Pentatomidae, Stink Bugs

Total Page:16

File Type:pdf, Size:1020Kb

Pentatomidae, Stink Bugs Beneficial Insects Class Insecta, Insects Order Hemiptera, True bugs Hemiptera means “half wing” and refers to the fact that the top half of the first pair of wings is toughened and hard, while the bottom of the first pair and the second pair are membranous. Hemipterans also have piercing and sucking mouthparts; some suck plant juices and are plant pests, while others are predators and can inflict a painful bite. The order includes both crop and animal pests, as well as beneficial predators. Stink bugs Family Pentatomidae Description and life history: These medium-sized insects are 10–15mm and usually green or brown with a broad, shield-shaped body. Many discharge a distasteful smell when handled. Most are plant feeders, but a few prey on significant ornamental pests. Prey species: The genera Podisus and Perillus include several highly efficient predators of important pests. Podisus maculiventris, spined soldier bug, and Perillus bioculatus, twospotted stink bug, feed on caterpillars and leaf-feeding beetles such as the Colorado potato beetle and Mexican bean beetle. Both are available commer- cially in the United States. Twospotted stink bug nymph feeding on beetle larva. (W47) Photo: Whitney Cranshaw Podisus maculiventris, spined soldier bug adult attacking a tussock moth caterpillar. (334) Photo: David Laughlin Perillus bioculatus, twospotted stink bug nymph, feeding on a hawk moth larva. (333) Photo: John Davidson Predatory stink bug feeding on elm leaf beetle larva. (W45) Photo: Whitney Cranshaw IPM of Midwest Landscapes 267.
Recommended publications
  • The Pentatomidae, Or Stink Bugs, of Kansas with a Key to Species (Hemiptera: Heteroptera) Richard J
    Fort Hays State University FHSU Scholars Repository Biology Faculty Papers Biology 2012 The eP ntatomidae, or Stink Bugs, of Kansas with a key to species (Hemiptera: Heteroptera) Richard J. Packauskas Fort Hays State University, [email protected] Follow this and additional works at: http://scholars.fhsu.edu/biology_facpubs Part of the Biology Commons, and the Entomology Commons Recommended Citation Packauskas, Richard J., "The eP ntatomidae, or Stink Bugs, of Kansas with a key to species (Hemiptera: Heteroptera)" (2012). Biology Faculty Papers. 2. http://scholars.fhsu.edu/biology_facpubs/2 This Article is brought to you for free and open access by the Biology at FHSU Scholars Repository. It has been accepted for inclusion in Biology Faculty Papers by an authorized administrator of FHSU Scholars Repository. 210 THE GREAT LAKES ENTOMOLOGIST Vol. 45, Nos. 3 - 4 The Pentatomidae, or Stink Bugs, of Kansas with a key to species (Hemiptera: Heteroptera) Richard J. Packauskas1 Abstract Forty eight species of Pentatomidae are listed as occurring in the state of Kansas, nine of these are new state records. A key to all species known from the state of Kansas is given, along with some notes on new state records. ____________________ The family Pentatomidae, comprised of mainly phytophagous and a few predaceous species, is one of the largest families of Heteroptera. Some of the phytophagous species have a wide host range and this ability may make them the most economically important family among the Heteroptera (Panizzi et al. 2000). As a group, they have been found feeding on cotton, nuts, fruits, veg- etables, legumes, and grain crops (McPherson 1982, McPherson and McPherson 2000, Panizzi et al 2000).
