Phylogenetic Relationships of Onobrychis Mill. (Fabaceae: Papilionoideae) Based on ITS Sequences of Nuclear Ribosomal DNA and Morphological Traits

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetic Relationships of Onobrychis Mill. (Fabaceae: Papilionoideae) Based on ITS Sequences of Nuclear Ribosomal DNA and Morphological Traits DOI: http://dx.doi.org/10.22092/cbj.2012.100423 Phylogenetic relationships of Onobrychis Mill. (Fabaceae: Papilionoideae) based on ITS sequences of nuclear ribosomal DNA and morphological traits S. Safaei Chaei Kara*, F. Ghanavatib, J. Mozafaric, M. R. Naghavid, H. Amirabadizadehe, and F. Darvishf a and f Department of plant breeding, Science and Research Branch, Islamic Azad University, Tehran, Iran. b and c Seed and Plant Improvement Institute, Karaj, Iran. d Agronomy and Plant Breeding Department, Agricultural College, The University of Tehran, Karaj, Iran. e Agricultural and Natural Resources Research Center of Khorasan-e-Razavi Province, Mashhad, Iran. * Corresponding author's E-mail address: [email protected] Received: August 2012 Accepted: December 2012 ABSTRACT Safaei Chaei Kar, S., F. Ghanavati, J. Mozafari, M. R. Naghavi, H. Amirabadizadeh, and F. Darvish. 2012. Phylogenetic relationships of Onobrychis Mill. (Fabaceae: Papilionoideae) based on ITS sequences of nuclear ribosomal DNA and morphological traits. Crop Breeding Journal 2(2): 91-99. The genus Onobrychis is subdivided into two subgenera: Onobrychis and Sisyrosema. Phylogenetic relationships of 19 species of Onobrychis (Fabaceae: tribe Hedysareae) and one representative each of genera Eversmannia and Ebenus were estimated from DNA sequences of the internal transcribed spacer (ITS) region. Parsimony analysis of the ITS region formed a dendrogram with strong bootstrap support from two groups: Onobrychis subgen. Onobrychis (except O. laxiflora) is in one group and Onobrychis subgen. Sisyrosema is in the other. Within group I, species of the Onobrychis section and species of the Lophobrychis and Dendrobrychis sections form well supported branches A and B, respectively (BP=99% and 91%). The close association between the Onobrychis section and Lophobrychis and Dendrobrychis indicated there is strong sequence homology among them, suggesting that these species are closely related in terms of phylogeny. Also there is strong sequence homology among sections of Sisyrosema subgen. (group II). Species of Heliobrychis, Hymenobrychis and Afghanicae form a branch (branch C) with 77% bootstrap support. Species of the Hymenobrychis section form a clade (clade F) with 82% bootstrap support, which indicates these species are closely related. The present nrDNA ITS data showed that Onobrychis subgen. Sisyrosema appears to be a well-supported monophyletic group (BP=77%), whereas the Onobrychis subgen. Onobrychis is not monophyletic due to the sister group relationship of one species of Onobrychis subgen. (O. laxifolra) to the subgen. Sisyrosema. Cluster analysis of morphological characters showed two major groups separating Onobrychis subgen. Onobrychis (except O. laxiflora) from Onobrychis subgen. Sisyrosema, which are in accordance with molecular phylogenetic groups. Keywords: cluster analysis, Fabaceae, Hedysareae, nrDNA ITS, Onobrychis, phylogenetic analysis, Sisyrosema INTRODUCTION The genus Onobrychis, represented by 170 he Leguminosae are one of the largest families perennial and annual species in the world, is densely Tof flowering plants, with 18,000 species distributed in the Anatolia-Iran-Caucasian triangle classified into around 650 genera. The family is (Nixon, 2006; Emin and Kuddisi, 2010). usually divided into three sub-families: Phylogenetic studies indicated that the primary Papilionoideae, Caesalpinoideae and Mimosoideae center of genetic diversity of Onobrychis is in the (Polhill and Raven, 1981). The tribe Hedysareae was Mediterranean region and that the ecological originally described as one of the tribes comprising separation of this region into western and eastern the subfamily Papilionoideae (Bentham, 1865). Lock sectors represents a main event in the evolution of (2005) included in the Hedysareae many genera, the genus (Ashurmetov and Normatov, 1998). such as: Alhagi, Caragana, Corethrodendron, Onobrychis is a perennial and economically Ebenus, Eversmannia, Calophaca, Halimodendron, important genus used to improve the quality of the Hedysarum, Onobrychis, Sartoria, Sulla and soil. It is also harvested as dried, fresh and purebred Taverniera. Onobrychis Mill. constitutes the second fodder (Emin and Kuddisi, 2010). largest genus (after Hedysarum) of tribe Hedysareae Yildiz et al. (1999) suggested that, based on fruit in the sense adopted by Polhill (1981) (Mabberley, morphology, genus Onobrychis is subdivided into 1990; Lock, 2005). two subgenera, namely, Onobrychis with four 91 Crop Breeding Journal, 2012, 2(2) sections (Dendrobrychis, Lophobrychis, Onobrychis Onobrychis genetic