Audio Content-Based Music Retrieval

Total Page:16

File Type:pdf, Size:1020Kb

Audio Content-Based Music Retrieval Meinard Müller Tutorial 2007 Habilitation Audio Content-Based Bonn, Germany Music Retrieval 2007 MPI Informatik Saarland, Germany Meinard Müller Joan Serrà Saarland University and MPI Informatik Artificial Intelligence Research Institute Senior Researcher [email protected] Spanish National Research Council Multimedia Information Retrieval [email protected] & Music Processing 6 PhD Students Joan Serrà Music Retrieval 2007- 2011 Ph.D. Textual metadata Music Technology Group – Traditional retrieval – Searching for artist, title, … Universitat Pompeu Fabra Barcelona, Spain Rich and expressive metadata – Generated by experts Postdoctoral Resarcher – Crowd tagging, social networks Artificial Intelligence Research Institute Spanish National Research Council Content-based retrieval Music information retrieval, machine – Automatic generation of tags learning, time series analysis, complex – Query-by-example networks, ... Query-by-Example Database Query-by-Example Query Taxonomy Hits Specificity Granularity level level Retrieval tasks: Bernstein (1962) Retrieval tasks: Beethoven, Symphony No. 5 High Fragment-based Audio identification Beethoven, Symphony No. 5: Audio identification specificity retrieval Bernstein (1962) Audio matching Karajan (1982) Audio matching Gould (1992) Version identification Version identification Beethoven, Symphony No. 9 Low Category-based music retrieval Beethoven, Symphony No. 3 Category-based music retrieval Document-based Haydn Symphony No. 94 specificity retrieval Overview Overview Part I: Audio identification Part I: Audio identification Part II: Audio matching Part II: Audio matching Coffee Break Coffee Break Part III: Version identification Part III: Version identification Part IV: Category-based music retrieval Part IV: Category-based music retrieval Overview Overview Part I: Audio identification Part I: Audio identification Part II: Audio matching Part II: Audio matching Coffee Break Coffee Break Part III: Version identification Part III: Version identification Part IV: Category-based music retrieval Part IV: Category-based music retrieval Overview Overview Part I: Audio identification Part I: Audio identification Part II: Audio matching Part II: Audio matching Coffee Break Coffee Break Part III: Version identification Part III: Version identification Part IV: Category-based music retrieval Part IV: Category-based music retrieval Overview Tutorial Audio Content-Based Part I: Audio identification Music Retrieval Part II: Audio matching Meinard Müller Joan Serrà Coffee Break Saarland University and MPI Informatik Artificial Intelligence Research Institute [email protected] Spanish National Research Council [email protected] Part III: Version identification Part IV: Category-based music retrieval Audio Identification Application Scenario Database: Huge collection consisting of all audio User hears music playing in the environment recordings (feature representations) to be potentially identified. User records music fragment (5-15 seconds) with mobile phone Goal: Given a short query audio fragment , identify the original audio recording the query is taken Audio fingerprints are extracted from the recording from. and sent to an audio identification service Notes: Instance of fragment-based retrieval Service identifies audio recording based on fingerprints High specificity Service sends back metadata (track title, artist) to user Not the piece of music is identified but a specific rendition of the piece Audio Fingerprints Audio Fingerprints An audio fingerprint is a content-based compact An audio fingerprint is a content-based compact signature that summarizes some specific audio content. signature that summarizes a piece of audio content Requirements: Requirements: Ability to accurately identify an item within a huge number of other items Discriminative power Discriminative power (informative, characteristic) Low probability of false positives Invariance to distortions Invariance to distortions Recorded query excerpt Compactness Compactness only a few seconds Large audio collection on the server Computational simplicity Computational simplicity side (millions