    [Show full text]
  • A Stink Bug Euschistus Quadrator Rolston (Insecta: Hemiptera: Pentatomidae)1 Sara A
    EENY-523 A Stink Bug Euschistus quadrator Rolston (Insecta: Hemiptera: Pentatomidae)1 Sara A. Brennan, Joseph Eger, and Oscar E. Liburd2 Introduction in the membranous area of the hemelytra, a characteristic present in other Euschistus species. Euschistus quadrator Rolston was described in 1974, with specimens from Mexico, Texas, and Louisiana. Euschistus quadrator was not found in Florida until 1992. It has since spread throughout the state as well as becoming an agricultural pest of many fruit, vegetable, and nut crops in the southeastern United States. It has a wide host range, but is most commonly found in cotton, soybean and corn. Euschistus quadrator has recently become a more promi- nent pest with the introduction of crops such as Bt cotton and an increase in the usage of biorational or reduced-risk pesticides. Distribution Euschistus quadrator is originally from Texas and Mexico, and has since been reported in Louisiana, Georgia, and Florida. Description Figure 1. Dorsal view of Euschistus quadrator Rolston; adult male (left) Adults and female (right), a stink bug. Credits: Lyle Buss, University of Florida The adults are shield-shaped and light to dark brown in color. They are smaller than many other members of the ge- Eggs nus, generally less than 11 mm in length and approximately Euschistus quadrator eggs are initially semi-translucent and 5 mm wide across the abdomen. They are similar in size to light yellow, and change color to red as the eggs mature. The Euschistus obscurus. Euschistus quadrator lacks dark spots micropylar processes (fan-like projections around the top 1. This document is EENY-523, one of a series of the Department of Entomology and Nematology, UF/IFAS Extension.
    [Show full text]
  • Biological Control of Insect Pests in the Tropics - M
    TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT – Vol. III - Biological Control of Insect Pests In The Tropics - M. V. Sampaio, V. H. P. Bueno, L. C. P. Silveira and A. M. Auad BIOLOGICAL CONTROL OF INSECT PESTS IN THE TROPICS M. V. Sampaio Instituto de Ciências Agrária, Universidade Federal de Uberlândia, Brazil V. H. P. Bueno and L. C. P. Silveira Departamento de Entomologia, Universidade Federal de Lavras, Brazil A. M. Auad Embrapa Gado de Leite, Empresa Brasileira de Pesquisa Agropecuária, Brazil Keywords: Augmentative biological control, bacteria, classical biological control, conservation of natural enemies, fungi, insect, mite, natural enemy, nematode, predator, parasitoid, pathogen, virus. Contents 1. Introduction 2. Natural enemies of insects and mites 2.1. Entomophagous 2.1.1. Predators 2.1.2. Parasitoids 2.2. Entomopathogens 2.2.1. Fungi 2.2.2. Bacteria 2.2.3. Viruses 2.2.4. Nematodes 3. Categories of biological control 3.1. Natural Biological Control 3.2. Applied Biological Control 3.2.1. Classical Biological Control 3.2.2. Augmentative Biological Control 3.2.3. Conservation of Natural Enemies 4. Conclusions Glossary UNESCO – EOLSS Bibliography Biographical Sketches Summary SAMPLE CHAPTERS Biological control is a pest control method with low environmental impact and small contamination risk for humans, domestic animals and the environment. Several success cases of biological control can be found in the tropics around the world. The classical biological control has been applied with greater emphasis in Australia and Latin America, with many success cases of exotic natural enemies’ introduction for the control of exotic pests. Augmentative biocontrol is used in extensive areas in Latin America, especially in the cultures of sugar cane, coffee, and soybeans.