variation, for there are more and Laxiflorae), and Sisyrosema with five sections than 69 annual and perennial species and subspecies (Anthyllium, Afghanicae, Heliobrychis, of the genus distributed over different climatic Hymenobrychis and Insignes) distinguished by regions. Because these species have high genetic different karyotypes, morphological features and variability, it is possible to use them as a rich and geographical origins. valuable genetic resource for breeding farm species. Typically, one of the areas utilized for The range of the Onobrychis genus is very variable phylogenetic inference at the generic and and the boundary between species is not clear. infrageneric levels in plants is the internal Molecular phylogenetic studies of Onobrychis transcribed spacer (ITS) region of 18S-5.8S-26S species are limited to a small number of taxa nuclear ribosomal DNA (nrDNA). The advantages (Wojciechowski et al., 2000; Ahangarian et al., of this locus for phylogenetic reconstruction include: 2007). Therefore, study of the reconstruction of the biparental inheritance, universal primers, phylogenetic relationships and the boundary among intragenomic consistency and intergenomic species in this genus-using nrDNA ITS sequences variability (Baldwin et al., 1995). The internal are also considered. Determination of the transcribed spacer (ITS) mostly provides enough phylogenetic relationships of these species, beside molecular markers which are acceptable for the introduction of new species and wild relatives of evolutionary studies at the species level (Ganzalo cultivated species of this genus would enhance the and Josep, 2007). It has been proved that ITS is efficiency of Onobrychis breeding program. suitable for studying interspecific relationships in The aim of this study was to investigate the many plant families (reviewed in Baldwin et al., relationships of taxa within two separate subgenera 1995), and particularly within the Fabaceae of Onobrychis, subgen. Onobrychis and subgen. (Wojciechowski et al., 1993; Sanderson et al., 1996; Sisyrosema. To accomplish this goal, the internal Downie et al., 1998). transcribed spacer (ITS) region of the 18S-5.8S-28S The Hedysareae in general and Hedysarum nuclear ribosomal DNA (nrDNA) was sequenced. (Chennaoui et al., 2007) and Onobrychis (Yildiz et Morphological characteristics were studied and the al., 1999; Ahangarian et al., 2007) in particular resulting cluster compared with the molecular remain under-sampled in molecular phylogenetic cluster. analyses. In a study by Yildiz et al. (1999), 40 species belonging to five sections of the Onobrychis MATERIALS AND METHODS genus and six species belonging to four sections of Taxon sampling Hedysarum as an out-group were evaluated based on To conduct molecular phylogenetic studies fruit morphology. Results showed there are no during 2011-2012, leaf materials were sampled from common traits for fruit, which supports the herbarium specimens deposited in the Herbarium monophyly of the Onobrychis genus. The Research Center of Khorasan-e-Razavi Agricultural monophyly of Onobrychis and subgen. Sisyrosema and Natural Resources Center (MRCH), Mashhad, has not been confirmed. Abou-El-Enain (2002) Iran; the Herbarium of National Plant Gene Bank of evaluated 22 taxa of six Onobrychis species Iran (HNPGBI); and the Herbarium of the Research belonging to the Lophobrychis section based on Institute of Forests and Rangelands (TARI). In this chromosome number, chromosome length and study, 21 species including 19 species representing ploidy levels. His evaluation confirmed the seven sections of the Onobrychis genus and two monophyly of the Onobrychis genus. Ahangarian et species of the other genus of tribe Hedysareae as an al. (2007) estimated that there are 11 species of out-group, were selected for molecular phylogenetic Onobrychis representing two subgenera and 8 reconstruction. Details of these species, including sections. Results showed that Onobrychis subgen. accession identities, geographical origins and Onobrychis is not monophyletic, whereas genebank sequence accession numbers, are given in Onobrychis subgen. Sisyrosema forms a strongly Table 1. supported clade. In contrast to Onobrychis section Heliobrychis, sections Dendrobrychis and DNA extraction, PCR and sequencing Onobrychis are not monophyletic. Based on Total genomic DNA was isolated using a cytological evaluation of annual species of the modified CTAB extraction method (Doyle and Onobrychis genus in Iran, Ghanavati et al. (2012) Doyle, 1987). The DNA concentration was reported that the basic chromosome number varied determined with a Gene-Guant spectrophotometer from x=7 to x=8. (Pharmacia) and DNA quality was analyzed by Iran is one of the most important centers of agarose gel electrophoresis. 92 Safaei Chaei Kar et al.: Phylogenetic relationships of Onobrychis … Table 1. Locality, voucher and sequence accession number of Onobrychis species.
