Time for Acquiring a New Gene by Duplication
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genetic Effects on Microsatellite Diversity in Wild Emmer Wheat (Triticum Dicoccoides) at the Yehudiyya Microsite, Israel
Heredity (2003) 90, 150–156 & 2003 Nature Publishing Group All rights reserved 0018-067X/03 $25.00 www.nature.com/hdy Genetic effects on microsatellite diversity in wild emmer wheat (Triticum dicoccoides) at the Yehudiyya microsite, Israel Y-C Li1,3, T Fahima1,MSRo¨der2, VM Kirzhner1, A Beiles1, AB Korol1 and E Nevo1 1Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel; 2Institute for Plant Genetics and Crop Plant Research, Corrensstrasse 3, 06466 Gatersleben, Germany This study investigated allele size constraints and clustering, diversity. Genome B appeared to have a larger average and genetic effects on microsatellite (simple sequence repeat number (ARN), but lower variance in repeat number 2 repeat, SSR) diversity at 28 loci comprising seven types of (sARN), and smaller number of alleles per locus than genome tandem repeated dinucleotide motifs in a natural population A. SSRs with compound motifs showed larger ARN than of wild emmer wheat, Triticum dicoccoides, from a shade vs those with perfect motifs. The effects of replication slippage sun microsite in Yehudiyya, northeast of the Sea of Galilee, and recombinational effects (eg, unequal crossing over) on Israel. It was found that allele distribution at SSR loci is SSR diversity varied with SSR motifs. Ecological stresses clustered and constrained with lower or higher boundary. (sun vs shade) may affect mutational mechanisms, influen- This may imply that SSR have functional significance and cing the level of SSR diversity by both processes. natural constraints. -
Biology Dictionary English - Khmer
vcnanuRkm CIvviTüa Gg;eKøs-Exµr Biology Dictionary English - Khmer saklviTüal½yPUminÞPñMeBj ed)a:tWm:g; CIvviTüa e)aHBum<elIkTI 3 ¬EksMrYl¦ 2003 Preface to the Third Edition (Revised) This dictionary is the work of many teachers and some students in the Biology department of The Royal University of Phnom Penh. It has developed over the last three years in response to the need of Biology students to learn Biology from English text books. We have also tried to anticipate the future needs of Biology students and teachers in Cambodia. If they want to join the global scientific community; read scientific journals, listen to international media, attend international conferences or study outside Cambodia, then they will probably need to communicate in English. Therefore, the main aim of this book is to help Cambodian students and teachers at the university level to understand Biology in English. All languages evolve. In the past the main influence on Khmer language was French. Nowadays, it is increasingly English. Some technical terms have already been absorbed from French and have become Khmer. Nowadays new technical terms are usually created in English and are used around the world. Language is also created by those who use it and only exists when it is used. Therefore, common usage has also influenced our translation. We have tried to respond to these various influences when preparing this dictionary, so that it represents many different opinions - old and new, Francophile, Anglophile and Khmer. But there will always be some disagreement about the translation of some terms. This is normal and occurs in all languages. -
701.Full.Pdf
THE AVERAGE NUMBER OF GENERATIONS UNTIL EXTINCTION OF AN INDIVIDUAL MUTANT GENE IN A FINITE POPULATION MOT00 KIMURA' AND TOMOKO OHTA Department of Biology, Princeton University and National Institute of Genetics, Mishima, Japan Received June 13, 1969 AS pointed out by FISHER(1930), a majority of mutant genes which appear in natural populations are lost by chance within a small number of genera- tions. For example, if the mutant gene is selectively neutral, the probability is about 0.79 that it is lost from the population during the first 7 generations. With one percent selective advantage, this probability becomes about 0.78, namely, it changes very little. In general, the probability of loss in early generations due to random sampling of gametes is very high. The question which naturally follows is how long does it take, on the average, for a single mutant gene to become lost from the population, if we