of songs) Audio Fingerprints Audio Fingerprints An audio fingerprint is a content-based compact An audio fingerprint is a content-based compact signature that summarizes a piece of audio content signature that summarizes a piece of audio content Requirements: Requirements: Recorded query may be distorted Reduction of complex multimedia and superimposed with other audio objects Discriminative power sources Discriminative power Background noise Reduction of dimensionality Pitching Invariance to distortions Invariance to distortions (audio played faster or slower) Making indexing feasible Equalization Compactness Compression artifacts Compactness Allowing for fast search Cropping, framing Computational simplicity … Computational simplicity Audio Fingerprints Literature (Audio Identification) An audio fingerprint is a content-based compact signature that summarizes a piece of audio content Allamanche et al. (AES 2001) Cano et al. (AES 2002) Requirements: Computational efficiency Haitsma/Kalker (ISMIR 2002) Kurth/Clausen/Ribbrock (AES 2002) Discriminative power Extraction of fingerprint should be simple Wang (ISMIR 2003) … Invariance to distortions Size of fingerprints should be small Dupraz/Richard (ICASSP 2010) Compactness Ramona/Peeters (ICASSP 2011) Computational simplicity Literature (Audio Identification) Fingerprints (Shazam) Steps: Allamanche et al. (AES 2001) 1. Spectrogram Cano et al. (AES 2002) 2. Peaks (local maxima ) Haitsma/Kalker (ISMIR 2002) Kurth/Clausen/Ribbrock (AES 2002) Wang (ISMIR 2003) … Dupraz/Richard (ICASSP 2010) Intensity Frequency (Hz) Frequency Efficiently computable Ramona/Peeters (ICASSP 2011) Standard transform Robust Time (seconds) Fingerprints (Shazam) Fingerprints (Shazam) Steps: Steps: 1. Spectrogram 1. Spectrogram 2. Peaks 2. Peaks / differing peaks Robustness: Noise, reverb, room acoustics, equalization Intensity Intensity Frequency (Hz) Frequency (Hz) Frequency Time (seconds) Time (seconds) Fingerprints (Shazam) Fingerprints (Shazam) Steps: Steps: 1. Spectrogram 1. Spectrogram 2. Peaks / differing peaks 2. Peaks / differing peaks Robustness: Robustness: Noise, reverb, Noise, reverb, room acoustics, room acoustics, equalization equalization Intensity Intensity Frequency (Hz) Frequency Audio codec (Hz) Frequency Audio codec Superposition of other audio sources Time (seconds) Time (seconds) Matching Fingerprints (Shazam) Matching Fingerprints (Shazam) Database document Database document (constellation map) Intensity Frequency (Hz) Frequency (Hz) Frequency Time (seconds) Time (seconds) Matching Fingerprints (Shazam) Matching Fingerprints (Shazam) Database document Query document Database document Query document (constellation map) (constellation map) (constellation map) (constellation map) 1. Shift query across database document 2. Count matching peaks 20 Frequency (Hz) Frequency (Hz) Frequency 15 10 5 #(matching peaks) #(matching 0 0 1 2 3 4 5 6 7 8 9 Time (seconds) Time (seconds) Shift (seconds) Matching Fingerprints (Shazam) Matching Fingerprints (Shazam) Database document Query document Database document Query document (constellation map) (constellation map) (constellation map) (constellation map) 1. Shift query across 1. Shift query across database document database document 2. Count matching peaks 2. Count matching peaks 20 20 Frequency (Hz) Frequency (Hz) Frequency 15 15 10 10 5 5 #(matching peaks) #(matching peaks) #(matching 0 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 Time (seconds) Shift (seconds) Time (seconds) Shift (seconds) Matching Fingerprints (Shazam) Matching Fingerprints (Shazam) Database document Query document Database document Query document (constellation map) (constellation map) (constellation map) (constellation map) 1. Shift query across 1. Shift query across database document database document 2. Count matching peaks 2. Count matching peaks 20 20 Frequency (Hz) Frequency (Hz) Frequency 15 15 10 10 5 5 #(matching peaks) #(matching peaks) #(matching 0 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 Time (seconds) Shift (seconds) Time (seconds) Shift (seconds) Matching Fingerprints (Shazam) Indexing (Shazam) Database document Query document Index the fingerprints using hash lists Hash 2B (constellation map) (constellation