Recommended publications
  • <I>Onobrychis Avajensis</I> (Fabaceae)
    Plant Ecology and Evolution 143 (2): 170–175, 2010 doi:10.5091/plecevo.2010.431 REGULAR PAPER Meiotic chromosome number and behaviour of Onobrychis avajensis (Fabaceae): a new species from western Iran Massoud Ranjbar*, Roya Karamian & Saeydeh Afsari Department of Biology, Herbarium Division, Bu-Ali Sina University, P.O. Box 65175/4161, Hamedan, Iran *Author for correspondence: [email protected] Background and aims – The present study is focused on the cytogenetic and morphological criteria allowing to distinguish a new taxon from Onobrychis sect. Heliobrychis. This section is the largest section in O. subg. Sisyrosema represented with 21 species in Iran. The new species belongs to the O. subsect. Boissierianae characterized by perennial plants with well-developed stems and O. andalanica group with uniformely yellow corolla. Methods – The morphological features and meiotic chromosome number and behaviour were studied in O. avajensis Ranjbar. Key results – The novelty Onobrychis avajensis Ranjbar, endemic to Iran, is described and illustrated from two collections from a single locality between Avaj and Abgram in Qazvin Province in the west Zagros. It is closely related to O. andalanica Bornm. but differs from it in a few morphological characters. In addition, meiotic chromosome number and behaviour were studied in O. avajensis. This report is the first cytogenetic analysis of this taxon. O. avajensis is a diploid plant and possesses 2n = 2x = 16 chromosomes, consistent with the proposed base number of x = 8. The general meiotic behaviour of the species was regular, with bivalent pairing and normal chromosome segregation at meiosis. Meiotic abnormalities were observed included a varying degree of sticky chromosomes with laggards, precocious division of centromeres in metaphase I, bridges in anaphase I and multipolar cells in telophase II.
    [Show full text]
  • A List of Oxfordshire Rare Plants in Alphabetical Order
    Oxfordshire Rare Plant Register, all species studied, in alphabetical order, 28 April 2015 National Status Oxfordshire status (not complete) Latin name English name (not vice-county) Least Concern Adiantum capillus-veneris Maidenhair Fern RPR Endangered Adonis annua Pheasant’s-eye RPR Waiting List Aethusa cynapium ssp. agrestis Fool's Parsley Not studied Waiting List Agrostemma githago Corn Cockle Introd since 1992 Least Concern Agrostis canina Velvet Bent RPR Least Concern Agrostis curtisii Bristle Bent RPR Least Concern Agrostis vinealis Brown Bent RPR Least Concern Aira caryophyllea Silver Hair-grass RPR Least Concern Aira praecox Early Hair-grass RPR Least Concern Alchemilla filicaulis Hairy Lady’s-mantle RPR Least Concern Alchemilla xanthochlora Pale Lady's-mantle Last in 1988 Least Concern Alisma lanceolatum Narrow-leaved Water-plantain RPR Least Concern Alopecurus aequalis Orange Foxtail RPR Vulnerable Anacamptis morio Green-winged Orchid RPR Data Deficient Anagallis foemina Blue Pimpernel RPR Least Concern Anagallis tenella Bog Pimpernel RPR Introduced since 1500 Anisantha madritensis Compact Brome Introduced Endangered Anthemis arvensis Corn Chamomile RPR Vulnerable Anthemis cotula Stinking Chamomile Not studied Least Concern Anthriscus caucalis Bur Chervil RPR Introduced since 1500 Apera interrupta Dense Silky-bent RPR Least Concern Apera spica-venti Loose Silky-bent RPR Least Concern Aphanes australis Slender Parsley-piert RPR Least Concern Apium graveolens Wild Celery RPR Vulnerable Apium inundatum Lesser Marshwort RPR Europe Protected Apium repens Creeping Marshwort RPR Least Concern Aquilegia vulgaris Columbine Not Scarce Near Threatened Arabis hirsuta Hairy Rock-cress RPR Introduced since 1500 Aristolochia clematitis Birthwort RPR Iconic Extinct in the Wild Arnoseris minima Lamb's Succory Last in 1971 Least Concern Artemisia absinthium Wormwood RPR Least Concern Arum italicum ssp.