    [Show full text]
  • Twenty-Five Pests You Don't Want in Your Garden
    Twenty-five Pests You Don’t Want in Your Garden Prepared by the PA IPM Program J. Kenneth Long, Jr. PA IPM Program Assistant (717) 772-5227 [email protected] Pest Pest Sheet Aphid 1 Asparagus Beetle 2 Bean Leaf Beetle 3 Cabbage Looper 4 Cabbage Maggot 5 Colorado Potato Beetle 6 Corn Earworm (Tomato Fruitworm) 7 Cutworm 8 Diamondback Moth 9 European Corn Borer 10 Flea Beetle 11 Imported Cabbageworm 12 Japanese Beetle 13 Mexican Bean Beetle 14 Northern Corn Rootworm 15 Potato Leafhopper 16 Slug 17 Spotted Cucumber Beetle (Southern Corn Rootworm) 18 Squash Bug 19 Squash Vine Borer 20 Stink Bug 21 Striped Cucumber Beetle 22 Tarnished Plant Bug 23 Tomato Hornworm 24 Wireworm 25 PA IPM Program Pest Sheet 1 Aphids Many species (Homoptera: Aphididae) (Origin: Native) Insect Description: 1 Adults: About /8” long; soft-bodied; light to dark green; may be winged or wingless. Cornicles, paired tubular structures on abdomen, are helpful in identification. Nymph: Daughters are born alive contain- ing partly formed daughters inside their bodies. (See life history below). Soybean Aphids Eggs: Laid in protected places only near the end of the growing season. Primary Host: Many vegetable crops. Life History: Females lay eggs near the end Damage: Adults and immatures suck sap from of the growing season in protected places on plants, reducing vigor and growth of plant. host plants. In spring, plump “stem Produce “honeydew” (sticky liquid) on which a mothers” emerge from these eggs, and give black fungus can grow. live birth to daughters, and theygive birth Management: Hide under leaves.
    [Show full text]
  • Florida Predatory Stink Bug (Unofficial Common Name), Euthyrhynchus Floridanus(Linnaeus) (Insecta: Hemiptera: Pentatomidae)1 Frank W
    EENY157 Florida Predatory Stink Bug (unofficial common name), Euthyrhynchus floridanus (Linnaeus) (Insecta: Hemiptera: Pentatomidae)1 Frank W. Mead and David B. Richman2 Introduction Distribution The predatory stink bug, Euthyrhynchus floridanus (Lin- Euthyrhynchus floridanus is primarily a Neotropical species naeus) (Figure 1), is considered a beneficial insect because that ranges within the southeastern quarter of the United most of its prey consists of plant-damaging bugs, beetles, States. and caterpillars. It seldom plays a major role in the natural control of insects in Florida, but its prey includes a number Description of economically important species. Adults The length of males is approximately 12 mm, with a head width of 2.3 mm and a humeral width of 6.4 mm. The length of females is 12 to 17 mm, with a head width of 2.4 mm and a humeral width of 7.2 mm. Euthyrhynchus floridanus (Figure 2) normally can be distinguished from all other stink bugs in the southeastern United States by a red- dish spot at each corner of the scutellum outlined against a blue-black to purplish-brown ground color. Variations occur that might cause confusion with somewhat similar stink bugs in several genera, such as Stiretrus, Oplomus, and Perillus, but these other bugs have obtuse humeri, or at least lack the distinct humeral spine that is present in adults of Euthyrhynchus. In addition, species of these genera Figure 1. Adult of the Florida predatory stink bug, Euthyrhynchus known to occur in Florida have a short spine or tubercle floridanus (L.), feeding on a beetle. situated on the lower surface of the front femur behind the Credits: Lyle J.
    [Show full text]
  • Some Results of Breeding a Predatory Stink Bug of Perillus Bioculatus F. (Hemiptera, Pentatomidae) in the Republic of Moldova
    BIO Web of Conferences 21, 00024 (2020) https://doi.org/10.1051/bioconf/20202100024 XI International Scientific and Practical Conference “Biological Plant Protection is the Basis of Agroecosystems Stabilization” Some results of breeding a predatory stink bug of Perillus bioculatus F. (Hemiptera, Pentatomidae) in the Republic of Moldova Dina Elisovetcaia1*, Valeriu Derjanschi1, Irina Agas'eva 2, and Mariya Nefedova2 1Institute of Zoology, Republic of Moldova, Chisinau 2All-Russian Research Institute of Biological Plant Protection, Russia, Krasnodar-39, 350039 Abstract. The impact of insect artificial diet on the egg production of females was examined for L29 consequently generations of laboratory populations Perillus bioculatus (F.) (Hemiptera: Pentatomidae, Asopinae). Particular attention is paid to the overwintered generation, which plays a key role in the rehabilitation of the predator populations after hibernation. It was shown that with an increase in the number of laboratory generations of a predator (from L13 to L29), egg production of P. bioculatus females significantly decreases – from 16.4-35.7 to 15.0-27.5 eggs / female in terms of the total number of females in the laboratory populations. The proportion of eggs laid by females of winter generation was the lowest when feeding on Galleria mellonella larvae. Was established food preferences among the assortment of native for Republic of Moldova leaf beetles: Entomoscelis adonidis Pallas 1771, Chrysolina herbacea (Duftschmid, 1825) and C. coerulans (Scriba, 1791). P. bioculatus imago overwintered generation refused to feed on E. suturalis larvae and imago, probably because of the isoquinoline alkalods contained in the hemolymph of the leaf beetle. Studies have shown that supplementary feeding with imago of E.
