Um.X Oad ,Uem Mmi E Aot U T.So(I IUURI
Total Page:16
File Type:pdf, Size:1020Kb
" t;,,-J ) },,V'-_m,_H ...... WU'_ .' - -_-,v,_ .) 066I '_ LelAI "ou/ pa_ea_Ul _ uoD_ •..¢qp_ttas_d _ fIILBLs"exa,l, '_V _.msqoaltt :_u.uoau#ux pus _qm.t.aau._u X aaedsoaa v jo _,uam_eda(I m._m_V _e _oxo& jo &!_aA.mfl aq£ um.x_Oad ,uem_mmI_ s!_qo(I [e_!q_o OA!suoqoa_oD e aot u_t.so(I IUURI ExecuUveSummary STRES, Incorporated has recently been contracted for the desigr_ of a comprehensive program for the control of orbital debris. This document describes the rationale and specifics of this type of design, as well as details the various components of the overall plan_ The problem of orbital debris has been steadily worsening since the first successfullaunch in 1957. Currently countries spend billionsof dollars in attempts to shield space operations from damage caused by debris,and still these operations are often rendered useless by damage from collisionswith debris. The hazards posed by orbitaldebris suggest the need for a progressive plan forthe prevention offuture debris,as well as the reduction of the current debris level. The proposed debris management plan includes debris removal systems and preventativetechniques and policies. The debris removal is directedat improving the current debris environment. Because of the variance in sizesof debris a single system cannot reasonably remove all kinds of debris. An active removal system, which deliberately retrievestargeted debrisfrom known orbits,was determined to be effectivein the disposalofdebristracked directlyfrom earth. However, no effectivesystem is currentlyavailableto remove the untrackable debris. The debris prevention program is intended to protectthe orbitalenvironment from future abuses. This portion of the plan involves various methods and rules for future prevention of debris. The preventative techniques are protective methods that can be used in future design of payloads. The prevention policiesare ruleswhich should be employed to forcethe prevention of orbitaldebris. The design process was governed by a management structure headed by a projectmanager and a technicalmanager. The projectwas completed on time and $7,432 over budget. Table ofContents Executive Summary ................................. i Table ofContents ................................... ii List of Acronyms ................................... vi Listof Figures ..................................... vii ListofTables ...................................... ix 1.0 INTRODUCTION ................................ 1 2.0 ORBITAL DEBRIS BACKGROUND AND SEVERITY ......... 2 2.1 Background ................................ 2 2.1.1 Types of Space Debris ...................... 3 2.1.1.1 Mission Related Debris ................ 3 2.1.1.2 Explosion Remnant Debris .............. 4 2.1.2 Evidence of Damage from Space Debris ........... 5 2.2 Current Problem ........................... 6 2.2.1 Location ofSpace Debris ..................... 8 2.2.2 Hazards of Space Debris ..................... I0 2.2.2.1Primary Debris ..................... 11 2.2.2.2 Secondary Debris .................... 12 2.2.3 ProbabilityofCollisionwith Space Debris........... 12 2.2.4 Mission Modificationsdue to Space Debris ......... 14 2.3 Expected Debris Growth Rate ..................... 15 3.0 SYSTEM SELECTION ............................. 17 3.1 Direct Costs ................................ 17 3.1.1 Technological Developments .................. 17 3.1.2 System Weight and Size ..................... 17 3.1.3 Launch Vehicle ............ , ............. 18 3.1.4 Lifetime ............................... 18 3.2 IndirectCosts ............................... 18 3.2.1 Property Damage ......................... 19 ii 5.1.20nboard Deorbit Devices ..................... 63 5.1.2.1 Drag Balloon ....................... 63 5.1.2.2 Deorbit Engine ..................... .66 5.1.2.3 Additional Station Keeping Fuel ........... 67 5.1.3 Design Alterations ........................ 68 5.1.3.1 Rocket Redesign .................... .68 5.1.3.2 Separation Mechanism Redesign .......... 68 5.1.3.3 ASAT Altitude Limitations .............. 68 5.1.3.4 Development of Durable Bonding Agents ..... 69 5.1.3.5 Battery Redesign ................... .69 5.2 Prevention Treaties ............................ 69 5.2.1 Liability Policy ........................... 70 5.2.2 Removal Policy .......................... 71 6.0 MANAGEMENT REPORT .......................... 73 6.1 Project Schedule ............................ .73 6.2 Cost Report ................................. 76 7.0 REFERENCES .................................. 79 7.1 References for Introduction ...................... 79 7.2 References forOrbitalDebris Background and Severity ..... 79 7.3 References forSystem Selection .................... 