Metabolism of Macrocyclic Lactones and Benzimidazoles in Parasitic Nematodes

Total Page:16

File Type:pdf, Size:1020Kb

Metabolism of Macrocyclic Lactones and Benzimidazoles in Parasitic Nematodes Metabolism of macrocyclic lactones and benzimidazoles in parasitic nematodes Inaugural-Dissertation to obtain the academic degree Doctor rerum naturalium (Dr. rer. nat) submitted to the Department of Biology, Chemistry and Pharmacy of Freie Universität Berlin by ESRA YILMAZ from Berlin 2019 This work was prepared from April 2015 to April 2019 under the supervision of PD Dr. Jürgen Krücken at the Institute for Parasitology and Tropical Veterinary Medicine of Freie Universität Berlin, Germany. 1st Reviewer: PD Dr. Jürgen Krücken Institute for Parasitology and Tropical Veterinary Medicine Department of Veterinary Medicine Freie Universität Berlin Germany 2nd Reviewer: Prof. Dr. Rupert Mutzel Institute of Biology Department of Biology, Chemistry and Pharmacy Freie Universität Berlin Germany Date of defense: 13th November 2019 Acknowledgements At this point, I would like to take the opportunity and reflect on the people who have supported and helped me in realizing my doctoral research. First and foremost, I would like to show my deepest gratitude to Dr. Jürgen Krücken, my research supervisor, for his never-ending technical support and always having an open ear for any concerns or questions that I had. I am thankful for his contribution to my personal growth and intellectual maturation; he has been a great and supportive teacher. I would also like to thank Prof. Georg von Samson-Himmelstjerna for his continuous support, Prof. Janina Demeler for her supervision during the first one and a half years of the project, Dr. Ralph Menzel from the Humboldt University for being my mentor and his valuable contribution to my experiments with C. elegans, and Prof. Rupert Mutzel for agreeing to review my thesis. My thanks are extended to all my current and former colleagues. In particular, I am very thankful to Sabrina Ramünke who introduced me to and helped me with experiments related to H. contortus and Dr. Bastian Gerst who taught me the basics of C. elegans. I would like to acknowledge the Research Training Group GRK 2046 for the awarding of my scholarship and for funding this project. Finally, I am very grateful to my entire family, all of whom have constantly supported me morally throughout these years. Table of contents 1 Introduction ....................................................................... 12 2 Literature review ............................................................... 14 2.1 The phylum Nematoda ............................................................ 14 2.2 Haemonchus contortus ............................................................ 15 2.2.1 Taxonomy and phylogenetic context ............................................... 15 2.2.2 General ............................................................................................. 16 2.2.3 Haemonchosis .................................................................................. 17 2.2.3.1 Pathology and clinical signs ............................................................................. 17 2.2.3.2 Identification of Haemonchus contortus and diagnosis of haemonchosis .... 18 2.2.3.3 Host immunity and other host-related determinants of disease outbreak ... 19 2.2.3.4 Climatic determinants of disease outbreak .................................................... 20 2.2.4 Control strategies ............................................................................. 21 2.2.4.1 Anthelmintic control ........................................................................................ 21 2.2.4.2 Vaccines ............................................................................................................ 22 2.2.4.3 Alternative control strategies .......................................................................... 23 2.3 Caenorhabditis elegans ........................................................... 24 2.3.1 Taxonomy and phylogenetic context ............................................... 24 2.3.2 General ............................................................................................. 25 2.3.3 Caenorhabditis elegans as a model organism in parasitology ......... 26 2.4 Anthelmintics used against nematodes .................................. 28 2.4.1 Benzimidazoles ................................................................................. 29 2.4.1.1 Discovery and anthelmintic activity ................................................................ 29 2.4.1.2 Pharmacology ................................................................................................... 29 2.4.2 Macrocyclic lactones ........................................................................ 30 2.4.2.1 Discovery and anthelmintic activity ................................................................ 30 2.4.2.2 Pharmacology ................................................................................................... 31 2.4.3 Other anthelmintics with activity against nematodes ..................... 32 2.4.3.1 Piperazine ......................................................................................................... 