exclude the cases in which it is eventually fixed (established) in the population. In the present paper, we will derive some approximation formulas which are useful to answer this question, based on the theory of KIMURAand OHTA(1969). Also, we will report the results of Monte Carlo experiments performed to check the validity of the approximation formulas. APPROXIMATION FORMULAS BASED ON DIFFUSION MODELS Let us consider a diploid population, and denote by N and Ne, respectively, its actual and effective sizes. The following treatment is based on the diffusion models of population genetics (cf. KIMURA1964). As shown by KIMURAand OHTA (1969), if p is the initial frequency of the mutant gene, the average number of generations until loss of the mutant gene (excluding the cases of its eventual fixation) is - In this formula, 1 On leave from the National Institute of Genetics, Mishima, Japan. -
Molecular Biology and Applied Genetics
MOLECULAR BIOLOGY AND APPLIED GENETICS FOR Medical Laboratory Technology Students Upgraded Lecture Note Series Mohammed Awole Adem Jimma University MOLECULAR BIOLOGY AND APPLIED GENETICS For Medical Laboratory Technician Students Lecture Note Series Mohammed Awole Adem Upgraded - 2006 In collaboration with The Carter Center (EPHTI) and The Federal Democratic Republic of Ethiopia Ministry of Education and Ministry of Health Jimma University PREFACE The problem faced today in the learning and teaching of Applied Genetics and Molecular Biology for laboratory technologists in universities, colleges andhealth institutions primarily from the unavailability of textbooks that focus on the needs of Ethiopian students. This lecture note has been prepared with the primary aim of alleviating the problems encountered in the teaching of Medical Applied Genetics and Molecular Biology course and in minimizing discrepancies prevailing among the different teaching and training health institutions. It can also be used in teaching any introductory course on medical Applied Genetics and Molecular Biology and as a reference material. This lecture note is specifically designed for medical laboratory technologists, and includes only those areas of molecular cell biology and Applied Genetics relevant to degree-level understanding of modern laboratory technology. Since genetics is prerequisite course to molecular biology, the lecture note starts with Genetics i followed by Molecular Biology. It provides students with molecular background to enable them to understand and critically analyze recent advances in laboratory sciences. Finally, it contains a glossary, which summarizes important terminologies used in the text. Each chapter begins by specific learning objectives and at the end of each chapter review questions are also included. -
National Institute of Genetics Japan
NATIONAL INSTITUTE OF GENETICS JAPAN ANNUAL REPORT No. 20 1969 Publi8l&ed bll THE NATIONAL INS'ITI'UTE OF GENETICS Mitlima. Simoka-ken. Japtm 1970 Annual Report of the National Institute of Genetics No. 20, 1969 Published by The National Institute of Genetics, Japan 1970 CONTENTS General statement 1 Staff..................................... .. 2 Council............................................................ 5 Association for propagation of the knowledge of genetics... 5 Projects of research for 1969 ................ 6 Researches carried out in 1969 .......................... 9 1. Cytogenetics Segregation of three types of the largest No.1 (A-I) chromosome in Rattus rattus bred in a population room. YOSIDA, T. H. and TSUCHIYA, K. 9 Polymorphism of No.9 (A-9) and No. 13 (A-13) autosomes in Rattus rattus collected in Japan. YOSIDA, T. H. and TSUCHIYA, K. and MASUJI, H.......................................... 10 Frequency of chromosome polymorphism in Rattus rattus col- lected in East and Southeast Asia. YOSIDA, T. H. and TSUCHIYA, K. 11 Fl and F2 hybrids between Asian and Oceanian black rats with different karyotypes. YOSIDA, T. H., KATO, H. and SAKAKI- BARA, K.................................................... 13 Karyotypes of black rats, Rattus rattus, obtained from Honolulu, Hawaii. YOSIDA, T. H. and TSUCHIYA, K. 14 Local differences in the frequencies of chromosome polymorphism in the house rat, Rattus rattus, in Japan. YOSIDA, T. H., TSUCHIYA, K. and SONODA, J. 15 Karyotypes of Rattus bowersii collected in Malaysia. YOSIDA, T. H. and TSUCHIYA, K. 16 Protective effects of protamine sulfate on disintegration of isolated metaphase chromosomes. KATO, H., SEKIYA, K. and YOSIDA, T. H. 17 A preliminary study on the uptake of isolated nuclei by mam malian cells in vitro. -
