), Germany; GermanAerospace Center(DLR),Germany; Hipondoka Mück¹ |JörgHelmschrot 5 UniversityofJena, Germany 7 5 |ImasikuAnayawaNyambe 2 UniversityofHamburg, Germany; 2 | Henry Zimba |Henry 5 UniversityofNamibia (UNAM),Namibia; activities (Tshilunga, 2014). The sudden in events disruption ofagricultural andothereconomic flood disastrous Northern Namibiacausedlossesoflifeand years, recent In floodplain data inNorthern Namibia high- using - Radar) Aperture (Synthetic SAR resolution monitoring for from flood generated large-scale observation benefits ecosystems Additional studies Case African landscapes. land coverchangeandbiodiversityinSouthern relevance foraswelldependenciesfrom the assessmentofwater-related risksandtheir sensing applicationscannotablycontributeto groundwater recharge,spatio-temporalremote flood monitoring, wetland inundation variability and on working studies case SASSCAL three shownby (Helmschrot &Jürgens2015).As region resources managementintheSASSCAL and stakeholders supporting sustainablewater andadvicefordecision-makersbased services and globalchangeimpactsii)evidence- to analyseandassesspresentstateconditions providing i)reliabledata,informationandtools aimsat Water relatedresearchinSASSCAL andbiodiversity. forestry agriculture, water, climate, areas: thematic five in impact ofclimateandlandmanagementchanges a betterunderstandingandassessmentofthe allowingfor providing informationandservices supports88researchprojects www.sasscal.org) Climate ChangeandAdaptiveLandManagement; Centrefor (Southern AfricanScienceService South Africa,Zambia,andGermany, SASSCAL ajointinitiativeofAngola,Botswana,Namibia, As improve the livelihoods ofpeopleintheregion. strategies tocopewiththesechangesand 3 University of Zambia, Zambia; UniversityofZambia, Zambia; 3 |Pauline Mufeti 3 |MarkusWallner 6 Ministry ofAgriculture,Water and Ministry 6

4

GLPNEWS | NOVEMBER 2015 57 Feature - Article 58

GLPNEWS | NOVEMBER 2015 Feature - Article information and flood service products, essential products, service flood and information invaluable wetland ecosystems. Usingcomprehensive WOIS change cover land induced flood of feature agreat potentialfortheassessment situations flood dynamic highly and evolving on Area-wide andup-to-date remotesensingdata River the Shire at in Malawiusingradarremote sensingisshown. event flood observed an for acquisition planning.InFigure 1,anexample necessity oftime-consumingandondemand continuous monitoringpurposeswithoutthe allowing autilizationofSARacquisitionsfor acquisition strategyoftheSentinel-1mission, isthesystematic Major advantageofthisservice area willbeimplementedinthenearfuture. project system andcoveringtheentireSASSCAL satellite newSentinel-1 the using service, flood Angola andnorth-centralNamibia.Anextended Cuvelai-Etosha basin, which straddles southern flood forecasting and early warning system in the and isforeseentobeanintegralpartofalocal is Aerospace Center(DLR)(Martinisetal.,2013) services, mapping flood currently underdevelopmentattheGerman radar and optical monitoring system,combiningtwoindividual flood multi-scale a project, SASSCAL the Within unscheduled and conditions impacts onwetlandecosystems. flood changing establish suitabletoolsforthemonitoringof approaches mapping flood selected while bodies changes of wetlandandpermanent water monitoring provideinformationonseasonal et al., 2014).Integratedcasestudiesonwetland Management (IWRM) inthecontinent (Guzinski products neededforIntegratedWater Resource basedinformation of satelliteearthobservation other African countries to generate a wide-range enable theMAWF andwaterauthoritiesfrom in Africa,wasrecentlyimplementedorderto System (WOIS),coveringselectedwaterbasins Information & Observation A Water events. flood information on extent and duration of major data are used to provide area-wide Observation access toremoteandinaccessibleareas,Earth monitoring collection ofgrounddataisoftenhamperedby flood for the and mitigationmeasuresinNamibia.As institution responsible Agriculture, Water(MAWF) is the and Forestry of The Hydrological division of the Ministry programs (Hazarika, 2015). management floodplain regional of floodplain ecosystems andcultivation,requiringarevision the on consequences severe induce andmagnitude,can with anundesiredfrequency floodplains modifying dynamics, river increasing However, floodplain. any in phenomena normal are deposition and erosion flooding, seasonal to inyears to come.Landuseandlandcoverchangesdue increase will floods high of magnitude flood and therefore expectedthatthefrequency short impacts ofclimatechangeandvariability. Itis unexpected wereassociatedwiththe recurrence intervals and occurrence and irrigation schemes, is a foresighted wetland and irrigation schemes, isaforesighted wetland with riverhydrology for large-scale hydropower encroachment foragriculture,andinterference and technical infrastructure (Fig. 3), land drainage, house to protect control flood over-exploitation, challenges oftheBarotse wetlands like resource Crucial preconditionfor tacklingfuture in thefloodplain. impacts onboththequantityandqualityofwater due tolandcoverchange,resultinginnegative provided evidenceforincreasedsedimentation also events flood during observations Field level. to noted downward trends in discharge and water the impact on wetland biodiversity due intensify particular forestcoverchanges,willmostprobably in change, cover land Observed recession). flood and availablewaterforcropproduction(afterthe stocks fish quantity), and (type growth vegetation lead to negative implications on, for instance, will inundation in variations Significant discharge. correlation betweeninundatedareaandobserved the consideredtimespaceandshowastrong across extent in inundation variations significant analysed between1984and2015.Resultsindicate characterised and from 2003 to 2013. Land cover changes have been quantified 2), (Fig. detected sensors, inundationextentsinthewetlandwas Landsat) andradar(TerraSAR-X) remotesensing on biodiversity. Usingbothoptical(MODIS, these to hydrological variablesandpotentialimpacts and linking wetlands) and floodplains the regimes, landcoverchanges(withinandaround potential characterizinghistoricalinundation great offer data satellite of series Time activities. anthropogenic and natural both by influenced as the variationsininundationregimesonbiodiversity of dataonthenatureandpotentialimplications This studywasundertaken toanswerthepaucity predicting negativeimpactonbiodiversity. around thewetland,arealreadyshowingand with unsustainablelandusepracticesinand current andprojectedclimatescenarioscoupled and Aprilofagivenhydrological year. However, which occurintherainy seasonbetweenOctober dependent ontheannualinundationregimes principally fish, is fauna and flora of other and livestock existence Continued Zambia. western livelihood streamsforalargepopulationin rich inbiodiversityandsupportsavarietyof 2014)recognized ecosystem (RAMSAR, RAMSAR Zambezi RiverBasin,isanannuallyinundated The Barotsewetland,locatedintheupper management inWestern Zambia biodiversity data wetland for enhanced capabilities capture for system based Satellite- and detailedscale. water supplysystemscanbeaddressedonalarge and wetlandhydrology withrelatedimpactson conditions (e.g.soildegradation,retention) agriculture forfoodsecurityunderclimatechange questions like the future importance of wetland highlands in the north. Directly on the transition highlands inthenorth. Directlyon thetransition Eastern Sand Zone havetheir originintheAngolan parts ofthegroundwater foundinthesouth ofthe objective ofthis casestudy. Itishypothesized that especially theEasternSand Zone, is the major rates inthe Cuvelai-Etosha-Basin (Angola/Namibia), recharge iscrucial.Theestimation ofrecharge depending onreliableinformation ofgroundwater Nutalaya, 2006).Asustainable management groundwater withdrawal(Phien-wej,Giao,& and vegetationorlandsubsidencecausedby one thinksaboutshallowgroundwaterlayers but alsocanhaveagreatimpactonlanduseif Groundwater issues not only affect the subsurface the qualityandquantityofgroundwater. Human activityplaysanimportantroleconcerning in systems natural southern Angola local of understanding better for assessment Recharge Groundwater in the wetlands. ofbiodiversity management overall effective quality of information on inundation regimes for unique opportunities in the future to improve the revisit timesandfreedataaccess,willprovide radar satellitesystems(e.g.Sentinel1,2)withhigh A new generation of high resolution optical and methods. observation earth using by effectively of wetlandconditionscanonlybemanaged forthelong-termmonitoring detailed observation management (Turpie etal.,1999).Large-scaleand floodRADARSAT-2 extentwasderived by imageanalysis from satelliteimagery. (Source: DLR/ZKI,2015) Figure 1:Flood situationasofJanuary13,2015attheShireRiverinareaBangula, Malawi, close totheMozambiqueborder. The is expected forregions withhigh groundwater oflandupliftandsubsidence a periodiccycle nearly norain occursduringtherestof theyear, study areafalls betweenNovemberto April, and mostoftherain in the uplift andsubsidence.As 2003) byanalysingland Danskin, 2001;Schmidt, hydrogeological behaviorofacatchment (Lu& shown thatInSARcanhelp tounderstandthe a furtherstepforpilot area.Studieshave (InSAR) willbeusedin Radar) Interferometry in the mentioned areas, SAR (Synthetic Aperture To of accumulated recharge support the theory as anindicatorofgeologicalboundariesorfaults. them. Thisabruptchangeindirectioncanbeseen highlands andbendtothesouthwestafterpassing the in south-eastwards flow to tend cases most in region isthedirectionofdrainagelines,which possible sofar. Afurthernotablefeatureof this Due topooraccessibility, groundtruthingwasnot be thedominantprocessinthesewaterrichareas. bemarginal. to Therefore, groundwaterrechargeisassumedto seems runoff Lateral analysis. were foundthroughLandsatandMODISdata which canbecausedbyhighevaporationrates, drain direction.Nopatternsindicatingsalinization, around thesezones, especiallyinthesupposed give evidencethatnearsurfacewaterisavailable Vegetation indices derivedfromMODISdata accumulates insomeareasduringtherainy season. Yonde andCaiundo,analysisshowedthatwater of theAngolanlow-andhighlands,between