    [Show full text]
  • Conserving Europe's Threatened Plants
    Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database.
    [Show full text]
  • Status and Protection of Globally Threatened Species in the Caucasus
    STATUS AND PROTECTION OF GLOBALLY THREATENED SPECIES IN THE CAUCASUS CEPF Biodiversity Investments in the Caucasus Hotspot 2004-2009 Edited by Nugzar Zazanashvili and David Mallon Tbilisi 2009 The contents of this book do not necessarily reflect the views or policies of CEPF, WWF, or their sponsoring organizations. Neither the CEPF, WWF nor any other entities thereof, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product or process disclosed in this book. Citation: Zazanashvili, N. and Mallon, D. (Editors) 2009. Status and Protection of Globally Threatened Species in the Caucasus. Tbilisi: CEPF, WWF. Contour Ltd., 232 pp. ISBN 978-9941-0-2203-6 Design and printing Contour Ltd. 8, Kargareteli st., 0164 Tbilisi, Georgia December 2009 The Critical Ecosystem Partnership Fund (CEPF) is a joint initiative of l’Agence Française de Développement, Conservation International, the Global Environment Facility, the Government of Japan, the MacArthur Foundation and the World Bank. This book shows the effort of the Caucasus NGOs, experts, scientific institutions and governmental agencies for conserving globally threatened species in the Caucasus: CEPF investments in the region made it possible for the first time to carry out simultaneous assessments of species’ populations at national and regional scales, setting up strategies and developing action plans for their survival, as well as implementation of some urgent conservation measures. Contents Foreword 7 Acknowledgments 8 Introduction CEPF Investment in the Caucasus Hotspot A. W. Tordoff, N. Zazanashvili, M. Bitsadze, K. Manvelyan, E. Askerov, V. Krever, S. Kalem, B. Avcioglu, S. Galstyan and R. Mnatsekanov 9 The Caucasus Hotspot N.
    [Show full text]
  • Onobrychis Viciifolia) As a Rangeland Forage Crop in California Ceci Dale-Cesmat, State Rangeland Management Specialist and Margaret Smither-Kopperl, PMC Manager
    FINAL STUDY REPORT Lockeford Plant Materials Center, Lockeford, CA Sainfoin Seeding Trials 2012 – 2014 Suitability of Sainfoin (Onobrychis viciifolia) as a Rangeland Forage Crop in California Ceci Dale-Cesmat, State Rangeland Management Specialist and Margaret Smither-Kopperl, PMC Manager ABSTRACT Landowners in the Sacramento Valley had requested a seeding trial of Sainfoin (Onobrychis viciifolia) to determine the long-term survival of three different cultivars (Eski, Remont and Shoshone) in Major Land Resource Area 17 (Sacramento and San Joaquin Valleys). Sainfoin is currently used as a non- bloat hay/pasture and rangeland forage species to increase the protein content of the sward. The objective of this project was to study the persistence of Sainfoin and its ability to survive California’s hot summer conditions. To provide seeding and cultivar recommendations to be accessed by the eVegGuide, and include management practices to maintain its persistence. Seeds were planted in plots that were clean cultivated in the fall of 2012. Plantings were direct seeded using a Truax range drill. Seeding rates were 34 lbs/acre for all three Sainfoin cultivars, 8 lbs/acre for Orchardgrass/Sainfoin plots and 10 lbs/ac for Purple Needlegrass/Sainfoin plots. Seed was planted at ¼ inch. There was a 10’ break between Sainfoin treatments which were seeded in the plots in a north/south direction, and replicated three times in an irrigated and non-irrigated split plot design. Grass seed was planted in an east/west direction as was alfalfa, which was used as a control plot. Three years of data collection showed that all three varieties of Sainfoin survivorship was poor in MLRA 17.