Manipulating Underdetermination in Scientific Controversy: the Case of the Molecular Clock
Dartmouth College Dartmouth Digital Commons Open Dartmouth: Published works by Dartmouth faculty Faculty Work 9-1-2007 Manipulating Underdetermination in Scientific Controversy: The Case of the Molecular Clock Michael Dietrich Dartmouth College Robert A. Skipper University of Cincinnati Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa Part of the Biology Commons Dartmouth Digital Commons Citation Dietrich, Michael and Skipper, Robert A., "Manipulating Underdetermination in Scientific Controversy: The Case of the Molecular Clock" (2007). Open Dartmouth: Published works by Dartmouth faculty. 16. https://digitalcommons.dartmouth.edu/facoa/16 This Article is brought to you for free and open access by the Faculty Work at Dartmouth Digital Commons. It has been accepted for inclusion in Open Dartmouth: Published works by Dartmouth faculty by an authorized administrator of Dartmouth Digital Commons. For more information, please contact [email protected]. Manipulating Underdetermination in Scientiªc Controversy: The Case of the Molecular Clock Michael R. Dietrich Dartmouth College Robert A. Skipper, Jr. University of Cincinnati Where there are cases of underdetermination in scientiªc controversies, such as the case of the molecular clock, scientists may direct the course and terms of dispute by playing off the multidimensional framework of theory evaluation. This is because assessment strategies themselves are underdetermined. Within the framework of assessment, there are a variety of trade-offs between differ- ent strategies as well as shifting emphases as speciªc strategies are given more or less weight in assessment situations. When a strategy is underdetermined, scientists can change the dynamics of a controversy by making assessments using different combinations of evaluation strategies and/or weighting what- ever strategies are in play in different ways. -
The Importance of Genetic Redundancy in Evolution
TREE 2688 No. of Pages 14 Trends in Ecology & Evolution Review The Importance of Genetic Redundancy in Evolution Áki J. Láruson,1,3,*,@ Sam Yeaman,2,@ and Katie E. Lotterhos1,3,@ Genetic redundancy has been defined in many different ways at different levels Highlights of biological organization. Here, we briefly review the general concept of redun- The use of the term ‘genetic redundancy’ dancy and focus on the evolutionary importance of redundancy in terms of the has changed over the past 100 years. number of genotypes that give rise to the same phenotype. We discuss the chal- The amount of redundancy in the lenges in determining redundancy empirically, with published experimental mapping of genotype to phenotype is a examples, and demonstrate the use of the C-score metric to quantify redun- critical parameter for evolutionary out- dancy in evolution studies. We contrast the implicit assumptions of redundancy comes under a range of models. in quantitative versus population genetic models, show how this contributes to Distinguishing the conceptual terms signatures of allele frequency shifts, and highlight how the rapid accumulation ‘genotypic redundancy’ and ‘segregating of genome-wide association data provides an avenue for further understanding redundancy’ promotes clearer language the prevalence and role of redundancy in evolution. to further the study of redundancy at all levels of evolutionary biology. History of Redundancy in Evolutionary Studies Empirical determination of redundancy is Redundancy describes a situation in which there is an excess of causal components in a system, challenging, but there are approaches above the minimum needed for its proper function. Understanding how redundancy is built into which allow for the quantitative inference of redundancy. -
The Average Number of Generations Until Fixation of a Mutant Gene in a Finite Population'