GLPNEWS | NOVEMBER 2015 59 Feature - Article 60

GLPNEWS | NOVEMBER 2015 Feature - Article 5TM usingtheDesertFlood Index(DFI) complex drainagesystems. in ecosystems and biodiversity conservation knowledge about groundwater-dependent system. Moreover, thisstudywillcreatefurther general understandingofthewholenatural parts ofthebasinandcontributetoabetter the methodcouldbeeasilyextendedtoother of intensegroundwaterrechargecanbeproven, recharge rates(Belletal.,2008).Ifthehypothesis et al.,2013).Satellite remotesensingcanmake agendas (Collen and international conservation something thatisatthe core ofmany national global changesinthedistribution ofbiodiversity, to difficult use formappingandpredicting regionalor are methodologies ground-based Africa underglobalchange conditions.Many sustainable economicdevelopment inSouthern opportunities forbiodiversityresearchand radar remotesensingsensorsprovideunique - anewgenerationofhigh-resolutionopticaland biodiversity underclimatechangeconditions. regarding cross-sectoraltopicslike landsystemsand andbeyond,i.e. research activitieswithinSASSCAL - with this contribution we facilitated interdisciplinary and beyond. for benefit additional project other thematicareaswithintheSASSCAL crucial provide analyses biodiversity usingremotesensingdata.These interdependencies withlandcoverchangeand and assessingwater-related risksandits reference areasinSouthernAfrica,quantifying - wecreatedmulti-scaletimeseriesinvarious Lessons learnt&outlook Figure 2:Flood extent of the floodplain along the upper Zambezi River on 6 sensing research(Pettorelli etal.,2014). research topicsbetweenbiodiversityandremote and willfurtheremphasize synergiesandcommon information transfer and network opportunities Satellites(CEOS)Earth Observation areenabling Sensing forBiodiversitywithintheCommitteeon Remote on group the as such platforms Scientific will increaseenormouslywithinthenextyears. research for cross-sectoralandinterdisciplinary remote sensingdataasanintegrativeelement the statusofmulti-scaleandmulti-temporal Furthermore, but alsoforthegeneralpublic. in theuseofsatellitedataforspecialisedusers, from theSentinelsatelliteswillbeabreakthrough todata areas. Thefreeandopenaccesspolicy environmental informationforlargeorremote and monitoring way ofderivingcompletespatialcoverage inexpensive a relatively biodiversity offers it as in conservation difference a of Hydrological Sciences(IAHS). Research Initiative oftheInternationalAssociation conducted withintheframework ofthePanta Rhei Thepresent workwaspartially valuable support. technical assistantsandlocal collaboratorsfortheir all participatingresearchers andinstitutions, Science ProposalMTH2881. We alsoacknowledge of chargewithintheframework oftheTerraSAR-X providing TerraSAR-X data/TanDEM-X Datafree particular the German Aerospace Center (DLR) for 01LG1201K/M) aswellalldataproviders, in researchactivties(Grant Number: these SASSCAL for Education andResearch(BMBF)forfunding The authorswouldlike tothanktheGermanMinistry Acknowledgements th April 2007. The flood extent map was derived from Landsat References (Photograph: 2015) Helmschrot, pattern monitoringsystemthatwillfacilitatefor disastermanagementpreparednessaswellbiodiversitymonitoringinthewetland extent regimes, river channels, silt deposition, or on fish and wildlife movements.This makes it more significant to have in place a flood flood on have infrastructurewill road construction this impactthe of the information on no constructed is being there are bridges and aged tobeagatewaybetweenZambia andAngola for enhanced economic interaction betweenthetwocountries. Thoughtheroad envis- is road The season. 2003/2004 in event flood normal than higher a during damaged Zambia,extensivelyKalabo western was in Figure 3: upe J, mt, . Eetn L, ans J (99. cnmc au o te abs bsn elns IC – h World The – IUCN wetlands. basin Zambesi the of value Economic (1999). Union Regional OfficeforSouthernAfrica, Harare Conservation J. Barnes, L., Emerton, B., Smith, J., Turpie, informal Oshoopala the of study case A Namibia: in settlement inOshakati.Masterthesis, UniversityofNamibia. security human on floods 2011 the of large study A (2014). a S. Tshilunga, from California, valley, Clara Santa the in subsidence and uplift interferometric land synthetic Time-dependent aperture (2003). radar data A. set. D. Journal Schmidt, of Geophysical Research, 108(B9), 1–13. doi:10.1029/2002JB002267 (http://www.ramsar.org/sites/ Gland Secretariat, RAMSAR Wetlands. on default/files/documents/library/introducing_ramsar_web_eng.pdf) Convention the Introducing (2014). RAMSAR doi:10.1016/j.enggeo.2005.10.004 Phien-wej, N., Giao, P. H., & Nutalaya, P. (2006). Land subsidence in Bangkok, Thailand. Engineering Geology, 82(4), 187–201. Trans. B369:20130190. http://dx.doi.org/10.1098/rstb.2013.0190 Soc. R. Pettorelli, N., K.,Safi, Turner, W. (2014). Satellite remote sensing, biodiversity research and of conservation the future. Phil. Water of Sensing Remote data. Resources, DisastersandUrbanStudies,TaylorRadar andFrancis, submitted. Aperture Synthetic using studies Flood (2015). A. Twele, C., Kuenzer, S., Martinis, MODIS andTerraSAR-X ProcessingChains.RemoteSensing5,5598-5619. DOI:10.3390/rs5115598.ISSN2072-4292. Martinis, S., Twele, A., Strobl, C., Kersten, J., Stein, E. (2013). A Multi-Scale Flood Monitoring System Based on Fully Automatic California. Geophysical ResearchLetters,28(13),2661–2664.doi:10.1029/2000GL012753 Lu, Z., & Danskin, W. R. (2001). InSAR analysis of natural recharge to define structure of a ground-water basin, San Bernardino, Kovacs 11th the of Colloquium, Paris, France, June2014).IAHSPubl.366,2014.Doi:10.5194/piahs-366-168-2015. (Proceedings Future and Present Past, Security: Water and Sciences Hydrological Africa. Southern in research to assess and secure current and future water resources J. & Jürgens, N. (2015). Integrated SASSCAL Helmschrot, 18, p.107-118 Sciences Space and Sensing Remote of Journal Egyptian The In: techniques. RS-GIS using India, plains, Brahmaputra Upper land-use changes driven (2015). by Assessing river dynamics Borah, in S.B. chronically flood affected Hazarika, N., Das, A.K., Information System. In:RemoteSensing(6),p.7018-739,doi:10.3390/rs6087819, ISSN2072-4292 and Observation Water the with Africa in Management Resource Water Integrated for Data Observation Earth of Use the Guzinski, R., Kass, S., Huber, S., Bauer-Gottwein, P., Jensen, I.H., Naeimi, V., Doubkova, M., Walli, A., Tottrup, C. (2014). Enabling Wiley-Blackwell. global commitmentandlocalaction.Cambridge,UK: Collen, B., Pettorelli, N., Baillie J.E.M., Durant, S. (2013). Biodiversity monitoring and conservation: bridging the gap between pumping andartificialrecharge.FirstBreak,26(8),85–91.doi:10.1029/2007WR006152 Bell, J.W., Amelung,F., Bianchi,M.,&Novali,F. Ferretti,A., (2008).Monitoringaquifer-system responsetogroundwater Reconstruction ofthebridgeonMongu-Kalabo Road nearMonguHarbour. of Mongu and Theroad,linkingthedistricts

GLPNEWS | NOVEMBER 2015 61 Feature - Article 62

GLPNEWS | NOVEMBER 2015 Feature - Article Corresponding author: [email protected] biodiversity inrural Europe Territorial approaches to enhance 1 Anna Bart Soldaat passed totheEU-level decisionmakers. was effort this from resulting message joint The agendas. to discussanddesignthefuturepolicy that broughttogethernumerousstakeholders organised, in France, Netherlands and Belgium, practical actionpoints.Threemajoreventswere recommendationsand develop tailoredpolicy case studiesfromvariouscountries,inorderto evidence-based and resources scientific relevant Thegroupaimedtosynthesise the continent. makerspolicy andpractictionersfromacross (CAP). Involvedparticipantswerescientists, context oftheEU CommonAgriculturalPolicy approaches addressing biodiversity in the platform intendedtoexploreterritorial Bruges setupaninternationaltransdsciplinary Responding to these, in 2013-14 Groupe de including civilsociety. levels, to farmers and to many other stakeholders, These are major challenges to all government production and natural resource management. on theoverallsustainabilityofagricultural practices, this also means a growing concern landscape values.Inthecontextofagricultural to halttheongoinglossofbiodiversityand In Europe thereisanincreasingsenseofurgency Introduction -pool resources(sensuOstrom 1990). and strengtheninstitutions togoverncommon rationale forthiswasalso tovaluepublicgoods in order to improve thestate of biodiversity. The specific created incentives encouragingcooperationoffarmers, CAP the instance For policies. gained significant attention as elements of public butalso in agrass-rootsandinnovativespirit, rural areas.Frequently, theyhavebeenemerging reversing thebiodiversitylossinEurope’s were highlightedasanimportanttriggerof outcomes. Firstofall,territorialapproaches This collaborativeworkconveyedthefollowing Biodiversity loss as a collective concern Sciences GroupedeBruges, Augustyn 2 Leitrim Organic, LeitrimOrganic, 1 1 |JohnBrennan 3 PlateformeCapitalisation &InnovationsAgricultures Familiales, 1,2 |SamuelFéret Next tothese,moresustainable farmingsystems compensated areonly sequestration). Suchgoodsandservices tables) aswellenergyandclimate(e.g. carbon water quantity(e.g.storage,increasing relating totheEU Water Framework Directive), cultural heritage), waterquality(especially is providedtolandscape(landscapefeatures, such assoilbiodiversity. Inaddition,thesupport rare agro-biodiversity andlifesupportfunctions fauna, and breeds andcrops,sometimes also functional flora including targeting schemes biodiversity, national co-finances policy (2014-20).ThisEU in thecontextofnewCAP Secondly, territorial approaches were highlighted agri-environmental schemesorpackages. of beneficiaries (joint) are and plan or strategy a (3) Initiativesthathavecreatedalegalbasis, a plancoveringgeographicalarea. representation andareoperatingonthebasisof (2) Initiativesthathave(created)alegal legal entityand/oraregionalplan. butlacka have ademarcatedgroupandterritory, marketing ofregional products. These initiatives practices, sometimesincombinationwiththe encouraging sustainable (agro-ecological) (1) Initiativesaimingatmutuallearning, following typesofintiativesweredistinguished: transformation, were more rare. In general, the in thelastdecade,undergoingpost-socialist case studiesfromcountriesthatjoinedtheEU However countries. EU several in identified were economic andenvironmentalobjectives.They strike abetterbalanceatfarmlevelbetween of public goods and they could improve delivery the convictionthatthrough territorial cooperation versus (marginal organisational structure. What theysharedwas ofregion highly productive), typeofsector, objectivesand type in differed contributed toenhancingbiodiversity. They initiatives (case studies) that have positively The GroupedeBrugestookacloserlookat10 for, basingontheforegone income. 1,3 |Zdenek Linhart 4 Czech University ofLife 1,4