map) Hashes correspond to (quantized) frequencies 1. Shift query across database document 2. Count matching peaks 3. High count indicates a hit (Hz) Frequency (document ID & position) Hash 2 20 Frequency (Hz) Frequency Hash 1 15 10 Time (seconds) 5 #(matching peaks) #(matching 0 0 1 2 3 4 5 6 7 8 9 Time (seconds) Shift (seconds) Indexing (Shazam) Indexing (Shazam) Index the fingerprints using hash lists Hash 2B Idea: Use pairs of peaks to increase specificity of hashes Hashes correspond to (quantized) frequencies Hash list consists of time positions (and document IDs) 1. Peaks 2. Fix anchor point N = number of spectral peaks 3. Define target zone 4. Use paris of points B = #(bits) used to encode spectral peaks (Hz) Frequency 2B = number of hash lists 5. Use every point as N / 2 B = average number of elements per list Hash 2 anchor point Hash 1 (Hz) Frequency Problem: Individual peaks are not characteristic Hash lists may be very long List to Hash 1: Not suitable for indexing Time (seconds) Time (seconds) Indexing (Shazam) Indexing (Shazam) Idea: Use pairs of peaks to
Recommended publications
  • Estimating Complex Production Functions: the Importance of Starting Values
    Version: January 26 Estimating complex production functions: The importance of starting values Mark Neal Presented at the 51st Australian Agricultural and Resource Economics Society Conference, Queenstown, New Zealand, 14-16 February, 2007. Postdoctoral Research Fellow Risk and Sustainable Management Group University of Queensland Room 519, School of Economics, Colin Clark Building (39) University of Queensland, St Lucia, QLD, 4072 Email: [email protected] Ph: +61 (0) 7 3365 6601 Fax: +61 (0) 7 3365 7299 http://www.uq.edu.au/rsmg Acknowledgements Chris O’Donnell helpfully provided access to Gauss code that he had written for estimation of latent class models so it could be translated into Shazam. Leighton Brough (UQ), Ariel Liebman (UQ) and Tom Pechey (UMelb) helped by organising a workshop with Nimrod/enFuzion at UQ in June 2006. enFuzion (via Rok Sosic) provided a limited license for use in the project. Leighton Brough, tools coordinator for the ARC Centre for Complex Systems (ACCS), assisted greatly in setting up an enFuzion grid and collating the large volume of results. Son Nghiem provided assistance in collating and analysing data as well as in creating some of the figures. Page 1 of 30 Version: January 26 ABSTRACT Production functions that take into account uncertainty can be empirically estimated by taking a state contingent view of the world. Where there is no a priori information to allocate data amongst a small number of states, the estimation may be carried out with finite mixtures model. The complexity of the estimation almost guarantees a large number of local maxima for the likelihood function.
    [Show full text]
  • Apple / Shazam Merger Procedure Regulation (Ec)
    EUROPEAN COMMISSION DG Competition CASE M.8788 – APPLE / SHAZAM (Only the English text is authentic) MERGER PROCEDURE REGULATION (EC) 139/2004 Article 8(1) Regulation (EC) 139/2004 Date: 06/09/2018 This text is made available for information purposes only. A summary of this decision is published in all EU languages in the Official Journal of the European Union. Parts of this text have been edited to ensure that confidential information is not disclosed; those parts are enclosed in square brackets. EUROPEAN COMMISSION Brussels, 6.9.2018 C(2018) 5748 final COMMISSION DECISION of 6.9.2018 declaring a concentration to be compatible with the internal market and the EEA Agreement (Case M.8788 – Apple/Shazam) (Only the English version is authentic) TABLE OF CONTENTS 1. Introduction .................................................................................................................. 6 2. The Parties and the Transaction ................................................................................... 6 3. Jurisdiction of the Commission .................................................................................... 7 4. The procedure ............................................................................................................... 8 5. The investigation .......................................................................................................... 8 6. Overview of the digital music industry ........................................................................ 9 6.1. The digital music distribution value