    [Show full text]
  • Impact of Perillus Bioculatus on the Colorado Potato Beetle and Plant Damage
    -. ~ III 1~2.5 I.:.;i 12.8 1.0 w ....., 1.0 W ~ ~II~ w I~ wW w 2.2 w .2 &.:: Ii£ &.:: ~ &:.: III :;: ~ ~ ~ ... ... 1.1 ....... 1.1 w.... 111111. 25 111111.4. 111111.6 111111.25 111111.4 111111.6 . / MICROCOPY RESOLUTION TEST CHART MICROCOPY RESOLUTION TEST CHART NAllONAl BUREAU Of SlANDARDS-J9&3-A NAllOliAl BUREAU Of STANDARDS-J963-A tL .)-;' G3) Ur3-! TB/1581/9/197a 1/ \ IMPACT OF PERILLIJS BIOCULATUS ON THE COLORADO POTATO BEETLE AND PLANT DAMAGE ~ .-C~$ ;5 ~~ CD ;-­ :~f: m r'~ ,';2 ....­ ~,;:::J ;~ en .....-! c;,u ~ :> c:u C) b.O r= Z <::::::t: en c,:) --' ~. UNITED STATES TECHNICAL PREPARED BY fUJ) DEPARTMENT OF BULLETIN SCIENCE AND Q~ AGRICULTURE NUMBER 1581 EDUCATION ADMINISTRATION On January 24, 1978, four USDA agencies-Agricultural Research Service (ARC), Cooperative State Research Service (CSRS), Extension Service (ES), and the National Agricultural Library (NAL)-merged to become a new or­ ganization, the Science and Education Administration (SEA), U.S. Depart­ ment of Agriculture. TI!M~ publication was prepared by the Science and Education Administration's Federal Research staff, which was formerly the AgTicultural Research Service. Trade names and the names of commercial companies are used in this publi­ cation solely to provide specific information. Mention ofa trade name or manu­ facturer does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture nor an endorsement by the Department over other products not mentioned. Washington, D,C. Issued September 1978 ABSTRACT George Tamaki and B. A. Butt. Impact of PerUlus Bioculatus on the Colorado Potato Beetle and Plant Damage.