phenomenon intheagriculturalworld.Agricultural Territorial cooperationis,ofcourse, notanew use in land The benefitsof collaboration the spendingonthisparticular policy. biodiversity. Thisdataisfurtherneededtojustify on data relevant of delivery timely and effective evaluation systemthatensuresreasonable,cost- concerned withestablishingamonitoringand strongly also are beneficiaries and makers Policy agri-environmentalpaymentsschemes. CAP of territorial cooperation initiatives under the still someissuestobesolvedastheposition Intheshortterm,thereare shape thedelivery. makers, implementers and controllers significantly themselves. Moreover, theattitudesofpolicy with amotivatingpositionforthecooperatives of administration and accountability together ensures compliancewiththeoverallprinciples frameworkthat on thedesignofaregulatory well,itis dependent professional organisations. As liesinthequalityofcollaborativeactionsas CAP workable and effective encouragement ofsuchpublicgoodswithinthe the that out turned it systems werestressed.Basingontheevidence, Thirdly, delivery challengesforthepolicy should betreatedasapublicgood. environmental and individual farm focus and in asystemicmanner, movingbeyondthesolely as a complex issue that needsto be addressed the territorial approaches emphasise biodiversity (such Wâlden, Netherlands Figure 1.Land undercollective managementinNoardlike Fryske as organicfarming)areencouraged.Also, approach to public goodsisalogical wayto (3) improve the‘licensetoproduce’. makers,society andpolicy andsubsequentlyto opportunities toengage in dialoguewithcivil practices, accesstopublic funding,andbetter learning andsharingbest specialist equipment, possibilityofsharing measures, lesspaperwork, (2) (Oerlemans etal.2007;Franks &McGloin2007). negative externalitiessuchaswaterpollution reducing and fields for and elements of interlinking effective more species and habitats that exceed farm level, is approach coordinated (1) thatwere the European casestudies: benefits generated throughtheterritorialapproachesin following the identified The platformfacilitatedbytheGroupedeBruges can bemoreindividual(Talhelm etal.2014). of neighbouringfarms,whilecultivatingwheat action concerted a require fields rice e.g. system, cooperation can be forced by natural features of the cropping Alternatively, benefits). shared or individual benefit (public action collective and with achoicebetweenindividual(competitive) confronted often are farmers commodification, In theworlddrivenbycompetitionandincreasing scale, in order to optimise their cost-effectiveness. onalandscape ofgoodsandservices delivery marketing. Theynormally dealwithensuringthe were formedforthemajorreasonofimproved and cooperatives gobackforoveronecentury scheme intheNetherlands Figure 2. Site visit to a dairy farm participating in a territorial Increased environmental output:Aterritorially Advantages for thesociety:Aterritorial Advantages for farmers:Bettertailored

GLPNEWS | NOVEMBER 2015 63 Feature - Article 64

GLPNEWS | NOVEMBER 2015 Feature - Article References programmingperiod The issueisthattheCAP demonstrate thesuccessofpublicsupport. monitoring andevaluationframework,usedto question istoprovidedatafeedtheexisting OECD 2013).However, aburning fortheCAP McGloin 2007;Millsetal.2012;Prager2013; and lowerimplementationcosts(e.g.Franks & output withamoreentrepreneurialapproach conditions tocombine a higherenvironmental show thatcollectiveapproachescreateoptimal andin-depthanalysisofcasestudies Surveys territorial approaches? How to assesstheimpactsof and individual actions couldbeentestedandcompared. collective where cases between specific differences indicate that sought are evidence of benefits on collective action.Examples has stressed an urgent need to generate more the platform external funds. In this context, of cooperationarehighand/ornotcoveredby ofpublicgoods; (3) the transaction costs delivery farmer isorfeelslimitedinhischoicesforthe appropriate fordeliveringpublicgoods;(2)the orevennot the regionalscaleisnotnecessary collective action.Thisappliesespeciallyif:(1) Naturally, therecanalsobedisadvantagesfrom burden forgovernments,aswellbeneficiaries. administrative reducing and simplification in help CAP, the terrotorialcooperationhasapotentialto (4) society (Renting&Van derPloeg2001). and civil connect farming, natureconservation Budget savingfor publicpolicies:Inthecontextof Within China Explained byRiceVersusWithin ChinaExplained WheatAgriculture.Science, 344(6184):603-608. Talhelm T., 2014. Large-ScalePsychological Differences DuanD., &KitayamaS. Shimin C., LanX. OishiS., ZhangX., 3: 85-101. &Planning,the NetherlandsasInstitutional ArrangementsforCreatingCoherence.JournalofEnvironmental Policy Renting, H.&vanderPloegJ.D. 2001.Reconnecting Nature,Farming and Society:EnvironmentalCooperativesin Environmental Sustainability, 12:59–66. 2013.Agri-environmental collaborativesforlandscapemanagementinEurope. CurrentPrager K. Opinionin V.& ScottA. 2014.EU agricultural reformfailsonbiodiversity. Science,344(6188): 1090-1092. HobsonP.Henle K., RobijnsT., KleijnD., K., R., NeumannR. SutherlandW. Wulf SchmidtJ.,ShwartzA., Turbé F. A., V.,Pe’er Dicks L. G., Visconti P., D., Benton T. R. Hartig F., Báldi A., Dieterich M., Gregory Arlettaz R., Collins S., G., University Press. 1990.GoverningtheCommons:TheEvolutionOstrom E. ofInstitutions forCollectiveAction.Cambridge:Cambridge Schemes, Background ResearchTasks Report3.Wageningen, Statutory UnitforNatureandtheEnvironment. of HabitatManagement StewardshipScheme. EcologicalEfficacy ofaNationalCountryside Ecological Efficacy 2007.RoleofFarmland inImprovingthe Associations &VisserA. Conservation Oerlemans N.,GuldemondJ.A. and theEnvironment(JWPAE), OECD, Paris. OECD 2013.ProvidingAgri-environmentalPublic GoodsthroughCollectiveAction.JointWorking Party onAgriculture 612-621. thesocial benefits ofagri-environmentschemesinEngland.Journal of RuralStudies,28(4),Mills, J.(2012).Exploring JournalofRuralStudies,23:472-489. Objectives:LessonsfortheUK. and RuralPolicy 2007.EnvironmentalCo-operativesasInstrumentsforDeliveringacross-farm Franks &McGloin,A. J.R. here: http://groupedebruges.eu/projects More informationaboutthisworkcanbefound towards improvingbiodiversityconservation. success ofpublicsupporttocollectiveactions based casestudiesthatcouldhelptoassessthe de Brugesisinterestedtohearaboutevidence- and implement the work programme. The Groupe further steps to develop the European network has beenformed.Inthecomingyearsitwilltake participated intheconferences,aSteeringGroup assessment approaches.From theinitiativesthat action points, including suitable learning and to mobiliserelevantstakeholders toelaborate and optimisationstrategies.Membersagreed to delivermissingdata,designfutureprojections synergies with the scientific community in helping The platformrecognisedagreatpotentialtobuild The ways forward continent (Pe’er the etal.2014). across differently practiced measures, CAP can beunderminedbyadillutedcharacterofthe biodiversity enhancementintheEU asawhole under to bring the commonumbrellaofstandarized data.The difficult and diverse, highly are their landusepracticesandbiodiversityconcerns bureaucracy. Moreover, theEuropean countries, and isburdenedwithlackofcapacities on thenetworkofpublicstatisticinstitutions, evaluationsystem, heavily relies current policy expected resultssoquickly. Furthermore, the monitoring andassessmentmaynotyieldthe is relativelyshort(7years), thusbiodiversity Corresponding author: [email protected] 1 global a on ocean the in caught fish of 80% that (Jennerjahn &Ittekot, 2002),anditisestimated total inputofterrestrialcarbon intotheocean total area,mangrovesaccountfor11%ofthe world (Giri about 0.7%ofthetotaltropicalforests continental surface(FAO, 2003),andcomprise Mangroves coveronly0.1%oftheearth’s environment (Spalding etal. , 2010). inthisparticular adaptations inordertosurvive 1998) whereorganismshavedeveloped special point wherethewaterstillremainssaline(Qasim, and in the rivers, reaching upstream up to the interface, bays,estuaries,lagoons,backwaters, tropical asubtropicallatitudesalongtheland-sea composed ofplantsthatgrownormallyin Mangroves arewoodyvegetationcommunities Introduction projects. global in conservation recent most the mappings formangrovesandtheirapplication discuss article briefly This will methods. different using made a number of mangrove mappings have been limits mangrove actions.Untilnow,and supportconservation the define storage, carbon measure therateofdeforestation, estimated of mangroves areas isimportant in order to coral reefs.Forthisreason,theglobalmapping exceeded thoseoftropicalrainforestsand However, lossesofmangroveforesthave species usemangrovesasreproductionsites. organisms. Many marineandfreshwater species,refugeforjuvenile for migratory conditions. Suchenvironmentsprovidehabitat adaptations tocopewithsalinityandanoxic land-sea interfaceandhavedevelopedspecial tropical andsubtropicallatitudesalongthe composed byplantsthatgrownormallyin Mangroves arewoodyvegetationcommunities Abstract tool for conservation mapping: acritical Global mangrove Ximenes Arimatéa deCarvalho Belgium. UniversitéLibre deBruxelles (ULB) andVrije Avenue Universiteit Brussel(VUB) F.D. Roosevelt50,CPI264/1, B-1050Bruxelles, et al., 2011). Despite the limited 1 that willbediscussedbelow. been underpressurebyanthropogenicactions ecosystems onaglobalscale,themangroveshave of mangrovestomaintainthestability by thisecosystem.Despiteaclearimportance provided be higherifwecouldcomputeallservices (Costanza than $1.6billionperyearinenvironmentalservices Estimates suggestthatmangrovesprovidemore others (Bandaranayake, 1998). leprosy,of malaria,dysentery, tuberculosis,and possesses many medicinalusesforthetreatment Americas andwesternAfrica(Duke, 1992) include the coastal areas in western and eastern which region biogeographical (AEP) Pacific East one of the most common species in the Atlantic anexample,theRhizophora As to cureseveraldiseases(Bandaranayake, 1998). important medicinalpropertiesandcanbeused Furthermore, themangroveplantshave (Alongi, 2008;Dahdouh-Guebasetal.,2005). tsunamis, stormsandothersnaturaldisasters an ecosystemthatprotectscoastalareasfrom disasters, mangroveshavebeenrecognized as natural by affected areas in studies several After species (Primavera,1998). an and provide ideal environmentforthereproductionofmany crustaceans, and fish juvenile speciesandarefugefor a habitatformigratory mangroves (Ellison,2008).Mangrovesarealso scale are directly or indirectly dependent on globally disappearinless than 100years(Duke continues at the same pace, mangrovescould In thisway, studiessuggest thatifdeforestation etal.,2001).threatened environments (Valiela forests andcoralreefs,twootherwell-known destruction thatexceeds that oftropicalrain has beenlostduring1980’sand1990’s,a At least35%oftheareamangroveforests Mangroves underpressure , 1997), although this number may et al.,1997),althoughthisnumbermay mangle whichis