    [Show full text]
  • Statistics and GIS Assistance Help with Statistics
    Statistics and GIS assistance An arrangement for help and advice with regard to statistics and GIS is now in operation, principally for Master’s students. How do you seek advice? 1. The users, i.e. students at INA, make direct contact with the person whom they think can help and arrange a time for consultation. Remember to be well prepared! 2. Doctoral students and postdocs register the time used in Agresso (if you have questions about this contact Gunnar Jensen). Help with statistics Research scientist Even Bergseng Discipline: Forest economy, forest policies, forest models Statistical expertise: Regression analysis, models with random and fixed effects, controlled/truncated data, some time series modelling, parametric and non-parametric effectiveness analyses Software: Stata, Excel Postdoc. Ole Martin Bollandsås Discipline: Forest production, forest inventory Statistics expertise: Regression analysis, sampling Software: SAS, R Associate Professor Sjur Baardsen Discipline: Econometric analysis of markets in the forest sector Statistical expertise: General, although somewhat “rusty”, expertise in many econometric topics (all-rounder) Software: Shazam, Frontier Associate Professor Terje Gobakken Discipline: GIS og long-term predictions Statistical expertise: Regression analysis, ANOVA and PLS regression Software: SAS, R Ph.D. Student Espen Halvorsen Discipline: Forest economy, forest management planning Statistical expertise: OLS, GLS, hypothesis testing, autocorrelation, ANOVA, categorical data, GLM, ANOVA Software: (partly) Shazam, Minitab og JMP Ph.D. Student Jan Vidar Haukeland Discipline: Nature based tourism Statistical expertise: Regression and factor analysis Software: SPSS Associate Professor Olav Høibø Discipline: Wood technology Statistical expertise: Planning of experiments, regression analysis (linear and non-linear), ANOVA, random and non-random effects, categorical data, multivariate analysis Software: R, JMP, Unscrambler, some SAS Ph.D.
    [Show full text]
  • Bab 1 Pendahuluan
    BAB 1 PENDAHULUAN Bab ini akan membahas pengertian dasar statistik dengan sub-sub pokok bahasan sebagai berikut : Sub Bab Pokok Bahasan A. Sejarah dan Perkembangan Statistik B. Tokoh-tokoh Kontributor Statistika C. Definisi dan Konsep Statistik Modern D. Kegunaan Statistik E. Pembagian Statistik F. Statistik dan Komputer G. Soal Latihan A. Sejarah dan Perkembangan Statistik Penggunaan istilah statistika berakar dari istilah-istilah dalam bahasa latin modern statisticum collegium (“dewan negara”) dan bahasa Italia statista (“negarawan” atau “politikus”). Istilah statistik pertama kali digunakan oleh Gottfried Achenwall (1719-1772), seorang guru besar dari Universitas Marlborough dan Gottingen. Gottfried Achenwall (1749) menggunakan Statistik dalam bahasa Jerman untuk pertama kalinya sebagai nama bagi kegiatan analisis data kenegaraan, dengan mengartikannya sebagai “ilmu tentang negara/state”. Pada awal abad ke- 19 telah terjadi pergeseran arti menjadi “ilmu mengenai pengumpulan dan klasifikasi data”. Sir John Sinclair memperkenalkan nama dan pengertian statistics ini ke dalam bahasa Inggris. E.A.W. Zimmerman mengenalkan kata statistics ke negeri Inggris. Kata statistics dipopulerkan di Inggris oleh Sir John Sinclair dalam karyanya: Statistical Account of Scotland 1791-1799. Namun demikian, jauh sebelum abad XVIII masyarakat telah mencatat dan menggunakan data untuk keperluan mereka. Pada awalnya statistika hanya mengurus data yang dipakai lembaga- lembaga administratif dan pemerintahan. Pengumpulan data terus berlanjut, khususnya melalui sensus yang dilakukan secara teratur untuk memberi informasi kependudukan yang selalu berubah. Dalam bidang pemerintahan, statistik telah digunakan seiring dengan perjalanan sejarah sejak jaman dahulu. Kitab perjanjian lama (old testament) mencatat adanya kegiatan sensus penduduk. Pemerintah kuno Babilonia, Mesir, dan Roma mengumpulkan data lengkap tentang penduduk dan kekayaan alam yang dimilikinya.