    [Show full text]
  • Identification, Biology, Impacts, and Management of Stink Bugs (Hemiptera: Heteroptera: Pentatomidae) of Soybean and Corn in the Midwestern United States
    Journal of Integrated Pest Management (2017) 8(1):11; 1–14 doi: 10.1093/jipm/pmx004 Profile Identification, Biology, Impacts, and Management of Stink Bugs (Hemiptera: Heteroptera: Pentatomidae) of Soybean and Corn in the Midwestern United States Robert L. Koch,1,2 Daniela T. Pezzini,1 Andrew P. Michel,3 and Thomas E. Hunt4 1 Department of Entomology, University of Minnesota, 1980 Folwell Ave., Saint Paul, MN 55108 ([email protected]; Downloaded from https://academic.oup.com/jipm/article-abstract/8/1/11/3745633 by guest on 08 January 2019 [email protected]), 2Corresponding author, e-mail: [email protected], 3Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, 210 Thorne, 1680 Madison Ave. Wooster, OH 44691 ([email protected]), and 4Department of Entomology, University of Nebraska, Haskell Agricultural Laboratory, 57905 866 Rd., Concord, NE 68728 ([email protected]) Subject Editor: Jeffrey Davis Received 12 December 2016; Editorial decision 22 March 2017 Abstract Stink bugs (Hemiptera: Heteroptera: Pentatomidae) are an emerging threat to soybean and corn production in the midwestern United States. An invasive species, the brown marmorated stink bug, Halyomorpha halys (Sta˚ l), is spreading through the region. However, little is known about the complex of stink bug species associ- ated with corn and soybean in the midwestern United States. In this region, particularly in the more northern states, stink bugs have historically caused only infrequent impacts to these crops. To prepare growers and agri- cultural professionals to contend with this new threat, we provide a review of stink bugs associated with soybean and corn in the midwestern United States.
    [Show full text]
  • Mexican Bean Beetle (Suggested Common Name), Epilachna Varivestis Mulsant (Insecta: Coleoptera: Coccinellidae)1 H
    EENY-015 Mexican Bean Beetle (suggested common name), Epilachna varivestis Mulsant (Insecta: Coleoptera: Coccinellidae)1 H. Sanchez-Arroyo2 Introduction apparently eradicated from Florida in 1933, but was found again in 1938 and by 1942 was firmly established. The family Coccinellidae, or ladybird beetles, is in the order Coleoptera. This family is very important economically because it includes some highly beneficial insects as well as Description two serious pests: the squash lady beetle, Epilachna borealis Eggs Fabricius, and the Mexican bean beetle, Epilachna varivestis Eggs are approximately 1.3 mm in length and 0.6 mm in Mulsant. width, and are pale yellow to orange-yellow in color. They are typically found in clusters of 40 to 75 on the undersides The Mexican bean beetle has a complete metamorphosis of bean leaves. with distinct egg, larval, pupal, and adult stages. Unlike most of the Coccinellidae, which are carnivorous and feed upon aphids, scales, and other small insects, this species attacks plants. Distribution The Mexican bean beetle is believed to be native to the plateau region of southern Mexico. This insect is found in the United States (in most states east of the Rocky Moun- tains) and Mexico. In eastern regions, the pest is present wherever beans are grown, while western infestations are in isolated areas, depending upon the local environment and precipitation. The insect is not a serious pest in Guatemala and Mexico, but is very abundant in several areas in the western United States. The southern limit of the known distribution is in Guatemala and the northern limit is Figure 1.
    [Show full text]
  • Insect Classification Standards 2020
    RECOMMENDED INSECT CLASSIFICATION FOR UGA ENTOMOLOGY CLASSES (2020) In an effort to standardize the hexapod classification systems being taught to our students by our faculty in multiple courses across three UGA campuses, I recommend that the Entomology Department adopts the basic system presented in the following textbook: Triplehorn, C.A. and N.F. Johnson. 2005. Borror and DeLong’s Introduction to the Study of Insects. 7th ed. Thomson Brooks/Cole, Belmont CA, 864 pp. This book was chosen for a variety of reasons. It is widely used in the U.S. as the textbook for Insect Taxonomy classes, including our class at UGA. It focuses on North American taxa. The authors were cautious, presenting changes only after they have been widely accepted by the taxonomic community. Below is an annotated summary of the T&J (2005) classification. Some of the more familiar taxa above the ordinal level are given in caps. Some of the more important and familiar suborders and families are indented and listed beneath each order. Note that this is neither an exhaustive nor representative list of suborders and families. It was provided simply to clarify which taxa are impacted by some of more important classification changes. Please consult T&J (2005) for information about taxa that are not listed below. Unfortunately, T&J (2005) is now badly outdated with respect to some significant classification changes. Therefore, in the classification standard provided below, some well corroborated and broadly accepted updates have been made to their classification scheme. Feel free to contact me if you have any questions about this classification.