GLPNEWS | NOVEMBER 2015 65 Feature - Article 66

GLPNEWS | NOVEMBER 2015 Feature - Article planning conservation actions,sustainability uses planning conservation the impactsand itmayhelpdecisionmakers to extremely importanttogive usthedimensionof For this reason, the mapping of mangroves is this region. through changesinthenatural hydrodynamics of through deforestationand be directandindirect, The impactoftheconstructionchannelwill the about impact of thisproject on mangrovesin Nicaragua. specifically done been had research on Pacific to Atlantic Nicaragua’s ecosystems. Until now, hardlyany the connect to channel of the construction of a massive interoceanic (2014) havehighlightedtheenvironmentalimpact channels. For instance, Meyer and Huete-Pérez coastal projects,suchasportsandinteroceanic Moreover, mangroveshavebeenimpactedbyhuge than expected. case ofsealevelrise;theimpactsmaybegreater mangroves havenonaturalareastomigratein by cities,agricultureandotherslanduses.Since surroundings of mangrovesarealreadyoccupied new suitableareas.Nowadays,inmany casesthe have migratedinordertoadaptandcolonize duetosealevelchangesmangroves the past, threat formangroves(Gilman etal.,2008).In related to sea level rise are presented as a great 2001). In addition, scenarios of climate change alterations andchemicalspill(Blascoetal., from clear-cutting, land-usechange, hydrological remaining mangroveforestsareunderpressure where mangroveecosystemgrownaturally. The are locatedonthecoasts(Cohen etal.,1997), of thesea,andthree-quartersalllargecities of theworld’spopulationliveswithin150km are alsolinked tothe factthatalmosthalf(44%) tourism infrastructure (FAO, 2007). These drivers urban landuses(Spalding etal.,2010)and are directconversiontoaquaculture,agriculture, The greatestdriversformangroveforestloss ecosystems asawhole. only atthespecies level, butalso at thelevelof uses. Nowadays, the environmental impact is not to the conversion of mangrovesintoothers land is threatenedbyhabitatloss(IUCN,2010)due endemic inHaiticalledEleutherodactylus caribe of aspeciesfrogrestrictedtomangroveand & Greenberg,2009).Forexample,theonlyrecord vertebrates thataregloballythreatened(Luther also hasmorethan40%ofmangrove-endemic extinction (Polidoro etal.,2010).Thefauna mangrove plantsspeciesareathighriskof categories ofendangeredspecies,upto11 of Nature (IUCN) Red List criteria Conservation According totheInternational Union for occurrence. fourth oftheircountry ecosystems areunderthreatinmorethanone (FAO, 2003).Thismeansthatmangrove critically endangeredinatleast26countries et al.,2007).Unfortunately, themangrovesare total of181,077km mapped mangrovesin112countriescoveringa as 156,426km total mangroveareain51countrieswasestimated in1980,wherethe Forest ResourcesAssessment thetotal Programme (UNEP) withtheprojectofTropical at estimating part oftheFAO andUnitedNationsEnvironmental attempt mangrove areaintheworldwasundertaken as first The representative (Spalding etal.,2007). inareasthatareecologically creation ofreserves to bedelimitated,andtheseareessentialforthe allows forbiogeographicmapsandecoregions mangrove ecosystems. This ecosystems mapping and sustainableuseoftheworld’sremaining management making fortheconservation, anddecision- is neededasanaidtopolicy- on theextentandconditionofmangroves (FAO, 2007)aregularupdateofinformation Agriculture OrganizationoftheUnitedNations forest areas.Moreover, accordingtotheFoodand have beenappliedtoestimatethemangrove techniques mapping global different challenge, ecosystems (Horningetal.,2010).Despitethis often agradientbetweenterrestrialandaquatic difficult to mapbecausetheyarequitedynamicand be to tend wetlands The challenging. Estimating themangroveforestareasis under different mapping techniques Global Mangroves area estimation 152,000 km and territories globally, and found a total of World AtlasofMangrovescovers123countries et al.(2010)andGiri most recent estimations were made by Spalding of the intense cloudcoverage inthisregion. north Brazilian mangroves,probably because 1997 didnotdisposeofall image coveragein the 1 it is possible to conclude that Spalding figure Observing imagery. sensing remote from from highandlow-resolutions mapsderived experts, and combines information ranging (Spalding mapping Mangroves of Atlas World first The 1). (2010) andGiriet al. (2011)mappings(Figure Spalding between differences clear are (2010) andGirietal.(2011)wereused.There made bySpaldingetal.(1997), mangrove mappingstechniques,three Spalding 10% smallerthanthemostrecentestimateby The estimateofGirietal.(2011)isapproximately 15 countries. 1), thoughnearly75%oftheirareaoccursinjust forest areain118countriesandterritories(Figure different mappings for mangroves that have mangroves been usedformany purposes. for mappings different discuss briefly will topic next The protection. and al. (2011)estimated137,760km 21) T cmae different compare To (2010). et al. et al.,1997)washand-drawnby 2 (Spalding etal.,2010),butGiri 2 . The first World Mangrove Atlas Mangrove World first The . 2 (Spalding etal.,1997).The et al.(2011).The second 2 ofmangrove et al., et al.

the cityofBragança inPará state.ThemapswerepreparedusingArcGIS10(ESRI,2011). Below, threemangrove mappingsshowapartofonethelargest continuous mangrove areaslocalized intheNorthofBrazil nearto Figure 1. The figure above shows the worldwide mangrove distribution mapped by Giri et al. (2011) and the red point is shown in detail. the geoprocessing analysis. Giri’s map) the data file size is lighter and facilitate mangroves patches are more continuous than in ithaslessfragmentedareas(i.e. the ecotones. As useful, becauseitincludes thesurroundings mapping this find may projects certain mappings, Despite thelower resolution of Spalding’s potential mangroveabove-groundbiomass. et al.(2010)toconstructaworldwidemapof applied themangrovemapdevelopedbySpalding been mapped.However, Hutchisonetal.,(2013) estimation, since only wood forest areas have mapping probablymayimprovetheglobalcarbon were morefragmentedinGiri’smapping.Their mappings. For this reason, the mangroves better resolutionthanothersmangroveforest water bodiesandbarrenlands,bringinga mangrove vegetationonlyanddidnotinclude mapping techniques, Giri between thesemapsisthatincontrasttoothers classification image techniques (Giri digital unsupervised and Giri’s map was made using hybrid supervised and theysharealmostthesamedelineation. the emptygapsfromoldversion(Figure1), filled has Atlas World the of mapping new This results. the of editing a with classification image digital (2010) wasmadeusingunsupervised However, thenewWorld AtlasofMangroves et al., 2011). The main differences et al. (2011) mapped the environmental pressure.Moreover, we and reforestation programstocompensate impacts thatcanorient mitigation strategies can help to createpredictiveglobalmodels of A systematichistoricalmapping ofmangroves 2015). public policies(INPE, Brazilian governmentfor theestablishmentof by satelliteimages,whichhavebeenusedthe a monitoring of the annual rates of deforestation the PRODESprojectinAmazonia carries out deforestation bysatelliteimages.Forexample, methodological frameworktomonitorratesof by alargeglobalprogramwithsystematic For thisreason,mangrovesshouldbesupported countries (FAO, 2007). the lackofrecentinformationforanumber the extrapolationto2005wasconstrainedby to and difficult it and assessments, different definitions from results compare make time in over changes methodologies However, rates. (FAO, 2007),itmeans, measureofdeforestation on thecurrentandpastextentofmangroves facilitate access to comprehensive information world`s mangroves1980-2005thataimsto Tropical TimberOrganization(ITTO) madethe International the by provided resources financial The FAO with the collaboration, support and Conclusion