    [Show full text]
  • Conductor, Composer and Violinist Jaakko Kuusisto Enjoys An
    Conductor, composer and violinist Jaakko Kuusisto enjoys an extensive career that was launched by a series of successes in international violin competitions in the 1990s. Having recorded concertos by some of the most prominent Finnish contemporary composers, such as Rautavaara, Aho, Sallinen and Pulkkis, he is one of the most frequently recorded Finnish instrumentalists. When BIS Records launched a project of complete Sibelius recordings, Kuusisto had a major role in the violin works and string chamber music. Moreover, his discography contains several albums outside the classical genre. Kuusisto’s conducting repertoire is equally versatile and ranges from baroque to the latest new works, regardless of genre. He has worked with many leading orchestras, including Minnesota Orchestra; Sydney, Melbourne and Adelaide Symphony Orchestras; NDR Hannover, DeFilharmonie in Belgium; Chamber Orchestras of Tallinn and Lausanne; Helsinki, Turku and Tampere Philharmonic Orchestras; Oulu Symphony Orchestra as well as the Avanti! Chamber Orchestra. Kuusisto recently conducted his debut performances with the Krakow Sinfonietta and Ottawa’s National Arts Center Orchestra, as well as at the Finnish National Opera’s major production Indigo, an opera by heavy metal cello group Apocalyptica’s Eicca Toppinen and Perttu Kivilaakso. The score of the opera is also arranged and orchestrated by Kuusisto. Kuusisto performs regularly as soloist and chamber musician and has held the position of artistic director at several festivals. Currently he is the artistic director of the Oulu Music Festival with a commitment presently until 2017. Kuusisto also enjoys a longstanding relationship with the Lahti Symphony Orchestra: having served as concertmaster during 1999-2012, his collaboration with the orchestra now continues with frequent guest conducting and recordings, to name a few.
    [Show full text]
  • 1 Reliability of Programming Software: Comparison of SHAZAM and SAS
    Reliability of Programming Software: Comparison of SHAZAM and SAS. Oluwarotimi Odeh Department of Agricultural Economics, Kansas State University, Manhattan, KS 66506-4011 Phone: (785)-532-4438 Fax: (785)-523-6925 Email: [email protected] Allen M. Featherstone Department of Agricultural Economics, Kansas State University, Manhattan, KS 66506-4011 Phone: (785)-532-4441 Fax: (785)-523-6925 Email: [email protected] Selected Paper for Presentation at the Western Agricultural Economics Association Annual Meeting, Honolulu, HI, June 30-July 2, 2004 Copyright 2004 by Odeh and Featherstone. All rights reserved. Readers may make verbatim copies for commercial purposes by any means, provided that this copyright notice appears on all such copies. 1 Reliability of Programming Software: Comparison of SHAZAM and SAS. Introduction The ability to combine quantitative methods, econometric techniques, theory and data to analyze societal problems has become one of the major strengths of agricultural economics. The inability of agricultural economists to perform this task perfectly in some cases has been linked to the fragility of econometric results (Learner, 1983; Tomek, 1993). While small changes in model specification may result in considerable impact and changes in empirical results, Hendry and Richard (1982) have shown that two models of the same relationship may result in contradicting result. Results like these weaken the value of applied econometrics (Tomek, 1993). Since the study by Tice and Kletke (1984) computer programming software have undergone tremendous improvements. However, experience in recent times has shown that available software packages are not foolproof and may not be as efficient and consistent as researchers often assume. Compounding errors, convergence, error due to how software read, interpret and process data impact the values of analytical results (see Tomek, 1993; Dewald, Thursby and Anderson, 1986).