    [Show full text]
  • A Key and Annotated List of the Scutelleroidea of Michigan (Hemiptera)
    The Great Lakes Entomologist Volume 3 Number 2 -- Summer 1970 Number 2 -- Summer Article 1 1970 July 2017 A Key and Annotated List of the Scutelleroidea of Michigan (Hemiptera) J.E. McPherson Southern Illinois University Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation McPherson, J.E. 2017. "A Key and Annotated List of the Scutelleroidea of Michigan (Hemiptera)," The Great Lakes Entomologist, vol 3 (2) Available at: https://scholar.valpo.edu/tgle/vol3/iss2/1 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. McPherson: A Key and Annotated List of the Scutelleroidea of Michigan (Hemip 34 THE MICHIGAN ENTOMOLOGIST Vol. 3, No. 2 A KEY AND ANNOTATED LIST OF THE SCUTELLEROIDEA OF MICHIGAN (HEMIPTERA) Department of Zoology, Southern Illinois University Carbondale, Illinois 6290 1 Although Hussey (1922) compiled a list of the Hemiptera of Berrien County, and Stoner (1922) contributed a fist of the Scutelleroidea of the Douglas Lake region, no publications have dealt with Michigan Scutelleroidea on a state-wide basis. However, collections in the Entomology Museum of Michigan State University (MSU), East Lansing, and in the Museum of Zoology of the University of Michigan (UMMZ), Ann Arbor, indicate that collecting has been extensive throughout the state (Fig. 1). The key and annotated list are based on material I identified in these two collections.
    [Show full text]
  • Maternal Care in Pygoplatys Bugs (Heteroptera: Tessaratomidae)
    NOTE Eut. J. Entomol. 95: 311-315, 1998 ISSN 1210-5759 Maternal care inPygoplatys bugs (Heteroptera: Tessaratomidae) M atija GOGALA', Hoi-Sen YONG2 andC arsten BRÜHL3 1 1 Prirodoslovni muzej Slovenije, Presemova 20, P.O. Box 290, SI-1001 Ljubljana, Slovenia; e-mail: [email protected] departm ent of Zoology, University of Malaya, 50603 Kuala Lumpur, Malaysia 3Zoologie III, Theodor-Boveri-Biozentrum der Universität, Am Hubland, D-97074 Würzburg, Germany Tessaratomidae,Pygoplatys, maternal care, egg guarding Abstract.Cases of maternal care and egg guarding were observed and photographed in bugs of the family Tessaratomidae. Females of one still undescribed speciesPygoplatys of from Doi Inthanon, Thailand, and ofPygoplatys acutus from Borneo are carrying their young larvae on the venter. The egg guarding was also observed inPygoplatys acutus from Kepong, Peninsular Malaysia. It seems, that maternal care is a characteristic behavior in bugs of the genusPygoplatys. Introduction Parental care at various levels is present in many insect groups. The guarding of eggs and attendance of the early instars probably reduces the levels of mortality during these stages, even in subsocial species which lack any nesting behavior. The parental (and usually maternal) care is known in the orthopteroid orders and in many other groups, e.g. Embioptera, Psocoptera, Thysanoptera, Heteroptera, Homoptera, Coleóptera and Hymenoptera (Tallamy & Wood, 1986). In Heteroptera, cases of maternal egg guarding and early instar attendance have been reported for many terrestrial and some aquatic species (Melber & Schmidt, 1977; Schuh & Slater, 1995). In families Reduviidae and Belostomatidae, cases of paternal care of the young are known (Tallamy & Wood, 1986). Until now, however, the only report of parental care in family Tessaratomidae has been published by Tachikawa (1991, egg guarding in the Japanese species of Pygoplatys and Erga; after Tallamy & Schaefer, 1997).
    [Show full text]