GLPNEWS | NOVEMBER 2015 67 Feature - Article 68

GLPNEWS | NOVEMBER 2015 Feature - Article References one o Tcnlgcl n Scientific (2011-2014) forthePhDscholarship.Thanks and Belgian NationalScienceFoundation(FNRS) Technological Development ofBrazil(CNPq) (2014-2015)and of and financial Counsel the to grateful administrative authoritiesattheNational is author The Acknowledgements protection andsoon. potential forrecreation,biodiversity, coastal ecosystem that provides cures ofdiseases,food, humanity maylosenotonlyspecies,butawhole the Otherwise, extremely importantandurgent. planningare global systematicconservation global mangroves.Thus,studiesrelatedto but scenariosshowusadramaticfuturefor been revealingtheimportanceofmangroves, Scientists and traditional communities have areas (Diegues,1996). orprotected could beusedtodesignthereserves way, andpossessimportantknowledgethat often beenusingthisecosysteminasustainable communities inthemappingsbecausetheyhave should alsopayattentionandincludethelocal forest biomass. Conserv. Lett., 00,1–8. forest biomass. Conserv. Lett., & Spalding,M.(2013).Predicting global patternsinmangrove Balmford, A., Swetnam,R., Hutchison, J.,Manica, A., OxfordUniversityPress. Oxford, UK: Turner, Sterling,E.J.; W.;Horning, N.;Robinson,J.A.; Spector, 2010.Remotesensingforecologyandconservation. S. Global EcologyandBiogeography, 154-159. satellitedata. etal.(2011).Statusanddistribution of mangroveforeststheworldusingearthobservation Giri, C. a review. AquaticBotany, 89(2):237-250. (2008).Threatstomangrovesfromclimatechange andadaptationoptions: Ellison,J.;Duke Gilman, E.; Field,C. N.C.; Italy. 77pp.[accessed2015Aug20]. ftp://ftp.fao.org/docrep/fao/010/a1427e/a1427e00.pdf FAO. (2007).Theworld’smangroves1980-2005.FAO Paper 153.FoodandAgriculturalOrganization,Rome, Forestry Working PaperAssessment No.63.ForestResourcesDivision.Foodand AgriculturalOrganization,Rome,Italy. FAO. ForestResources &Fortuna,S. (2003).Statusandtrendsinmangroveareaextentworldwide.Wilkie,M.L. EnvironmentalSystems ResearchInstitute. ESRI (2011).ArcGISDesktop:Release10.Redlands,CA: Res. 59:2–15. M. (2008). J Managing Seamangroves with benthic biodiversity in mind: moving beyond roving banditry. Ellison A. and D.M.Studies Series (eds: Robertson, Alongi, A.I. D.M.). American Geophysical Union, Washington, D.C. pp.63-100. Duke, (1992).MangroveFloristics andBiogeography. N.C. In:Tropical MangroveEcosystems,CoastalandEstuarine Duke, N.etal.(2007).Aworldwithoutmangroves? Science,317,41-43. Omitomodernodanaturezaintocada.SaoPaulo: 1996.169p. HUCITEC, C. Diegues, A. mangroves asadefenceagainsttherecenttsunami?Current Biology, 15(12),R443–R447. Dahdouh-Guebas, F.; DiNitto,D.; Bosire,J.;LoSeen,D.; Jayatissa, L.; &Koedam, N.(2005).Howeffectivewere andnaturalcapital.Nature,387:8. etal.(1997).Thevalueoftheworld’secosystemservices Costanza, R. 1213. Mellinger, Gallup,J.;Sachs,J.(1997)Estimatesofcoastalpopulations.Science,278: 1209– SmallC.; Cohen, J.E.; A.; 9(3),255–266.Management, Blasco, F.; Wetlands Ecologyand (2001).DepletionofthemangrovesContinental Asia. Aizpuru,M.;Gers, C. 133-148. Bandaranayake, W. M.(1998).Traditional andmedicinalusesofmangroves.MangrovesSaltMarshes,164863, Estuarine, CoastalandShelfScience,76(1),1-13. Alongi, D. (2008). Mangrove forests: Resilience, protection from tsunamis,andresponses to global climate change. fieldworkA. Ximenes. expedition.(Ximenes,2012).Photo by south ofMombasa)andalocal inhabitantfromKenya duringan Figure 2.The mangrove of Gazi Bay (at approximately 50 km project withthelicenceofArcGIS10. Thanks toESRIforsupportingthisconservation journal withtheirhelpfuleditsandcomments. also appreciatestheeditorialreviewersofthis Guebas forhissupportandadvising.Theauthor and critics.SpecialthankstoFarid Dahdouh- to VitorNelsonBorgesJúniorforthereview to ClaireThienpontfortheEnglishreviewand Ximenes, A. C. (2012).FieldworkexpeditioninGaziBay, Kenya. C. Jan-Fev/2012.Ximenes, A. Environments. BioScience,51(10),807. York,Valiela, (2001).MangroveForests: OneoftheWorld’s I.;Bowen,J.L.; ThreatenedMajorTropical J.K. data.unep-wcmc.org/datasets/22 Monitoring Centre.URL: World AtlasofMangroves.InSupplementto:Spaldingetal.(2010a). Cambridge(UK):UNEPWorld Conservation London (UK): Earthscan, London. 319 pp. Data layer from UNESCO-MAB,the UNU-INWEH and TNC. UNEP-WCMC, (2010).World AtlasofMangroves.AcollaborativeprojectITTO, FAO,Spalding, M.;Kainuma,Collins,L. ISME, BioScience, 57(7):573-583. Spalding, M.D. etal.(2007).MarineEcoregionsoftheWorld: Abioregionalizationofcoastalandshelfareas. Ecosystems, Okinawa,Japan.178pp. Spalding, M.D.; Blasco,F.; Field,C.D.,eds.(1997).World MangroveAtlas.TheInternationalSocietyfor ISBN-13: 9788173711299,pp:123- (Ed.). UniversityPress,Hyderabad,India, (1998).Mangroves. In:GlimpsesoftheIndianOcean,Qasim,S.Z. Qasim, S.Z. Estuarine, CoastalandShelfScience,46,457-464. Primavera, J.H.(1998).Mangrovesasnurseries:Shrimppopulationsinmangroveandnon-mangrovehábitats. PloS one,5(4),e10095. etal.(2010).Thelossofspecies:mangroveextinctionriskandgeographicareasglobalconcern.Polidoro, B.A. 289. Nicaraguacanalcouldwreakenvironmentalruin.Nature.506:287– (2014)Conservation: Meyer, Huete-Pérez, J.A. A.; Terrestrial Vertebrates. BioScience,59(7),602-612. Luther, (2009).Mangroves:AGlobalPerspective Greenberg,R. ofTheir ontheEvolution andConservation D.A.; 23–30. along tropicalcontinentalmargins.Naturwissenschaften,89, Jennerjahn, T.C.; Ittekot, V. (2002)Relevanceofmangrovesfortheproductionanddepositionorganicmatter ofNatureandNaturalResources. Conservation IUCN, 2010,IUCNRedListofThreatenedSpecies.Version InternationalUnionfor 2010.4.www.iucnredlist.org, brasileira porsatélite.[accessed2015Aug28].. INSTITUTO ESPACIAIS NACIONAL DEPESQUISAS (INPE).ProjetoPRODES:monitoramentodaflorestaamazônica 129.

GLPNEWS | NOVEMBER 2015 69 Feature - Article 70

GLPNEWS | NOVEMBER 2015 Feature - Article Corresponding author: [email protected] under Ecological Restoration Protection Use andCropland Dilemma between Wildlife The RiskofProtection: The Xiaobo 1 China. et al.2013,Yu, Wu andFan 2009,Wang, Curtis 2005, Madhusudan2003, Sekhar1998,Sreekar agricultural productions (Shu 2012,Distefano useand land on agricultural impacts significant and Southworth2011,Messmer2000).HWChas has increased (Distefano 2005,Sekhar1998,Hartter, Goldman which turning agreatandworldwideconcernnowadays (HWC), conflict wildlife 2013). Oneofthemostobviousrisksishuman- appeared (Cernea andSchmidt-Soltau 2006,Karki negative effects on social-ecological systems have biodiversity (Kleijnetal.2001),andinaddition, protect effectively not do ones, overprotecting that suchprotectingmeasures,especiallythe and Bulte,2007).Somestudieshaveshown and Brandon2005,Chapeetal.Rondeau 2001, Myersetal.2000,Naughton-Treves, Holland schemes, havebeentriedworldwide(Bruneret al. national parks) andbymakingcompensation measures, suchascreatingprotectedareas(e.g. different 2012), severe threats(Cardinale etal. the functioningofecosystems,whichareunder To andrestore improvebiodiversityconservation developing countries. governments aboutthisprobleminother order toraiseconcernintheacademiaand and landsystemsbyatypicalcaseofChinain we Here effectively. illustrate thedilemmabetweenbiodiversity more policies existing and ecologicalrestoration,aswellamend recent policiestowardwildlifeprotection help usunderstandtheshortcomingsof livelihood underecologicalrestorationwill among wildlifeprotection,croplanduseand theconnection livelihoods. Hence,clarifying seriously threatensagricultureproductionand (HWC) isoneofthegrowingglobalissues,which potentially at great risk. Human-wildlife conflict some measurestoprotectbiodiversity, which is The majorityoftheworld’snationshavetaken Abstract College of Resources and Environment, Southwest University, No.1 Tiansheng Road, Beibei District, Chongqing 400716, P.R. 400716, Chongqing District, Beibei Road, Tiansheng Southwest University, CollegeofResources andEnvironment, No.1 Hua 1 |JianzhongYan 1 developing countries, are also setfor protecting and forestdegradation (REDD+)inother (Li 2004).Similarschemes, suchasdeforestation Programme (NFCP) in1998Forest Conservation Chinese governmentestablishedtheNational destruction andfurtherdeterioration,the promote forest management activities preventing forest to effort an In 2010). Meyfroidt and (Lambin aiming forecologicalconservation through top-downgovernmentalintervention launched aseriesofstateforestpolicies In China,forexample,thegovernmenthas nations have taken different planning measures. restore thefunctioningofecosystems,most and livelihoodsecurity(Figure2).Inorderto restoration, landusetransition,biodiversity example ofpracticaldilemmaamongecological For betterunderstanding,wedemonstratean vs. livelihoodsecurity. vs. farmers’welfare,and(ii)ecologicalrestoration under ecological restoration: (i) wildlife protection between wildlife protection andcropland use 1). Therearetwoevidentdilemmasorparadoxes and naturalresourceprofessionals(seeFigure among agricultural producers, wildlife managers habitat andlocallivelihoods,whichraiseconcerns in damage to agricultural crops, native wildlife nowoverly abundant inseveralprovincesofChina,resulting are populations boar wild that find According tothenewsreportedonline,we household level. on croplanduseunderwildlifedamagetaken at level. Andwealsoknowmuchlessaboutdecisions damage andcroplandabandonment)atmicro- between HWCandcroplanduse(suchaswildlife overall analyticalframeworkontheconnection is a lack of empirical information, research and In thecontextofHWCandlandsystems,there (Hartter etal.2011,Hough1993,Thapa2010). farming byusingtheirindigenousknowledge world oftentake somemeasurestoprotectlocal the around damage wildlife by affected people and Lassoie2006,Bleieretal.2012).Besides, However, many casestudiesreport thatcrops livelihoods mainly dependonsmall-scale farming. areas amongmostdeveloping countries,people’s 2000. In protected bytheState is prohibited.Inrural year the in killingandinjuring wildanimals the context, back value” scientific economic or of important or beneficial are which of terrestrialwildlifeunderstateprotection, since 1989 and “Lists law” “wildlife conservation Administration (SFA)State Forestry published livelihood security. For instance, in China, the the policiesforwildlifeprotectionand Besides,thereisahugegapbetween threat. livelihoods ofresidentsareconstantlyunder With theincreasingamountofwildanimals, progress (Li2004,Xuetal.2009). wildlife hasmadegreat habitats, conserving for biodiversity, withtheestablishmentofforest perceived additional economic losses. However, imposed by thisprogram, in which local residents of NFCP duetothebanonloggingandgrazing implications the by affected adversely been Cao 2011, Li (Xu policies forest these of influences negative Geneletti 2011).Somestudiesfocusonthe et al.2010,Persha etal.2010,Orsi,Churchand on impacts significant andlivelihoods(Cao biodiversity conservation has restoration Forest and Agrawal2010). forests andenhancingregrowth(Phelps,Webb ofhuman-wild boarconflictFigure 1.Mediareports inChina et al.(2010)showedthatlivelihoodshad et al. 2011,Cao et al. 2010). For example, Many studies show thatactivelypursuing utility opportunities? employment off-farm for migrate of agriculturallaborforce. Why dothe farmers abandonment isthemigration andshortage viewpoint onexplainingthe driverofcropland in mountainousareas. Generally, themain may bealsoanimportant driver, especially the landabandonmentcaused bywildlife,which However, thesedriving forces do notfocus on land mismanagement(Benayasetal.2007). divers andunadaptedagricultural systems and which refertoecologicaldrivers,socio-economic types major of driversagriculturallandabandonment, three reports literature scientific use occurredinmostcountries.Thecurrent the commonphenomenoninagriculturalland production. Cropland abandonment is oneof on agricultural land useandagriculture Labor migration has also brought great influences the mostimportantthreattolivelihoodsecurity. the perspectiveofStatemacro-policies,thisis From animals. wild against conflicts the confront and havenocapacitytoprotecttheircropsor younger workforce to pursuetheirlivelihood, of migration definitive or temporary containing (Chen the increasingopportunitycostoflaborforce as usingscaring devices. In the meanwhile, with to take measuresto protecttheircrops,such 2000, RondeauandBulte2007).People have (Distefano 2005,Madhusudan2003,Messmer and livestockarethreatenedbywildlifedamage 2010), people rely on off-farm labor off-farm on rely people 2010), et al.