    [Show full text]
  • Peer Institution Research: Recommendations and Trends 2016
    Peer Institution Research: Recommendations and Trends 2016 New Mexico State University Abstract This report evaluates the common technology services from New Mexico State University’s 15 peer institutions. Based on the findings, a summary of recommendations and trends are explained within each of the general areas researched: peer institution enrollment, technology fees, student computing, software, help desk services, classroom technology, equipment checkout and loan programs, committees and governing bodies on technology, student and faculty support, printing, emerging technologies and trends, homepage look & feel and ease of navigation, UNM and UTEP my.nmsu.edu comparison, top IT issues, and IT organization charts. Peer Institution Research 1 Table of Contents Peer Institution Enrollment ................................................................................. 3 Technology Fees ................................................................................................. 3 Student Computing ............................................................................................. 6 Software ............................................................................................................. 8 Help Desk Services .............................................................................................. 9 Classroom Technology ...................................................................................... 11 Equipment Checkout and Loan Programs .........................................................
    [Show full text]
  • Insight MFR By
    Manufacturers, Publishers and Suppliers by Product Category 11/6/2017 10/100 Hubs & Switches ASCEND COMMUNICATIONS CIS SECURE COMPUTING INC DIGIUM GEAR HEAD 1 TRIPPLITE ASUS Cisco Press D‐LINK SYSTEMS GEFEN 1VISION SOFTWARE ATEN TECHNOLOGY CISCO SYSTEMS DUALCOMM TECHNOLOGY, INC. GEIST 3COM ATLAS SOUND CLEAR CUBE DYCONN GEOVISION INC. 4XEM CORP. ATLONA CLEARSOUNDS DYNEX PRODUCTS GIGAFAST 8E6 TECHNOLOGIES ATTO TECHNOLOGY CNET TECHNOLOGY EATON GIGAMON SYSTEMS LLC AAXEON TECHNOLOGIES LLC. AUDIOCODES, INC. CODE GREEN NETWORKS E‐CORPORATEGIFTS.COM, INC. GLOBAL MARKETING ACCELL AUDIOVOX CODI INC EDGECORE GOLDENRAM ACCELLION AVAYA COMMAND COMMUNICATIONS EDITSHARE LLC GREAT BAY SOFTWARE INC. ACER AMERICA AVENVIEW CORP COMMUNICATION DEVICES INC. EMC GRIFFIN TECHNOLOGY ACTI CORPORATION AVOCENT COMNET ENDACE USA H3C Technology ADAPTEC AVOCENT‐EMERSON COMPELLENT ENGENIUS HALL RESEARCH ADC KENTROX AVTECH CORPORATION COMPREHENSIVE CABLE ENTERASYS NETWORKS HAVIS SHIELD ADC TELECOMMUNICATIONS AXIOM MEMORY COMPU‐CALL, INC EPIPHAN SYSTEMS HAWKING TECHNOLOGY ADDERTECHNOLOGY AXIS COMMUNICATIONS COMPUTER LAB EQUINOX SYSTEMS HERITAGE TRAVELWARE ADD‐ON COMPUTER PERIPHERALS AZIO CORPORATION COMPUTERLINKS ETHERNET DIRECT HEWLETT PACKARD ENTERPRISE ADDON STORE B & B ELECTRONICS COMTROL ETHERWAN HIKVISION DIGITAL TECHNOLOGY CO. LT ADESSO BELDEN CONNECTGEAR EVANS CONSOLES HITACHI ADTRAN BELKIN COMPONENTS CONNECTPRO EVGA.COM HITACHI DATA SYSTEMS ADVANTECH AUTOMATION CORP. BIDUL & CO CONSTANT TECHNOLOGIES INC Exablaze HOO TOO INC AEROHIVE NETWORKS BLACK BOX COOL GEAR EXACQ TECHNOLOGIES INC HP AJA VIDEO SYSTEMS BLACKMAGIC DESIGN USA CP TECHNOLOGIES EXFO INC HP INC ALCATEL BLADE NETWORK TECHNOLOGIES CPS EXTREME NETWORKS HUAWEI ALCATEL LUCENT BLONDER TONGUE LABORATORIES CREATIVE LABS EXTRON HUAWEI SYMANTEC TECHNOLOGIES ALLIED TELESIS BLUE COAT SYSTEMS CRESTRON ELECTRONICS F5 NETWORKS IBM ALLOY COMPUTER PRODUCTS LLC BOSCH SECURITY CTC UNION TECHNOLOGIES CO FELLOWES ICOMTECH INC ALTINEX, INC.