    [Show full text]
  • Forage Crop Production - Masahiko Hirata
    THE ROLE OF FOOD, AGRICULTURE, FORESTRY AND FISHERIES IN HUMAN NUTRITION – Vol. I - Forage Crop Production - Masahiko Hirata FORAGE CROP PRODUCTION Masahiko Hirata Faculty of Agriculture, Miyazaki University, Miyazaki, Japan Keywords: agricultural revolution, alternative agriculture, bio-diversity, cover crop, fallow, forage crop, grass, green manure, hay, legume, mixed farming, root crop, rotation system, seed industry, silage. Contents 1. Introduction 2. Early Recognition of the Importance of Forage 3. Early Use of Forage Crops 4. The Dark Ages 5. The Great Progress 5.1. The European Agricultural Revolution 5.2. The Contribution of Forage Crops to the Development of Mixed Farming 5.3. The Dispersion of Forage Crops throughout Europe 5.4. Global Dispersion of Forage Crops: the First Stage 5.4.1. Temperate Grasses 5.4.2. Temperate Legumes 5.4.3. Tropical and Subtropical Grasses 5.4.4. Tropical and Subtropical Legumes 5.5. The Rise of the Forage Seed Industry 6. The Modern Era 6.1. The Development of Plant Improvement 6.1.1. Temperate Forages in Great Britain 6.1.2. Buffelgrass in Australia 6.1.3. Bermudagrass in USA 6.1.4. Wheatgrasses and Wildryes in the USA and Canada 6.2. The Growth of the Forage Seed Industry 6.3. Global Dispersion of Forage Crops: the Second Stage 6.3.1. Temperate Grasses 6.3.2. Tropical and Subtropical Grasses 6.3.3. Tropical and Subtropical Legumes 6.4. ForagesUNESCO in the Growing Industrialized – Agriculture EOLSS 6.5. Forages in the Rise and Growth of Environmental Issues 7. The Future SAMPLE CHAPTERS Acknowledgements Glossary Bibliography Biographical Sketch Summary The history of forage crops can be traced back to about 1300 BC when alfalfa was cultivated in Turkey.
    [Show full text]
  • Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
    Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S.
    [Show full text]
  • 1501 Taxonomic Revision of the Genus Psathyrostachys Nevski (Poaceae
    AJCS 5(12):1501-1507 (2011) ISSN:1835-2707 Taxonomic revision of the genus Psathyrostachys Nevski (Poaceae: Triticeae) in Turkey Evren Cabi 1*, Musa Do ğan 2, Ersin Karabacak 3 1Atatürk University, Faculty of Science, Department of Biology, 25240, Erzurum, TURKEY 2Middle East Technical University, Faculty of Arts and Sciences, Department of Biological Sciences, 06531, Ankara, TURKEY 3Çanakkale Onsekiz Mart University, Faculty of Arts and Sciences, Department of Biology, 17020, Çanakkale, TURKEY *Corresponding author: [email protected] Abstract In this study, the genus Psathyrostachys Nevski is revised in Turkey. Furthermore multivariate analysis have been carried out in order to understand the delimitation of the taxa of Psathyrostachys. For this reason, 20 quantitative, qualitative and multi-state morphological characters were scored for the accessions representing 10 populations of the genus. The data were subjected to numerical taxonomic analysis. The results showed that the genus is represented by 3 species one of which is new species and the other one is a new record for Turkey. An account of 3 species and 4 subspecies recognized in the genus is given including the genus description, a key for the species as well as the subspecies, species descriptions, flowering times, habitats, altitudes, type citations, distributions, phytogeography and their conservation status. However, three new taxa, namely P. narmanica sp. nov ., P. fragilis subsp. artvinense subsp. nov. and P. daghestanica subsp erzurumica subsp. nov. are described and illustrated for the first time. Keywords: Poaceae, Psathyrostachys , revision, Turkey. Introduction The genus Psathyrostachys Nevski (Poaceae; Triticeae) is a anatomical studies have also been done on certain grass small, well-defined, perennial genus comprising only eight genera (Do ğan, 1988, 1991, 1992, 1997; Cabi and Do ğan, species (Baden 1991).