32 2.4.3.2 Emodepside (Cyclooctadepsipeptide) ............................................................. 33 2.4.3.3 Levamisole ........................................................................................................ 33 2.4.3.4 Monepantel (Aminoacetonitrile derivative) ................................................... 34 2.4.3.5 Tribendimidine (Symmetric diamidine) ........................................................... 34 2.4.3.6 Derquantel (Spiroindole) .................................................................................. 35 2.5 Anthelmintic resistance ........................................................... 35 2.5.1 Prevalence of macrocyclic lactone and benzimidazole resistance in Haemonchus contortus .......................................................................... 36 2.5.2 Resistance-enabling factors and management of anthelmintic resistance in sheep .................................................................................... 37 2.5.3 Proposed mechanisms for macrocyclic lactone and benzimidazole resistance .......................................................................... 39 2.5.3.1 Target-site related mechanisms ...................................................................... 39 2.5.3.2 Non-target-site related mechanisms ............................................................... 41 2.5.4 Diagnosis of benzimidazole and macrocyclic lactone resistance ..... 42 2.5.4.1 Coprological methods....................................................................................... 42 2.5.4.2. In vitro methods .............................................................................................. 43 2.5.4.3. Molecular methods ......................................................................................... 44 2.6 Cytochrome P450 monooxygenases ........................................ 45 2.6.1 Structure, function and enzyme mechanism .................................... 45 2.6.2 CYP-mediated drug resistance.......................................................... 47 2.6.2.1 CYP-mediated drug resistance in humans ....................................................... 47 2.6.2.2 CYP-mediated drug resistance in arthropods .................................................. 48 2.6.2.3 Drug resistance by CYPs in nematodes ............................................................ 48 3. Publications ...................................................................... 50 3.1 Comparison of constitutive and thiabendazole-induced expression of five cytochrome P450 genes in fourth-stage larvae of Haemonchus contortus isolates with different drug susceptibility identifies one gene with high constitutive expression in a multi-resistant isolate .......................................... 50 3.1.1 Abstract ............................................................................................ 51 3.1.2 Introduction ...................................................................................... 51 3.1.3 Materials and Methods .................................................................... 54 3.1.4 Results .............................................................................................. 59 3.1.5 Discussion ......................................................................................... 62 3.1.6 Conflict of interest ............................................................................ 66 3.1.7 Financial Support .............................................................................. 66 3.1.8 Appendix A. Supplementary data .................................................... 67 3.1.9 References ........................................................................................ 67 3.2 Orthologs of anthelmintic resistance-associated cytochrome P450 13A genes of Teladorsagia circumcincta are not thiabendazole-inducible in cultured fourth-stage larvae of Haemonchus contortus .................................................................. 72 3.2.1 Abstract ............................................................................................ 73 3.2.2 Background ....................................................................................... 73 3.2.3 Material and Methods ...................................................................... 74 3.2.4 Results .............................................................................................. 78 3.2.5 Discussion
Recommended publications
  • Allelic Variation and Multigenic Metabolic Activity of Cytochrome