THE AVERAGE NUMBER OF GENERATIONS UNTIL FIXATION OF A MUTANT GENE IN A FINITE POPULATION' MOT00 KIMURA AND TOMOKO OHTA, National Institute of Genetics, Mishima, Japan Received July 26, 1968 A mutant gene which appeared in a finite population will eventually either be lost from the population or fixed (established) in it. The mean time until either of these alternative events takes place was studied by WATTERSON(1962) and EWENS(1963). They made use of a method previously announced by DARL- ING and SIEGERT(1953), and, independently by FELLER(1954). Actually, DARL- ING and SIEGERTrefer to its application to genetics. From the standpoint of population genetics, however, it is much more desirable to determine separately the mean time until fixation and that until loss. Since the gene substitution in a population plays a key role in the evolution of the species, it may be of particular interest to know the mean time for a rare mutant gene to become fixed in a finite population, excluding the cases in which such a gene is lost from the population. In the present paper, a solution to this problem will be presented together with Monte Carlo experiments to test some of the theoretical results. Throughout this paper, the senior author (M. K.) is responsible for the mathematical treatments, while the junior author (T. 0.) is responsible for the numerical treatments based on computers. BASIC THEORY Let us consider a diploid population consisting of N individuals and having the variance effective number Ne, which may be different from the actual number (for the definition of Ne, see KIMURAand CROW1963). -
Recombination and the Evolution of Satellite DNA
Genet. Res., Comb. (1986), 47, pp. 167-174 With 1 text-figure Printed in Great Britain 167 Recombination and the evolution of satellite DNA WOLFGANG STEPHAN* Institute of Animal Genetics, University of Edinburgh, West Mains Road, Edinburgh EH9 3JN, U.K. (Received 11 September 1985 and in revised form 6 December 1985) Summary In eukaryotic chromosomes, large blocks of satellite DNA are associated with regions of reduced meiotic recombination. No function of highly repeated, tandemly arranged DNA sequences has been identified so far at the cellular level, though the structural properties of satellite DNA are relatively well known. In studying the joint action of meiotic recombination, genetic drift and natural selection on the copy number of a family of highly repeated DNA (HRDNA), this paper looks at the structure-function debate for satellite DNA from the standpoint of molecular population genetics. It is shown that (i) HRDNA accumulates most probably in regions of near zero crossing over (heterochromatin), and that (ii), due to random genetic drift the effect of unequal crossover on copy numbers is stronger, the smaller the population size. As a consequence, highly repeated sequences are likely to persist longest (over evolutionary times) in small populations. The results are based on a fairly general class of models of unequal crossing over and natural selection which have been treated both analytically and by computer simulation. 1. Introduction lem of the function of these DNAs has been the sub- Eukaryotic chromosomes contain nucleotide se- ject of major controversies during the past two quences of lengths from about 10 to several hundred decades. -
National Institute of Genetics Japan
NATIONAL INSTITUTE OF GENETICS JAPAN ANNUAL REPORT No. 19 1968 Published bll THE NATIONAL INSTITUTE OF GENETICS Misima. Sizuoka·ken, Japan 1969 Annual Report of the National Institute of Genetics No. 19, 1968 Published by The National Institute of Genetics, Japan 1969 CONTENTS General statement. ................................................. 1 Research member.................................................. 2 Council............................................................ 5 Projects of research for 1968....................................... 6 Researches carried out in 1968 ..................................... 