    [Show full text]
  • Complete Iowa Plant Species List
    !PLANTCO FLORISTIC QUALITY ASSESSMENT TECHNIQUE: IOWA DATABASE This list has been modified from it's origional version which can be found on the following website: http://www.public.iastate.edu/~herbarium/Cofcons.xls IA CofC SCIENTIFIC NAME COMMON NAME PHYSIOGNOMY W Wet 9 Abies balsamea Balsam fir TREE FACW * ABUTILON THEOPHRASTI Buttonweed A-FORB 4 FACU- 4 Acalypha gracilens Slender three-seeded mercury A-FORB 5 UPL 3 Acalypha ostryifolia Three-seeded mercury A-FORB 5 UPL 6 Acalypha rhomboidea Three-seeded mercury A-FORB 3 FACU 0 Acalypha virginica Three-seeded mercury A-FORB 3 FACU * ACER GINNALA Amur maple TREE 5 UPL 0 Acer negundo Box elder TREE -2 FACW- 5 Acer nigrum Black maple TREE 5 UPL * Acer rubrum Red maple TREE 0 FAC 1 Acer saccharinum Silver maple TREE -3 FACW 5 Acer saccharum Sugar maple TREE 3 FACU 10 Acer spicatum Mountain maple TREE FACU* 0 Achillea millefolium lanulosa Western yarrow P-FORB 3 FACU 10 Aconitum noveboracense Northern wild monkshood P-FORB 8 Acorus calamus Sweetflag P-FORB -5 OBL 7 Actaea pachypoda White baneberry P-FORB 5 UPL 7 Actaea rubra Red baneberry P-FORB 5 UPL 7 Adiantum pedatum Northern maidenhair fern FERN 1 FAC- * ADLUMIA FUNGOSA Allegheny vine B-FORB 5 UPL 10 Adoxa moschatellina Moschatel P-FORB 0 FAC * AEGILOPS CYLINDRICA Goat grass A-GRASS 5 UPL 4 Aesculus glabra Ohio buckeye TREE -1 FAC+ * AESCULUS HIPPOCASTANUM Horse chestnut TREE 5 UPL 10 Agalinis aspera Rough false foxglove A-FORB 5 UPL 10 Agalinis gattingeri Round-stemmed false foxglove A-FORB 5 UPL 8 Agalinis paupercula False foxglove
    [Show full text]
  • Конспект Родини Fabaceae У Флорі України. II. Підродина Faboideae (Триби Galegeae, Hedysareae, Loteae, Cicereae) Микола М
    Систематика, флористика, географія рослин Plant Taxonomy, Geography and Floristics https://doi.org/10.15407/ukrbotj75.04.305 Конспект родини Fabaceae у флорі України. II. Підродина Faboideae (триби Galegeae, Hedysareae, Loteae, Cicereae) Микола М. ФЕДОРОНЧУК, Сергій Л. МОСЯКІН Інститут ботаніки ім. М.Г. Холодного НАН України вул. Терещенківська, 2, Київ 01004, Україна Fedoronchuk M.M., Mosyakin S.L. A synopsis of the family Fabaceae in the flora of Ukraine. II. Subfamily Faboideae (tribes Galegeae, Hedysareae, Loteae, and Cicereae). Ukr. Bot. J., 2018, 75(4): 305–321. M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine 2 Tereshchenkivska Str., Kyiv 01004, Ukraine Abstract. The article provides a synopsis of tribes Galegeae, Hedysareae, Loteae, Cicereae of Fabaceae subfam. Faboideae in the flora of Ukraine, with nomenclatural citations, types, and main synonyms. It is based on critical analysis of available data of taxonomic, morphological, and molecular phylogenetic studies. Tribe Galegeae is best represented in the flora of Ukraine, comprising 10 genera, including the most species-rich genus Astragalus (48 species). However, the number of genera in the tribe will be probably changed due to further results of morphological and molecular phylogenetic studies which already indicate possible inclusion of Calophaca and Halimodendron in Caragana s. l.; however, these data require confirmation. Tribe Loteae is accepted here in a wide circumscription, including Coronilleae, which is in accordance with results of new morphological and molecular studies. There are 9 genera (or 7, in a wider circumscription) in the tribe, but the number of natural genera in that group will be clarified after further studies.