    Allelic Variation and Multigenic Metabolic Activity of Cytochrome P450s Confer Insecticide Resistance in Field Populations of Anopheles funestus s.s., a Major Malaria Vector in Africa Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Sulaiman Sadi Ibrahim January 2015 I DECLARATION This work has not previously been accepted in substance for any degree and is not being currently submitted in candidature for any degree. Signed ........................................................................................(Candidate) Date ........................................................................................... Statement 1 This thesis is the result of my own investigation, except where otherwise stated. Other sources are acknowledged and bibliography appended. Signed ........................................................................................(Candidate) Date ........................................................................................... Statement 2 I hereby give my consent for this thesis, if accepted, to be available for photocopying and for inter- library loan, and for the title and summary to be made available to outside organisations. Signed ........................................................................................(Candidate) Date ........................................................................................... I DEDICATION This work is for all the individuals (teachers, parents, loved ones and friends)
    [Show full text]
  • Gastrointestinal Helminthic Parasites of Habituated Wild Chimpanzees
    Aus dem Institut für Parasitologie und Tropenveterinärmedizin des Fachbereichs Veterinärmedizin der Freien Universität Berlin Gastrointestinal helminthic parasites of habituated wild chimpanzees (Pan troglodytes verus) in the Taï NP, Côte d’Ivoire − including characterization of cultured helminth developmental stages using genetic markers Inaugural-Dissertation zur Erlangung des Grades eines Doktors der Veterinärmedizin an der Freien Universität Berlin vorgelegt von Sonja Metzger Tierärztin aus München Berlin 2014 Journal-Nr.: 3727 Gedruckt mit Genehmigung des Fachbereichs Veterinärmedizin der Freien Universität Berlin Dekan: Univ.-Prof. Dr. Jürgen Zentek Erster Gutachter: Univ.-Prof. Dr. Georg von Samson-Himmelstjerna Zweiter Gutachter: Univ.-Prof. Dr. Heribert Hofer Dritter Gutachter: Univ.-Prof. Dr. Achim Gruber Deskriptoren (nach CAB-Thesaurus): chimpanzees, helminths, host parasite relationships, fecal examination, characterization, developmental stages, ribosomal RNA, mitochondrial DNA Tag der Promotion: 10.06.2015 Contents I INTRODUCTION ---------------------------------------------------- 1- 4 I.1 Background 1- 3 I.2 Study objectives 4 II LITERATURE OVERVIEW --------------------------------------- 5- 37 II.1 Taï National Park 5- 7 II.1.1 Location and climate 5- 6 II.1.2 Vegetation and fauna 6 II.1.3 Human pressure and impact on the park 7 II.2 Chimpanzees 7- 12 II.2.1 Status 7 II.2.2 Group sizes and composition 7- 9 II.2.3 Territories and ranging behavior 9 II.2.4 Diet and hunting behavior 9- 10 II.2.5 Contact with humans 10 II.2.6
    [Show full text]
  • Computational Studies to Elucidate the Role of Proteins in the Prevention of Malaria
    Computational studies to elucidate the role of proteins in the prevention of malaria A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences 2010 Jaclyn Bibby School of Chemical Engineering and Analytical Science Contents Abstract ........................................................................................................................... 25 Declaration ...................................................................................................................... 26 Copyright Statement ....................................................................................................... 27 Publications from this Thesis. ......................................................................................... 28 1. Introduction ................................................................................................................. 29 1.1 Vector borne diseases ................................................................................................ 30 1.1.1 Malaria ................................................................................................................ 30 1.1.2 Dengue ................................................................................................................ 30 1.2 Vectors ...................................................................................................................... 31 1.2.1 Anopheles ..........................................................................................................
    [Show full text]
  • The Identification of Haemonchus Species and Diagnosis of Haemonchosis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Department of Agriculture: Agricultural Publications from USDA-ARS / UNL Faculty Research Service, Lincoln, Nebraska 2016 The Identification of Haemonchus Species and Diagnosis of Haemonchosis Dante Zarlenga E.P. Hoberg W. Tuo Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. CHAPTER FIVE The Identification of Haemonchus Species and Diagnosis of Haemonchosis D.S. Zarlenga1, E.P. Hoberg, W. Tuo USDA, Agricultural Research Service, Beltsville, MD, United States 1Corresponding author: E-mail: [email protected] Contents 1. Introduction 146 2. Morphological Approaches for Identifying Haemonchus contortus 147 2.1 Morphology; the gold standard 147 2.1.1 Identification of adult worms 148 2.1.2 Identification of infective third-stage larvae 150 2.1.3 Identification of parasitic fourth-stage larvae 152 2.1.4 Identification of eggs 152 3. Molecular Methods for Identifying Haemonchus 155 3.1 Haemonchus contortus, Haemonchus placei or both? 155 3.2 Traditional PCR 157 3.3 Real-time PCR 159 3.4 The next generation 162 3.4.1 Loop-mediated isothermal amplification 162 3.4.2 Metagenomics and pyrosequencing 163 4.