    [Show full text]
  • 2017 MAJOR EURO Music Festival CALENDAR Sziget Festival / MTI Via AP Balazs Mohai
    2017 MAJOR EURO Music Festival CALENDAR Sziget Festival / MTI via AP Balazs Mohai Sziget Festival March 26-April 2 Horizon Festival Arinsal, Andorra Web www.horizonfestival.net Artists Floating Points, Motor City Drum Ensemble, Ben UFO, Oneman, Kink, Mala, AJ Tracey, Midland, Craig Charles, Romare, Mumdance, Yussef Kamaal, OM Unit, Riot Jazz, Icicle, Jasper James, Josey Rebelle, Dan Shake, Avalon Emerson, Rockwell, Channel One, Hybrid Minds, Jam Baxter, Technimatic, Cooly G, Courtesy, Eva Lazarus, Marc Pinol, DJ Fra, Guim Lebowski, Scott Garcia, OR:LA, EL-B, Moony, Wayward, Nick Nikolov, Jamie Rodigan, Bahia Haze, Emerald, Sammy B-Side, Etch, Visionobi, Kristy Harper, Joe Raygun, Itoa, Paul Roca, Sekev, Egres, Ghostchant, Boyson, Hampton, Jess Farley, G-Ha, Pixel82, Night Swimmers, Forbes, Charline, Scar Duggy, Mold Me With Joy, Eric Small, Christer Anderson, Carina Helen, Exswitch, Seamus, Bulu, Ikarus, Rodri Pan, Frnch, DB, Bigman Japan, Crawford, Dephex, 1Thirty, Denzel, Sticky Bandit, Kinno, Tenbagg, My Mate From College, Mr Miyagi, SLB Solden, Austria June 9-July 10 DJ Snare, Ambiont, DLR, Doc Scott, Bailey, Doree, Shifty, Dorian, Skore, March 27-April 2 Web www.electric-mountain-festival.com Jazz Fest Vienna Dossa & Locuzzed, Eksman, Emperor, Artists Nervo, Quintino, Michael Feiner, Full Metal Mountain EMX, Elize, Ernestor, Wastenoize, Etherwood, Askery, Rudy & Shany, AfroJack, Bassjackers, Vienna, Austria Hemagor, Austria F4TR4XX, Rapture,Fava, Fred V & Grafix, Ostblockschlampen, Rafitez Web www.jazzfest.wien Frederic Robinson,
    [Show full text]
  • OFFICIAL RULES Summitmedia, LLC Contesting Apocalyptica Plays Metallica Concert Tickets WBPT-FM
    OFFICIAL RULES SummitMedia, LLC Contesting Apocalyptica plays Metallica Concert Tickets WBPT-FM The following are the official rules of SummitMedia, LLC (“Sponsor”) for the Apocalyptica plays Metallica Concert Ticket Contest (“Contest”). By participating, each participant agrees as follows: 1. NO PURCHASE IS NECESSARY. Void where prohibited by law. All federal, state, and local regulations apply. 2. ELIGIBILITY. Unless otherwise specified, the Contest is open only to legal U.S. residents age eighteen (18) years or older at the time of entry with a valid Social Security number and who reside in the WBPT-FM listening area. Unless otherwise specified, employees of SummitMedia, LLC , its parent company, affiliates, related entities and subsidiaries, promotional sponsors, prize providers, advertising agencies, other radio stations serving the SummitMedia, LLC radio station’s listening area, and the immediate family members and household members of all such employees are not eligible to participate. The term “immediate family members” includes spouses, parents and step-parents, siblings and step-siblings, and children and stepchildren. The term “household members” refers to people who share the same residence at least three (3) months out of the year. Only one winner per household or family is permitted. There is no limit to the number of times an individual may attempt to enter, but each individual may qualify only once per Contest. An individual who has won more than $500 in a SummitMedia, LLC Contest or Sweepstakes in a particular calendar quarter is not eligible to participate in another SummitMedia, LLC Contest or Sweepstakes in that quarter unless otherwise specifically stated. Entrants may not use an assumed name or alias (other than a screen name where a contest involves use of a social media site).