GLPNEWS | NOVEMBER 2015 71 Feature - Article 72

GLPNEWS | NOVEMBER 2015 Feature - Article Figure 2.Asynthetical approach toanalyze thedilemma amongecological restoration, land usetransition, biodiversity andlivelihood to restoreecosystems(LambinandMeyfroidt quality, whichwouldprovideanopportunity households toabandoncroplandwithlower from agriculturecanimpelthefarmer (Shi, HeerinkandQu2011).Thelabormigration phenomenon households are significant involved in off-farm employment a in ruralChinaisthatmoreandfarm years, recent In Beckwith 1954). Mader and Tappeiner 2003, Bowen etal.2007, and Lawrence1999,Laioloetal.2004,Tasser, Baur andZimmermann2007,Houghton,Hackler diversity ofwildlife(Sreekar etal.2013,Gellrich, increased sequestration and the temporary impacts on the stabilization of soils, carbon promoted bylandcoverchange,haveimportant andtheecologicalrestoration the environment, regrowth leadtosomepositiveconsequencesfor abandonment andfollowingnaturalforest Poyatos, LatronandLlorens2003).Thecropland such as vegetationre-growth (Díaz the landcoverchangefromagriculturalland, 2008). Croplandabandonmentisassociatedwith wilderness, etc. (Benayas wilderness, etc. active reforestation, increased biodiversity and benefit humans, such as passive revegetation and the abandonmentofagriculturallandmay From theperspectiveofecologicalrestoration, contexts ofdevelopingcountries. are almostentirelyabsentinpoorruralagrarian wildlife damageasadriverofpassivemigration is themainreason.However, studiesthataddress maximization explained by household economics et al. 2007, Sirami et al.2011, et al.

To balance the relationship of locallivelihood, be adjusted,andnotover-protect thewildlife. recommendations shouldTherefore, the policy quickly tothesechanges. ecological restoration,thepoliciescannotadapt for policies current of effects unexpected and habitats. Owning to overprotection of wild boar increase rapidlyduetotheexpansionoftheir such asGrainforGreen,wildboarpopulations policies, restoration ecological by affected area withtheincreasingforest from interviewers, their livelihoods.Accordingtothedescriptions mountainous areasto migrate out to improve to leadmoreandfarmersfrompoor opportunity costoflaborsinChinaislikely withtheincreasing wildlife protectionpolicy abandonment inChina.Thecombinationofthe driver of crop losses and might enhance cropland In particular, wildboarpopulationsareaserious especially inmountainousareas. more andanimportantissueinChina, sustainable land use and livelihood has become the balancebetweenecologicalrestoration, Thus, cultivating maybeatriskofabandonment. labor force,alargeamountoflandplotsunder decreasing numbersandqualityofagricultural from wildlifedamage.Onetheotherhand,with the remainingagriculturalproductionareas wildlife, whichmaymake ithardertoprotect may providenaturalhabitatsforprotected migration andthefollowinglandabandonment hand, theecologicalrestorationcausedbylabor 2010, Chapmanand1999).Onone References Necessary restoration. ecological to significance should rethinktheincreasingforestareaandits return farmlandtowoodland.Thegovernment should respectthelocalpeople’s willingnessto (national, provincialandlocalgovernment) thegovernmentatalllevels abandonment, approach. Intermsofthepermanentcropland than unilaterallybasedonwildlife-oriented especially in poorand mountainous areas,rather has becomemoreandimportantinChina, sustainable landuseandecologicalrestoration of Bhadra Tiger Reserve, south India. Environmental Management, 31,0466-0475. southIndia.Environmental Management, of BhadraTigerReserve, Madhusudan, M. (2003) Livingamidstlargewildlife: livestockandcropdepredationby largemammalsintheinteriorvillages Li, W. 201,33-41. (2004)Degradation andrestorationofforestecosystemsinChina.ForestEcology andManagement, Program inwesternChina.Proceedings oftheNationalAcademySciences,108,7721-7726. Daily(2011)Ruralhousehold incomeandinequalityundertheSlopingLandConversion C. Li, J.,M.W. Li&G. Feldman, S. policy, 27,108-118. F.Lambin, E. &P. Meyfroidt(2010)Landusetransitions:Socio-ecological feedbackversussocio-economicchange.Landuse of thealpineavifauna.JournalApplied Ecology, 41,294-304. Laiolo, P., F. Rolando(2004)Consequencesofpastoralabandonmentforthestructureanddiversity Ciliento&A. Dondero,E. agricultural landscapes.Nature,413,723-725. Kleijn, D., F. Berendse, R. Smit & N. Gilissen (2001) Agri-environment schemes do not effectively protect biodiversity in Dutch 128,988-999. Bardia NationalPark, Nepal.Journalofenvironmental management, T.Karki, S. incentivescontributetosustainablelivelihoods? Acasestudyof (2013)Doprotectedareasandconservation 574-578. Lawrence(1999)TheUScarbonbudget:contributionsfromland-usechange.Science,285, J.Hackler&K. Houghton, R., 65,23-28. Conservation, Hough, J. L. (1993) Why burn the bush? Social approaches to bush-fire management in West African national parks. Biological 19,79-86. andthesurroundingagriculturallandscape.JournalforNatureConservation, Issues offortressconservation conflict: human–wildlife and scarcity resource to households by Responses (2011) Southworth J. & Goldman A. J., Hartter, 12,269-278. modeling &assessment, in theSwissmountains:aspatialstatisticalmodelbasedongeophysical andsocio-economicvariables.Environmental Gellrich, M.,P. Zimmermann(2007)Naturalforestregrowthasaproxy variableforagriculturallandabandonment Baur&N.E. good practices.SARD. FAO, InitiativeReport, Rome. and strategies management of analysis studies, case of collection worldwide: Conflict Human-Wildlife (2005) E. Distefano, landscape planning.LandscapeandUrbanPlanning,99,207-217. Marín (2011) Drivers of land abandonment in Southern Chile and implications for Echeverría & S. Nahuelhual, C. I., L. Díaz, G. County ofHenanProvince.ProgressinGeography, 29,1067-1074. Chen, Y., Li,H.Zhu&W. X. Zhang(2010) AgriculturallanduseresponsestoincreasinglaboropportunitycostinSuixian Biology, 13,1301-1311. Conservation J. Chapman(1999)Forestrestorationinabandonedagriculturalland:acasestudyfromEastAfrica. &L. A. Chapman, C. an as 443-455. areas protected of effectiveness and extent the Measuring indicator formeetingglobalbiodiversitytargets.PhilosophicalTransactions(2005) oftheRoyalSocietyB: BiologicalSciences,360, Lysenko I. & Spalding M. Harrison, J. S., Chape, World 34,1808-1830. development, Schmidt-Soltau Cernea, M.&K. andresettlement. (2006)Poverty issuesinconservation risksandnationalparks:Policy (2012) Biodiversitylossanditsimpactonhumanity. Nature,486,59-67. Gonzalez, A. D. Hooper,Duffy, U. E. J. J., B. Cardinale, C. Perrings, Mace, M. G. A. & Tilman D. Wardle P. D. Narwani, A. Venail, residents ofNorthwesternChina:perceptionsaffectedbytheprogram.EcologicalEconomics,69,1454-1462. Wang, X. Y.Cao, S., Chen&Q. Programonthelivelihoodsof Feng(2010)ImpactsoftheNatural ForestConservation Song,L. biodiversity. tropical protecting in parks of Effectiveness (2001) Science, 291,125-128. Fonseca Da A. G. & Rice E. R. Gullison, E. R. G., A. Bruner, 140,273-296. their habitatvaluesforrecoveringforestfauna.BiologicalConservation, P. McAlpine,A. Smith(2007)Regrowthforestsonabandonedagriculturalland:areviewof A. C. C. House&G. Bowen, M.E., ActaTheriologica,57,351-359. damage inHungary. Bleier, Szemethy Csányi (2012)Relationshipsbetweenwildungulatesdensityandcrop Lehoczki,D. &S. L. N.,R. Újváry, science,nutritionandnaturalresources,2,1-14. reviews:perspectivesinagriculture,veterinary consequences. CAB ofdriversand Martins,J.M.Nicolau&Schulz(2007)Abandonmentofagriculturalland:anoverview A. Benayas, J.R., Monographs, 24,349-376. Ecological (1954)Ecologicalsuccessiononabandonedfarmlandsanditsrelationshiptowildlife management. L. Beckwith, S. China (No.41161140352). by theNationalNaturalScienceFoundationof Financial supportforthisresearchwasprovided Funding wild animals. government to eliminate the negative effects of `compensation scheme,shouldbetaken by top-down protectionmeasures,suchasfarmers