    [Show full text]
  • Anthelmintic Resistance of Ostertagia Ostertagi and Cooperia Oncophora to Macrocyclic Lactones in Cattle from the Western United States
    Veterinary Parasitology 170 (2010) 224–229 Contents lists available at ScienceDirect Veterinary Parasitology journal homepage: www.elsevier.com/locate/vetpar Anthelmintic resistance of Ostertagia ostertagi and Cooperia oncophora to macrocyclic lactones in cattle from the western United States M.D. Edmonds, E.G. Johnson, J.D. Edmonds ∗ Johnson Research LLC, 24007 Highway 20-26, Parma, ID, 83660, USA article info abstract Article history: In June 2008, 122 yearling heifers with a history of anthelmintic resistance were obtained Received 15 October 2009 from pastures in northern California and transported to a dry lot facility in southwest- Received in revised form 28 January 2010 ern Idaho, USA. Fifty heifers with the highest fecal egg counts were selected for study Accepted 24 February 2010 enrollment. Candidates were equally randomized to treatment with either injectable iver- mectin (Ivomec®, Merial, 0.2 mg kg−1 BW), injectable moxidectin (Cydectin®, Fort Dodge, Keywords: 0.2 mg kg−1 BW), oral fenbendazole (Safe-Guard®, Intervet, 5.0 mg kg−1 BW), oral oxfenda- Anthelmintic resistance zole (Synanthic®, Fort Dodge, 4.5 mg kg−1 BW), or saline. At 14 days post-treatment, Cattle Bovine nematodes were recovered from the abomasum, small intestine, and large intestine. Par- Nematodes asitism was confirmed in the control group when 10/10 animals were infected with Efficacy adult Ostertagia ostertagi and 9/10 animals with both developing and early L4 stages of Cooperia O. ostertagi. Similarly, 9/10 animals were parasitized with adult Cooperia spp. Fenbenda- Ostertagia zole and oxfendazole efficacy verses controls were >90% against adult Cooperia spp., while moxidectin caused an 88% parasite reduction post-treatment (P < 0.05).
    [Show full text]
  • Vitro Exposure to Ivermectin and Levamisole on the Expression Patterns of ABC Transporters in Haemonchus Contortus Larvae
    International Journal for Parasitology: Drugs and Drug Resistance 6 (2016) 103e115 Contents lists available at ScienceDirect International Journal for Parasitology: Drugs and Drug Resistance journal homepage: www.elsevier.com/locate/ijppaw Effects of in vitro exposure to ivermectin and levamisole on the expression patterns of ABC transporters in Haemonchus contortus larvae * Ali Raza a, b, Steven R. Kopp b, Neil H. Bagnall a, Abdul Jabbar c, Andrew C. Kotze a, a CSIRO Agriculture, Queensland Bioscience Precinct, University of Queensland, Brisbane, Australia b School of Veterinary Science, University of Queensland, Gatton, Australia c Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Victoria, Australia article info abstract Article history: This study investigated the interaction of ATP binding cassette (ABC) transport proteins with ivermectin Received 15 October 2015 (IVM) and levamisole (LEV) in larvae of susceptible and resistant isolates of Haemonchus contortus in vitro Received in revised form by measuring transcription patterns following exposure to these anthelmintics. Furthermore, we studied 21 March 2016 the consequences of drug exposure by measuring the sensitivity of L to subsequent exposure to higher Accepted 22 March 2016 3 drug concentrations using larval migration assays. The most highly transcribed transporter genes in both Available online 23 March 2016 susceptible and resistant L3 were pgp-9.3, abcf-1, mrp-5, abcf-2, pgp-3, and pgp-10. The resistant isolate showed significantly higher transcription of pgp-1, pgp-9.1 and pgp-9.2 compared to the susceptible Keywords: fi ABC transporters isolate. Five P-gp genes and the haf-6 gene showed signi cantly higher transcription (up to 12.6-fold) fi Anthelmintics after 3 h exposure to IVM in the resistant isolate.