9 I. Cytogenetics Scientific expedition for the study of rodents to South East Asia and Oceania. I. Members, aims and schedule of the scienti- fic expedition. YOSIDA, T. H. 9 Scientific expedition for the study of rodents to South East Asia and Oceania. II. Species and chromosome numbers of rodents collected from South East Asia and Oceania. YOSIDA, T. H., TSUCHlYA, K. and IMAI, H. T......................... 10 Scientific expedition for the study of rodents to South East Asia and Oceania. III. Chromosomal polymorphism and new karyotypes of black rat, Rattus rattus, collected in South East Asia and Oceania. YOSIDA, T. H. and TSUCHIYA, K......... 11 Scientific expedition for the study of rodents to South East Asia and Oceania. IV. Comparative idiogram analysis in several species belonging to genus Rattus collected from South East Asia and Oceania. YOSIDA, T. H. and TSUCHlYA, K......... 12 Scientific expedition for the study of rodents to South East Asia and Oceania. V. Breeding of wild rodents collected from South East Asia and Oceania. TSUCHIYA, K., YOSIDA, T. H... 13 Rat metaphase chromosomes incorporated into mouse metaphase cells. YOSIDA, T. H. and SEKIGUCHl, T...................... 15 Autoradiographic analysis of the rate of protein synthesis in diploid and tetraploid MSPC-l myeloma cells. -
The Neoselectionist Theory of Genome Evolution
The neoselectionist theory of genome evolution Giorgio Bernardi* Molecular Evolution Laboratory, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy Edited by Tomoko Ohta, National Institute of Genetics, Mishima, Japan, and approved April 4, 2007 (received for review February 22, 2007) The vertebrate genome is a mosaic of GC-poor and GC-rich isoch- of chance in evolution. A very significant modification of the ores, megabase-sized DNA regions of fairly homogeneous base neutral theory was the nearly neutral theory of Ohta (11, 12), composition that differ in relative amount, gene density, gene who proposed that a substantial fraction of changes are caused expression, replication timing, and recombination frequency. At by random fixation of nearly neutral changes, a class that the emergence of warm-blooded vertebrates, the gene-rich, mod- ‘‘includes intermediates between neutral and advantageous, as erately GC-rich isochores of the cold-blooded ancestors underwent well as between neutral and deleterious classes’’ (13). The first a GC increase. This increase was similar in mammals and birds and four schemes of Fig. 1 display a qualitative picture of the classical was maintained during the evolution of mammalian and avian theories just mentioned. orders. Neither the GC increase nor its conservation can be ac- All classical theories proposed that natural selection acted on counted for by the random fixation of neutral or nearly neutral the ‘‘phenotype’’ [called the ‘‘classical phenotype’’ by Bernardi single-nucleotide changes (i.e., the vast majority of nucleotide and Bernardi (14), to distinguish it from the ‘‘genome pheno- substitutions) or by a biased gene conversion process occurring at type’’ presented below]. -
National Institute of Genetics Japan
ISSN 0077-4995 NATIONAL INSTITUTE OF GENETICS JAPAN ANNUAL REPORT No. 40 1989 Published by THE NATIONAL INSTITUTE OF GENETICS Mi.ima, Sizuoka-ken, Japan 1990 Annual Report of the National Institute of Genetics No. 40, 1989 Published by The National Institute of Genetics, Japan 1990 CONTENTS General statement .........................................I Staff 3 Council and Advisory Committee. ................................ 6 Association for propagation of the knowledge of genetics 8 Projects of research for 1989 9 Research activities in 1989 14 I. Molecular Genetics Promoter selectivity of Escherichia coli RNA polymerase, I. Effect of base substitutions in promoter - 35 region on the promoter strength. KOBAYASHI, M., NAGATA, K. and ISHIHAMA, A. ... 14 The promoter selectivity of Escherichia coli RNA polymerase, II. Random screening of promoters and classification based on the promoter strength. KUBOTA, M., YAMAZAKI, Y. and ISHIHAMA, A. 15 Promoter selectivity of Escherichia coli RNA polymerase, III. Structural and functional modulations of RNA polymerase during growth phase transition. OZAKI, M., FUJITA, N., WADA, A. and ISHIHAMA, A. ..... 16 Structural modulation of ribosomes during growth phase transition of Escherichia coli. WADA, A., YAMAZAKI, Y., FUJITA, N. and ISHIHAMA, A. 17 The molecular anatomy of Escherichia coli RNA polymerase: Func tional mapping of the a subunit. IGARASHI, K., HAYWARD, R. S., FUJITA, N., YAMAGISHI, M. and ISHIHAMA, A. 18 Promoter selectivity of Micrococcus luteus RNA polymerase: Identification and characterization of the major sigma factor. NAKAYAMA, M., FUJITA, N., OSAWA, S. and ISHIHAMA, A..... 19 Molecular mechanisms of transcription and replication of phage Qfi: Cloning, sequencing and mapping of host factor. KAJI- TANI, M. and ISHIHAMA, A.