    [Show full text]
  • Assessing the Potential of Diverse Forage Mixtures to Reduce Enteric Methane Emissions in Vitro
    animals Article Assessing the Potential of Diverse Forage Mixtures to Reduce Enteric Methane Emissions In Vitro Cecilia Loza 1,* , Supriya Verma 1 , Siegfried Wolffram 2 , Andreas Susenbeth 2, Ralf Blank 2 , Friedhelm Taube 1,3, Ralf Loges 1, Mario Hasler 4, Christof Kluß 1 and Carsten Stefan Malisch 1 1 Institute of Plant Production and Plant Breeding, Grass and Forage Science/Organic Agriculture, Kiel University (CAU), 24118 Kiel, Germany; [email protected] (S.V.); [email protected] (F.T.); [email protected] (R.L.); [email protected] (C.K.); [email protected] (C.S.M.) 2 Institute of Animal Nutrition and Physiology, Kiel University (CAU), 24118 Kiel, Germany; [email protected] (S.W.); [email protected] (A.S.); [email protected] (R.B.) 3 Grass Based Dairy Systems, Animal Production Systems Group, Wageningen University (WUR), 6705 Wageningen, The Netherlands 4 Department of Statistics, Kiel University (CAU), 24118 Kiel, Germany; [email protected] * Correspondence: [email protected] Simple Summary: Changes in agriculture towards simpler and more intensive systems have con- tributed to increased environmental problems. In temperate sown grasslands, this has resulted in ryegrass dominance, and forage legume use is limited mainly to three species: red clover, white clover and lucerne. Other dicot forages, such as Lotus pedunculatus and Sanguisorba minor, are of interest as they contain plant specialized metabolites (PSM), especially tannins, potentially reducing methane from ruminants, an important source of agricultural greenhouse gas emissions. In an in vitro study, we compared binary mixtures of perennial ryegrass with one of eight dicot species, Citation: Loza, C.; Verma, S.; including PSM-rich species in different proportions, to assess their potential to reduce methane Wolffram, S.; Susenbeth, A.; Blank, R.; production.
    [Show full text]
  • Molecular Cytogenetics of Eurasian Species of the Genus Hedysarum L
    plants Article Molecular Cytogenetics of Eurasian Species of the Genus Hedysarum L. (Fabaceae) Olga Yu. Yurkevich 1, Tatiana E. Samatadze 1, Inessa Yu. Selyutina 2, Svetlana I. Romashkina 3, Svyatoslav A. Zoshchuk 1, Alexandra V. Amosova 1 and Olga V. Muravenko 1,* 1 Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St, 119991 Moscow, Russia; [email protected] (O.Y.Y.); [email protected] (T.E.S.); [email protected] (S.A.Z.); [email protected] (A.V.A.) 2 Central Siberian Botanical Garden, SB Russian Academy of Sciences, 101 Zolotodolinskaya St, 630090 Novosibirsk, Russia; [email protected] 3 All-Russian Institute of Medicinal and Aromatic Plants, 7 Green St, 117216 Moscow, Russia; [email protected] * Correspondence: [email protected] Abstract: The systematic knowledge on the genus Hedysarum L. (Fabaceae: Hedysareae) is still incomplete. The species from the section Hedysarum are valuable forage and medicinal resources. For eight Hedysarum species, we constructed the integrated schematic map of their distribution within Eurasia based on currently available scattered data. For the first time, we performed cytoge- nomic characterization of twenty accessions covering eight species for evaluating genomic diversity and relationships within the section Hedysarum. Based on the intra- and interspecific variability of chromosomes bearing 45S and 5S rDNA clusters, four main karyotype groups were detected in the studied accessions: (1) H. arcticum, H. austrosibiricum, H. flavescens, H. hedysaroides, and H. theinum (one chromosome pair with 45S rDNA and one pair bearing 5S rDNA); (2) H. alpinum and one accession of H. hedysaroides (one chromosome pair with 45S rDNA and two pairs bearing 5S rDNA); Citation: Yurkevich, O.Y.; Samatadze, (3) H.
    [Show full text]