    [Show full text]
  • Nematodirus Spathiger of Small Ruminants Guang-Hui Zhao1*†, Yan-Qing Jia1†, Wen-Yu Cheng1, Wen Zhao1, Qing-Qing Bian1 and Guo-Hua Liu2*
    Zhao et al. Parasites & Vectors 2014, 7:319 http://www.parasitesandvectors.com/content/7/1/319 RESEARCH Open Access Characterization of the complete mitochondrial genomes of Nematodirus oiratianus and Nematodirus spathiger of small ruminants Guang-Hui Zhao1*†, Yan-Qing Jia1†, Wen-Yu Cheng1, Wen Zhao1, Qing-Qing Bian1 and Guo-Hua Liu2* Abstract Background: Nematodirus spp. are among the most common nematodes of ruminants worldwide. N. oiratianus and N. spathiger are distributed worldwide as highly prevalent gastrointestinal nematodes, which cause emerging health problems and economic losses. Accurate identification of Nematodirus species is essential to develop effective control strategies for Nematodirus infection in ruminants. Mitochondrial DNA (mtDNA) could provide powerful genetic markers for identifying these closely related species and resolving phylogenetic relationships at different taxonomic levels. Methods: In the present study, the complete mitochondrial (mt) genomes of N. oiratianus and N. spathiger from small ruminants in China were obtained using Long-range PCR and sequencing. Results: The complete mt genomes of N. oiratianus and N. spathiger were 13,765 bp and 13,519 bp in length, respectively. Both mt genomes were circular and consisted of 36 genes, including 12 genes encoding proteins, 2 genes encoding rRNA, and 22 genes encoding tRNA. Phylogenetic analyses based on the concatenated amino acid sequence data of all 12 protein-coding genes by Bayesian inference (BI), Maximum likelihood (ML) and Maximum parsimony (MP) showed that the two Nematodirus species (Molineidae) were closely related to Dictyocaulidae. Conclusions: The availability of the complete mtDNA sequences of N. oiratianus and N. spathiger not only provides new mtDNA sources for a better understanding of nematode mt genomics and phylogeny, but also provides novel and useful genetic markers for studying diagnosis, population genetics and molecular epidemiology of Nematodirus spp.
    [Show full text]
  • Molecular Mechanisms of Cytochrome P450 Monooxygenase
    MOLECULAR MECHANISMS OF CYTOCHROME P450 MONOOXYGENASE- MEDIATED PYRETHROID RESISTANCE IN THE HOUSE FLY, MUSCA DOMESTICA (L.) Except where reference is made to the work of others, the work described in this dissertation is my own or was done in collaboration with my advisory committee. This dissertation does not include proprietary or classified information. Fang Zhu Certificate of Approval: Marie W. Wooten Nannan Liu, Chair Professor Associate Professor Biological Sciences Entomology and Plant Pathology Zhanjiang Liu William J. Moar Professor Professor Fisheries and Allied Aquacultures Entomology and Plant Pathology Joe F. Pittman Interim Dean Graduate School MOLECULAR MECHANISMS OF CYTOCHROME P450 MONOOXYGENASE- MEDIATED PYRETHROID RESISTANCE IN THE HOUSE FLY, MUSCA DOMESTICA (L.) Fang Zhu A Dissertation Submitted to the Graduate Faculty of Auburn University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Auburn, Alabama August 4, 2007 MOLECULAR MECHANISMS OF CYTOCHROME P450 MONOOXYGENASE- MEDIATED PYRETHROID RESISTANCE IN THE HOUSE FLY, MUSCA DOMESTICA (L.) Fang Zhu Permission is granted to Auburn University to make copies of this dissertation at its discretion, upon request of individuals or institutions and at their expense. The author reserves all publication rights. ______________________________ Signature of Author ______________________________ Date of Graduation iii VITA Fang Zhu, daughter of Tao Zhang and Xingzhi Zhu, was born on April 28, 1976, in Anqiu City, Shandong Province, People’s Republic of China. She graduated from Anqiu No. 1 High School in 1995. She attended Shandong Agricultural University in Tai’an, Shandong Province and graduated with a Bachelor of Science degree in Plant Protection in 1999. Then she entered the Graduate School of China Agricultural University in Beijing with major in Entomology.