GLPNEWS | NOVEMBER 2015 73 Feature - Article 74

GLPNEWS | NOVEMBER 2015 Feature - Article Yu, H.,J.Wu &Y. Fan ondamagesbywildboarinEastLiaoning.ChineseJournalofWildlife,30,124-128. (2009)Survey Xu, J.(2011)China’s newforestsaren’t asgreentheyseem.Nature,477,371. reduction oftheratebiodiversityloss.BioScience,59,843-852. Xu, H., X. Tang, J. Liu, H. Ding, J. Wu, M. Zhang, Q. Yang, Cai, L. H. Zhao & Y. Liu (2009) China’s progress toward the significant National Park, Bhutan.WildlifeSocietyBulletin,34,359-365. Wang, W., S. P. D. Curtis & J. P. Lassoie (2006) Farmer perceptions ofcropdamageby wildlife inJigme Singye Wangchuck Bardia at National Park, Nepal.CropProtection,29,1297-1304. villages two of study case A damage: wildlife against methods protection crop of Effectiveness (2010) S. Thapa, Applied Ecology, 4,271-280. Tasser, and Basic landslides. U. of & probability Mader the M. on Tappeiner grasslands alpine in E., use land of Effects (2003) Landscape. PloSone,8,e70379. Das,P.Sreekar, Mohan,S. A. Vivek(2013)NaturalWindbreaksSustain BirdDiversityinaTea-Dominated R., &R. Agarwal 450-459. 141, A meta-analyticalapproachtobirddistributionchangesinthenorth-westernMediterranean.BiologicalConservation, biodiversity? on impact an having abandonment land Is (2008) Martin & J.-L. Fonderflick J. Burfield, I. Brotons, L. C., Sirami, 2012.MitigatingHuman-elephantconflictsinXishuangbanna,China.Singapore:NationalUniversityofSingapore. Shu, C. insights fromavillage-levelanalysisinJiangxiProvince,China.ChinaEconomicReview, 22,524-533. pollution? New environmental agriculture-based F. to off-farm& contribute Does Heerink employment (2011) N. Qu X., Shi, 25,160-171. Rajasthan,India.EnvironmentalConservation, Reserve, Sekhar, N. U. (1998) Crop and livestock depredation caused by wild animals in protected areas: the case of Sariska Tiger Journal ofAgriculturalEconomics,89,490-507. Rondeau, D. Bulte(2007) Wildlifedamageandagriculture:adynamicanalysisofcompensationschemes.American &E. Mediterranean mountainarea(Catalan 23,362-368. Pre-Pyrenees). MountainResearchandDevelopment, J.Latron&P.Poyatos, R., Llorens(2003)Landuseandlandcoverchangeafteragriculturalabandonment:thecaseofa Agrawal(2010)DoesREDD+threatentorecentralize forestgovernance.Science,328,312-313. Webb &A. L. Phelps, J.,E. 143,2918-2925. Biologicalconservation, dominated landscapes:ForestcommonsinSouthAsia. andlivelihoodsinhuman- Benson(2010)Biodiversityconservation Agrawal&C. H.Fischer,Persha, Chhatre,A. L., A. spatial optimisationmodel.EnvironmentalModelling&Software,26,1622-1638. Orsi, F., Church&D. andrurallivelihoods:A Geneletti (2011)Restoringforestlandscapesforbiodiversityconservation L. R. local livelihoods.Annu.Rev. Environ.Resour., 30,219-252. Naughton-Treves, biodiversityandsustaining Brandon(2005)Theroleofprotectedareasinconserving M.B.Holland&K. L., priorities. Nature,403,853-858. Mittermeier, Mittermeier, DaFonseca&J.Kent (2000) Biodiversityhotspotsforconservation G. A. A. Myers, N., R. C. G. into opportunities. challenges turning management: conflict human–wildlife of International Biodeterioration&Biodegradation,45,97-102. emergence The (2000) A. T. Messmer, governance of land and natural resources. It and resources. natural and land of governance disparities multidimensional its services, concentrates CDE research on natural resource and ecosystem South. and North development sustainable in cooperationwithpartnerstheglobal for share and whose produce knowledge to Bern, is of goal University overarching the of centre Switzerland. Bern, research The CDEisaninterdisciplinary in (CDE) of Environment Development for Centre the by hosted 2016onwards,theGLP-IPOwillbe January We arepleasedtoannouncethatfrom International ProjectOfficeismoving. in São José dos Campos, Brazil, the GLP National InstituteforSpaceResearch(INPE) After fouryearsofbeingbasedatthe Project Officeis moving From Brazilto Switzerland: theGLPInternational NEWS visit www.cde.unibe.ch pleaseFor more information about the CDE, Project OfficeinBern. for its2016-2020phasewiththeInternational opportunities, developmentsandperspectives inopeningupexciting newGLP looksforward global forumdevelopment. formulationand contributed tolandpolicy dialogue betweenscienceandsocietyhas and long-standingexperienceinfostering developed countries.TheCDE has alsoabroad partnership networkindevelopingaswell works atmultiplescalesandmaintainsawide general andlandsystemscienceinparticular, has astrongfocusonsustainabilitysciencein

GLPNEWS | NOVEMBER 2015 75 News 76

GLPNEWS | NOVEMBER 2015 News Land Projectperspective.TheAnthropocene.http://dx.doi.org/10.1016/j.ancene.2015.09.004 Verburg etal.,2015.LandSystem Scienceandsustainabledevelopmentoftheearthsystem.AGlobal the GlobalLandProject. The perspective provided on current research priorities is the basis of the new 10-year science plan of tosynthesize are coretothemandateofGlobalLandProject. applied tools and methods different activities perspective and Synthesis disciplines. different and to studies case different across information dedicated is paper the of part important An provisioning. andecosystemservice conservation sustainability solutions,rangingfromlandgovernancetosystemarchitectureforbiodiversity socio-ecological systemsdynamicsbutalsoprovidesguidanceinthedesignandimplementationof http://www.esajournals.org/doi/abs/10.1890/14-2274.1 inanincreasinglyanthropogenic biosphere arepresented.Full article is available at and conservation geophysical processesare now. Strategiesforachieving thisgoalandforadvancing ecologicalscience andpracticeasbiological and sociocultural processes mustbecomeas muchapartofecological theory and addresstheultimatecauses ofanthropogenicecologicalchange,notjustthe consequences,human and anthromes. The “fluxes of nature” are fast becoming “cultures of nature.” To biogeography, novelecosystems, including social–ecological systems,socialmetabolism,countryside investigate, understand, alignswithand integratesestablishedtheoreticalframeworks anthroecology theory development, Thoughstillatanearlystageof implications acrossthesubdisciplines ofecologyandconservation. trajectories of long-term anthropogenic ecological change that have significant theoretical and practical generates empirically testable hypotheses on the forms and and thebiosphere. Anthroecology theory succession, ecosystem processes, and the ecological patterns and processes of landscapes, biomes, ecological biogeography, on societies human of effects transformative sustained the cannot, theory of thebiosphere.Humansocioculturalnicheconstruction canexplain,whereclassicecological main causeofboththelong-termupscalinghuman societiesandtheirunprecedentedtransformation engineering, social specialization, and non-kin exchange, or “sociocultural niche construction,” is the anthroecological changeholdsthatsocioculturalevolution ofsubsistenceregimesbasedonecosystem of construction, inclusiveinheritance,culturalevolution, ultrasociality, andsocialchange,thistheory change overhumangenerationaltime.Buildingonexisting theoriesofecosystemengineering,niche ecology andhowtheseanthropogenicalterationsunfold overtimeandspaceassocietiesthemselves why human societies gainedthecapacitytogloballyalterpatterns,processes,anddynamicsof ispresentedtoexplain humans reshapetheseoverthelongterm.Here,ageneralcausaltheory or successfullymanageecologicalpattern,process,changewithoutunderstandingwhy andhow It isnolongerpossibletounderstand,predict, that istransformingtheecologyofanentireplanet. Humans, unlike any othermulticellularspeciesinEarth’s haveemergedasaglobalforce history, Erle C.Ellis Ecology inananthropogenic biosphere driving factors to a field that not only aims to understand complex tounderstand aims only not that field a to factors driving landchangeandelicitationoftheunderlying from afocusonobserving During the past 10 years land system science has matured and moved their on reflect project core IGBP development. all which in Anthropocene’ ‘The for thecomingperiod.Thepaperispartofaspecialissuejournal provides aperspectiveoftheresearchdirectionsandsciencepriorities Land System Scienceoverthepast10yearsofprogrammeand In a new paper the Global Land Project look back at the progress of synthesis andoutlookpaper Project publishes The GlobalLand E-mail: [email protected] /[email protected]; [email protected] /[email protected] seminar aimed at establishing the particularities of seminar aimed atestablishingtheparticularities of around the GLP-IPO in Brazil. More specifically, the the region,buildingon networkdeveloped for field research this of perspectives establishing in landsystemsscience LatinAmerica,andof synthesizing andconceptualizing existingadvances This seminarhadtheobjective ofgathering, Objectives using integrativecross-levelmethodologies. knowledge and stakeholder and engagement, collaboration, co-productionof cross-disciplinary environmental andclimatechange,assuming funding programsrelatedtosustainability, global emerging internationalresearchagendasand engage anddeveloparegionalperspectiveto there isaneedforLatinAmericanresearchto production, water, and energy. In this context, of landresources,suchasthenexusfood disciplines andresearchonlinked outcomes growing attention on the articulation of different with in termsofscope,methodsandtheory Land system research is evolving rapidly both 2014; GrauandAide,2008). drive landusechanges(Bonilla-Mohenoetal., et al.,2013)anddistantmarket connectionsthat of specific ecosystem functions and services (Grau sparing”) vs.integration (“land sharing”)models et al.,2014),discussionaboutseparation(“land gas emissions (Aguiar et al., 2007, 2012; Ometto use change,biomassandrelatedgreenhouse (de Espindolaetal.,2012),modellingofland interface, with emphasis in the Amazon region study oflandsystemsandtheforest-agriculture science linked with GLP, are for example the Recent advancesinLatinAmericanlandsystem promote landsystemscienceinLatinAmerica. GLPtooktheopportunitytoadvanceand context, (INPE) inSãoJosédosCampos,Brazil.Inthis at theInstitutoNacionaldePesquisas Espaciais based been has Office Project International GLP processes (Verburg etal.2013).Since2012,the thehuman technologicalandorganizational socioeconomic, with deals use ofland, its consequences, and therelated that research of field Land systemsciencehas emerged as anintegrative Introduction 1 International Seminar achievements andperspectives SystemLand Science America: inLatin Sébastien EarthSystem Science Centre-CCST; NationalInstitute forSpaceResearch -INPE;SãoJosé dosCampos;SãoPaulo; Brazil Boillat 1 |Fabiano MichelettoScarpa advancement andremaininguncertainties? implicationsofboth tackled? Whatarethepolicy in knowledgeofland-atmosphereinteractionsbe research? Moregenerally, howcanuncertainties advances andtheirimplicationsforglobalchange corpus. Whataretheperspectivesofthese their owndatasets,analysesandknowledge research institutionsareincreasinglyproducing LatinAmerican and Pueyo,2012).Inthiscontext, (Fearnside of emissionfromtropicaldamreservoirs quantification the and 2012) al., et (Aguiar models include thedevelopmentofbiomassandemission live monitoringofforestcoverchange,advances and greenhousegasemissions.Thus,besides address therelationshipbetweenlandusechange consequences ofthesechanges,especiallyto systems have gradually included models of the by INPE(seeFearnside,2015,thisissue). These PRODES projectandDETERsystemdeveloped systems inBrazilandLatinAmerica,suchasthe advances in developing change monitoring In thelastdecades,therehavebeensubstantial interactions inLatin America 1) Land change monitoring and land-atmosphere the land. The social-ecological systems of Latin the land.The social-ecologicalsystems ofLatin shape theirviews,interests andrelationshipswith cultural andsocio-economic backgrounds, which and spontaneous settlements, have different socio- farmers, Andeancolonistsin theAmazon, planned colonists,mestizo andmulato and Asian-descent 2008). Indigenouspeoples, African-,European- and withingroups(Brondizio,2013;Killeenetal., political andeconomicpowerrelationsamong andbystrongsocial, their settlementhistory, Latin Americanlandusersarecharacterized by management systems inLatin America 2) Social-ecological landscapes and land Research -INPEinBrazil. November 2015attheNationalInstituteforSpace seminar whichtookplacefrom9thto11thof Three mainresearchtopicswerediscussedatthe American particularitiesandexperiences? What cantherestofworldlearnfromLatin “Latin Americanschool”inlandsystemresearch? of landsystemscience.Canwespeakabouta aspects specific advancing in role leading takea to the LatinAmericanregionthatenablesresearchers 1