81 7.4 References forDebris Removal Concept .............. .81 7.5 References forPrevention Concepts ................. .82 Appendix A. Methods Used toSelectSpacecraftSubsystems Appendix B. Fuel Mass Calculationsforthe Deorbit Device Appendix C. CalculationsforProposed Active Removal System Sample Mission PRECEDING PAGE BLANK NOT FILMED ListofAcronyms ASAT Anti-satellite DPS Data Processing System DUS Deployable Umbrella Satellite GNC Guidance, Navigation and Control IMU InertialMeasurement Unit LADAR Laser Detection and Ranging LBU Laser Beam Unit LDEF Long Duration Exposure Facility LEO Low Earth Orbit NASA National Aeronautics and Space Administration NORAD North American Air Defense Command OMV Orbital Maneuvering Vehicle POV Proximity Operations Vehicle RCS Reaction Control System RMS Remote Manipulator System ROBS Resuppliable OrbitalBase System RTG Radioisotope Thermoelectric Generator RRS Resuppliable Roving Systems RS Repulsor Satellite RV Roving Vehicle Solar MAX Solar Maximum Mission Satellite SRRV Single Rendezvous and Return Vehicle STRES Space Trash Removal and Elimination Systems USSPACECOM United States Space Command UN United Nations UNCOPUOS United Nations Committee on the Peaceful Uses of Outer Space vi ListofFigures Figure Page I. Natural Debris Flux Versus Mannmde Debris Flux ........ 2 2. Causes of SatelliteFragmentations ................... 5 3. Types ofTrackable Objects ........................ 7 4. Growth Rate of Catalogued Objects ................... 7 5. SpatialDensity ofOrbitalDebris at Various Inclinations ..... 9 6. Flux Variation forLarge Debris at Various Altitudes ....... 9 7. Flux Variation for Small Debris at Various Altitudes ....... 10 8. NORAD's Operational DetectionAbility ................ 13 9. CollisionsBased on Estimated Debris Growth Rates ........ 14 10. Kessler'sModel of the Debris Population Growth .......... 16 11. Roving Vehicle ............................... 23 12. Orbital Maneuvering Vehicle ...................... 25 13. PropulsiveDeorbit Device ........................ .28 14. Stacked Deorbit Devices .......................... 30 15. Attachment Mechanism ......................... 31 16. Refueling Module .............................. 32 17. Resuppliable Roving System Mission Scenario ............ 35 18. Orbiting Refueling Base .......................... 41 19. Resuppliable Orbiting Base System Mission Scenario ....... .42 20. Single Rendezvous and Return Vehicle ................ 44 21. Direct Removal System Mission Scenario ............... 45 22. Laser Beam Unit .............................. 46 vii Page Figure 3. Laser Beam System Mission Scenario ................. 48 24. Deployable Umbrella Satellite ...................... 50 25. Umbrella SatelliteSystem Mission Scenario ............. 51 26. Foam Ball Satellite............................. 52 27. Foam Ball System Mission Scenario .................. 53 28. Repulsor Satellite.............................. 57 29. Charge Repulsion System Mission Scenario ............. 58 30. Damage to a Front Louver ofSolar MAX ................ 61 31. Spray Pattern on a Back Louver ofSolar MAX ............ 61 32. Multi-layerBumper Shield ........................ 62 33. Corrugated Bumper Shield ........................ 62 34. Space Debris Prevention Using Drag Deorbit Balloon ........ 64 35. Decay Time with and without Balloon Drag .............. 65 36. Balloon Radius Required for90-Day Decay .............. 65 37. Balloon Mass Required for90-Day Decay ................ 65 38. Space Debris Prevention Using Deorbit Engine ............ 66 39. Mass Required forPropulsiveDeorbit Device ............. 67 40. Mass Penalty forAdditionalFuel .................... 67 41. STRES, Inc.Organizational Structure ................. 74 42. Revised ProjectSchedule ......................... 75 viii ListofTables Table Page I. Summary of Risks from Debris ..................... 11 2. Roving Vehicle Subsystems and Masses ............... _5 3. Deorbit Device Subsystems and Masses ................ 29 4. Refueling Module Components and Masses ............. 33 5. Launch Vehicle Capabilities ....................... 36 6. SatellitesSelectedforRemoval in Sample Mission .......... 37 7. Sample Mission Chronology ....................... 38 8. Sample Mission Av and Fuel Requirements .............. 39 9. Cost ofProposed ActiveRemoval System ................ 40 10. Anticipated ProjectCosts ......................... 77 11. Total ProjectCosts ............................. 78 ix 1.0 INTRODUCTION Due to the increasing hazards of orbital debris, Space Trash Removal and Elimination Systems (STRES), Incorporated was contracted under proposal #ASE274L to submit a comprehensive program for the control of orbital debris. STRES, Inc. will provide a plan for removal and prevention of debris as a method of reducing the danger to space personnel and active operations.