    [Show full text]
  • Man in a Room
    Tero Saarinen: Man in a Room Koreografia Carolyn Carlson Tanssi Tero Saarinen Musiikki kooste (Gavin Bryars Ensemble, Apocalyptica) Valosuunnittelu Mikki Kunttu Lavastus Carolyn Carlson Pukusuunnittelu Rachel Quarmby-Spadaccini Kesto 22 min Ensi-ilta 17.6.2000, Venetsian biennaali, Italia Tuotanto Venetsian biennaali (Italia) Yhteistyössä Tero Saarinen Company Äänitteet Apocalyptica, M.B. (säv. Eicca Toppinen); Apocalyptica: Nothing Else Matters (säv. Hetfield & Ulrich); Gavin Bryars Ensemble, A Man in a Room, Gambling no 10 (säv. Gavin Bryars) Tero Saarinen Company tekniikka ja tuotanto Tekninen johtaja Ville Konttinen Toiminnanjohtaja Iiris Autio Markkinointi- ja viestintäpäällikkö Terhi Mikkonen Myyntipäällikkö Johanna Rajamäki Tuotanto- ja kumppanuussuunnittelija Carita Weissenfelt Talous- ja toimistoassistentti Sara Hirn This is a general document. Please contact [email protected] for a confirmed cast list. Tero Saarinen Company Vuonna 1996 perustettu Tero Saarinen Company on kiertänyt jo 40 maassa, kuudella eri mantereella. Ryhmä on esiintynyt lukuisilla arvostetuilla festivaaleilla ja teattereissa kuten BAM ja The Joyce New Yorkissa, Chaillot ja Châtelet Pariisissa sekä Royal Festival Hall Lontoossa. TSC:n toimintaan kuuluvat myös kansainvälinen opetustoiminta, yhteisölliset hankkeet sekä ulkomaisten tanssivierailujen tuottaminen Helsinkiin. Lisäksi Saarinen tekee yhteistyötä muiden nimekkäiden tanssiryhmien kanssa; hänen teoksiaan ovat esittäneet the LA Phil, NDT1, Batsheva, Lyon Opéra Ballet, Korean kansallinen tanssiryhmä
    [Show full text]
  • Nothing Else Matters Apocalyptica Metallica for Strings Quartet Sheet Music
    Nothing Else Matters Apocalyptica Metallica For Strings Quartet Sheet Music Download nothing else matters apocalyptica metallica for strings quartet sheet music pdf now available in our library. We give you 6 pages partial preview of nothing else matters apocalyptica metallica for strings quartet sheet music that you can try for free. This music notes has been read 38887 times and last read at 2021-09-27 18:00:17. In order to continue read the entire sheet music of nothing else matters apocalyptica metallica for strings quartet you need to signup, download music sheet notes in pdf format also available for offline reading. Instrument: Cello, Violin Ensemble: String Quartet Level: Advanced [ Read Sheet Music ] Other Sheet Music Fade To Black Metallica Apocalyptica Strings Quartet Fade To Black Metallica Apocalyptica Strings Quartet sheet music has been read 13756 times. Fade to black metallica apocalyptica strings quartet arrangement is for Advanced level. The music notes has 6 preview and last read at 2021-09-24 11:31:35. [ Read More ] Nothing Else Matters Apocalyptica Metallica For Violin Quintet Full Score And Parts Nothing Else Matters Apocalyptica Metallica For Violin Quintet Full Score And Parts sheet music has been read 13390 times. Nothing else matters apocalyptica metallica for violin quintet full score and parts arrangement is for Intermediate level. The music notes has 6 preview and last read at 2021-09-22 18:03:42. [ Read More ] Nothing Else Matters Metallica For String Quartet Nothing Else Matters Metallica For String Quartet sheet music has been read 14766 times. Nothing else matters metallica for string quartet arrangement is for Intermediate level.
    [Show full text]