GLPNEWS | NOVEMBER 2015 77 Noticeboard 78

GLPNEWS | NOVEMBER 2015 Noticeboard References processes, thesepressuresposenewchallenges indigenous landsandotherlandrightsrecognition the in areas,reserves, region, includingconservation flourished have instruments governance and miningactivities.Whileland-based urbansprawl,treeplantations abandonment, understudied landchangepatterns,suchas Furthermore, the region also experiences from overseas(Gasparri anddeWaroux, 2014). like agrowingdemandforagriculturalproducts and areincreasinglylinked todistantdrivers agricultural frontiersintoforestedareaspersist population (UN-HABITAT, 2012).Nevertheless, population andanoveralldiminishingrural Latin Americahastheworld’smosturbanized 3) Landgovernance andtelecouplings to increasetheresilienceofthesesystems? knowledge land systems claimedandusedbylandusersbebridged different Can systems? these in enhanced and identified be elements sustainability challenges tothesesystems.Howcanresilienceand pressure onlandresourcesothersposesmultiple 1). However, landabandonmentinsomeareasand functional andresilientculturallandscapes(Figure producers andtraditionalcommunitiesinshaping growing recognitiononthepotentialofsmall relatively overlooked untilrecently, andthereis America andtheirlandscapefootprintshavebeen and LocalRealities.” Current Opinion inEnvironmentalSustainability 5(5):433–37.doi:10.1016/j.cosust.2013.08.001. Verburg, Peter H, Karl-Heinz Erb, Ole Mertz, and Giovana Espindola. 2013. “Land System Science: Between Global Challenges Cities (Nairobi). United NationsHumanSettlements Programme(UN-HABITAT) (2012).StateoftheWorld’s Cities2012/2013.Propserityof maps: tacklingtheuncertaintyin carbon emissionestimates.ClimaticChange124,545–560. Ometto, J., Aguiar, T., Assis, A., Soler, Valle, P., L., Tejada, Lapola, D., G., and Meir, P. (2014). Amazon forest biomass density Land-Use ChangeinEasternBolivia: Who,Where,When,andHowMuch? Ecology andSociety13,36. Calderon,V.,Killeen, T.J., Calzada,M.,Correa,L., Quezada,B.,andSteiniger, Guerra,A., Soria,L., (2008).Total M.K. Historical Sustainability 5,477–483. Current Opinion globalization in and Environmental the balance between agricultural production and nature conservation. Kuemmerle,T.,Grau, R., (2013).Beyond“land sparingversuslandsharing”:environmentalheterogeneity, andMacchi,L. andAide,M.(2008).GlobalizationLand-UseTransitionsGrau, H.R., inLatinAmerica. EcologyandSociety13,16. Lettersn/a–n/a. andlandchangescience.Conservation policy challenges forconservation Gasparri, N.I.,anddeWaroux, Y. leP. (2014).ThecouplingofSouthAmericansoybeanandcattleproduction frontiers:new Fearnside, P.M., (2012).Greenhouse-gasemissionsfromtropicaldams.NatureClim.Change2,382–384. andPueyo,S. Fearnside, P.M. (2015).NaturalrichesofAmazonia, deforestation anditsconsequences.GLPNews22–25. Brazilian Amazon basedonremotesensingandcensusdata.AppliedGeography 32,240–252. deAguiar,de Espindola,G.M., A.P.D., (2012).Agriculturallandusedynamicsinthe andFonseca,L. Pebesma, Câmara, G., E., Perspectives: JournaldeLaReseauxFrancaise 2013, 10–13. d’InstitutD’étudesAvancées (RFIEA) intheAmazon. (2013).AmicrocosmoftheAnthropocene:Socioecologicalcomplexityandsocialtheory Brondizio, E.S. America. GLPNews5–7. J. (2014). Globalization and land Aide, use M., in Álvarez-Berríos, Latin N., and Babot, Bonilla-Moheno, M., Grau, H.R., framework appliedtotheBrazilianAmazon. GlobChangeBiol18,3346–3366. D., etal.(2012).Modelingthespatialandtemporalheterogeneityofdeforestation-driven carbonemissions:theINPE-EM Aguiar, A.P.D., Ometto,J.P., Soares,J.V., Lapola,D.M.,Vieira,I.C., Nobre,C., Almeida, C., Valeriano, Saatchi,S., Alvala,R., Amazonia: intra-regionalheterogeneity. Exploring EcologicalModelling209,169–188. Aguiar, A.P.D., (2007).Spatialstatisticalanalysisofland-usedeterminantsintheBrazilian andEscada,M.I.S. Câmara,G.,

management practices. Photoby SébastienBoillat andthreatenexistingsustainable traditionalmight alsomodify abandonment mayrelievepressureontheseecosystems, they land and migration urban rural-to While ecosystems. threatened forests intheBolivianAndes.Polylepis forests arehighly Figure 1. Agrosilvopastoral systemundernativePolylepis governance beimplementedintheregion? land cover? and land efficient and equitable sustainable, can How use land affect formalization) How mightgovernanceinitiatives(e.g.landtitle to dealwithpressuresoverlandresources? Are territorialgovernanceinstrumentsadequate region’s landscapesduringthecomingdecade? drivers intheregionandhowmighttheyshape What arethepotentialtrendsindistalandlocal conflictive relationships between land user groups. for landgovernanceintheregion,andcanleadto Further information can be found at: http://www.pecs2015.org/ for afuturesocial-ecologicalresearchagenda,especiallyinlightofFuture Earth. achievements andambitions,tosynthesize andintegratePECS-related researchtoprovideabasis interested indevelopingnewsolutionsandstrategies.TheconferenceisintendedtohighlightPECS will engage and involve multiple stakeholders concerned with sustainable development and who are share cutting-edgeresearchinsightsonsocial-ecologicaldynamicsintheAnthropocene.Theconference PECS 2015willgatherscientistsfromvariousdisciplines,withinandbeyondthePECS network,to Call for sessionsdeadline:20 Conference website:http://www.glp-osm2016.com/ papers submittedtotheGLPOSM. amid theGLPOSM2016.Itisplannedtoorganize afewspecialissuesbasedonthesessionsand full Special GLPawardssuchasbeststudentposter/oral presentationawards,GLPwillbelaunched - Novellandgovernancesystemstomanagenaturalresources - Managingtrade-offsandsynergiesforsustainableland systems - Landsystemsandthewater, food,energynexus - Landsystemsinanurbanizingandtelecouplingworld building andextrapolation.Theconferencecoversthefollowingmainthemes: build a community in this highly interdisciplinary field, inspire new research and facilitate review, theory community workingonlandsystemissues,showcasethewidthandscopeofongoingresearch,help (IPO) of GLP. Office TheaimofGLP3rdOSM2016istobringtogetherlargepartstheinternationalresearch Project International and (SSC) Committee Steering Scientific of coordination the under The upcomingthirdOSM2016willbeorganized bytheChineseAcademyofAgriculturalSciences realities anddeveloping solutions” system“Land science: understanding th December2015

GLPNEWS | NOVEMBER 2015 79 Announcements 80

GLPNEWS | NOVEMBER 2015 Announcements Get involved (www.globallandproject.org) to application guidelines. (www.globallandproject.org) To have yourprojectendorsed by GLP, please,lookatthe'Getting Involved'sectioninour website Have yourprojectendorsedby GLP andincludedintheGLPWebsite e-news oronGLPwebsite.If youwanttocontribute,pleasecontactussendinganemail to:[email protected] We areopentoannounce eventsandpublicationsrelatedtoGLPscienceonour monthlyGLP Call forannouncementsin GLPe-NewsandWebsite contribute, please,contact theIPObye-mail:[email protected] IfyouwouldlikeGLP IPOisnowacceptingcontributionstothenextissue ofGLPNEWS. to Call forcontributions –nextGLPNews [email protected] To pleasesubscribeat: jointheGLPNetworkandreceive e-NewsandtheGLPNEWS, Join theNetwork reconstructions areessentialtoadvancing historical global improved differences; large land useandcoverscenariosshowvery major prioritiesinclimatemodelling.Early regional climatemodelsremainsoneofthe land useandcoverchangeinglobal Adequate incorporation of anthropogenic transforming Earthsystemprocesses. understand theroleofearlylandusein and landcoverchangesarerequiredto reconstruction ofprehistoriclanduse Major advancesinquantitativeglobal cene: EarlyLandUseandEarthSystem Change GLP andPAGES session:Dating theAnthropo- food and biofuels are but twomanifestations. grabs andthecompetitionbetweencropsfor land claims: competing and conflicts of site sustainability. Consequently, landisalsothe important siteofpoliciesaimedatachieving largely byhumanactivities,ithasbecomean Becauselandisshapedtoday that relyonit. societies the and land affect turn, in changes, Such ecosystems andbiogeochemicalcycles. theclimate, and urbanisationallmodify For example,deforestation,agriculture processes that constitute global change. interplay ofthephysical, socialandeconomic Earth’s landsurfaceembodiesthedynamic on landinachangingworld GLP Session:Emergingperspectives hydrosphere interactions. to rapidglobalchange;4)land-atmosphere- 3) novel land-use practices for responding use change; 2) trade and teleconnections; and implicationsofhistoricfutureland- but notlimitedto:1)drivers,trajectories welcome contributionsontopicsincluding explore emergingperspectivesonland.We group ofnaturalandsocialscientiststo This sessionaimstobringtogetheradiverse eeain o ul dsrb te global cover changefromitsfirstbeginnings. the land and use describe land anthropogenic of history fully to knowledge generation interdisciplinary collaborative accelerating paleo- of and goal the towards modellers archaeologists from historians, ecologists, contributions encourages the timing of human alterations. This session for baselines empirical robust more in of need are conservation and science Further,ecological Anthropocene. the of emergence the date to efforts and science system Earth Sapajus libidinosus-an endemicspeciesoftheBrazilian CerradoSapajus libidinosus-an Photoby Fabiano (a M.Scarpa. biodiversity hotspot).

GLPNEWS | NOVEMBER 2015 81 Announcements 82

GLPNEWS | NOVEMBER 2015 Biosphere Programme(IGBP). Earth System Science Center(CCST) andTheInternationalGeosphere- Brazil,The from theNationalInstituteforSpaceResearch–INPE, GLP International ProjectOfficeisthankfulforthefinancialsupport Programme (IGBP) andFuture Earth. GLP isajointresearchprojectoftheInternationalGeosphere-Biosphere Graphic design:LucianoUrizzi,MagnoStudio,Brazil 1 Earth System ScienceCenter(CCST), Av. 1758 dosAstronautas, Earth System ScienceCentre-CCST National InstituteforSpaceResearch-INPE GLP International ProjectOffice www.globallandproject.org www.globallandproject.org Fone: +5512-32087931/7942 São JosédosCampos-Paulo -Brazil Jd. Granja-12227-010 st floor, room22