    [Show full text]
  • P-Glycoprotein Drug Transporters in the Parasitic Nematodes Toxocara Canis and Parascaris
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2019 P-glycoprotein drug transporters in the parasitic nematodes Toxocara canis and Parascaris Jeba Rose Jennifer Jesudoss Chelladurai Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Parasitology Commons, and the Veterinary Medicine Commons Recommended Citation Jesudoss Chelladurai, Jeba Rose Jennifer, "P-glycoprotein drug transporters in the parasitic nematodes Toxocara canis and Parascaris" (2019). Graduate Theses and Dissertations. 17707. https://lib.dr.iastate.edu/etd/17707 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. P-glycoprotein drug transporters in the parasitic nematodes Toxocara canis and Parascaris by Jeba Rose Jennifer Jesudoss Chelladurai A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Veterinary Pathology (Veterinary Parasitology) Program of Study Committee: Matthew T. Brewer, Major Professor Douglas E. Jones Richard J. Martin Jodi D. Smith Tomislav Jelesijevic The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2019 Copyright © Jeba Rose Jennifer Jesudoss Chelladurai, 2019.
    [Show full text]
  • Metabolic Activation and Toxicological Evaluation of Polychlorinated Biphenyls in Drosophila Melanogaster T
    www.nature.com/scientificreports OPEN Metabolic activation and toxicological evaluation of polychlorinated biphenyls in Drosophila melanogaster T. Idda1,7, C. Bonas1,7, J. Hofmann1, J. Bertram1, N. Quinete1,2, T. Schettgen1, K. Fietkau3, A. Esser1, M. B. Stope4, M. M. Leijs3, J. M. Baron3, T. Kraus1, A. Voigt5,6 & P. Ziegler1* Degradation of polychlorinated biphenyls (PCBs) is initiated by cytochrome P450 (CYP) enzymes and includes PCB oxidation to OH-metabolites, which often display a higher toxicity than their parental compounds. In search of an animal model refecting PCB metabolism and toxicity, we tested Drosophila melanogaster, a well-known model system for genetics and human disease. Feeding Drosophila with lower chlorinated (LC) PCB congeners 28, 52 or 101 resulted in the detection of a human-like pattern of respective OH-metabolites in fy lysates. Feeding fies high PCB 28 concentrations caused lethality. Thus we silenced selected CYPs via RNA interference and analyzed the efect on PCB 28-derived metabolite formation by assaying 3-OH-2′,4,4′-trichlorobiphenyl (3-OHCB 28) and 3′-OH-4′,4,6′-trichlorobiphenyl (3′-OHCB 28) in fy lysates. We identifed several drosophila CYPs (dCYPs) whose knockdown reduced PCB 28-derived OH-metabolites and suppressed PCB 28 induced lethality including dCYP1A2. Following in vitro analysis using a liver-like CYP-cocktail, containing human orthologues of dCYP1A2, we confrm human CYP1A2 as a PCB 28 metabolizing enzyme. PCB 28-induced mortality in fies was accompanied by locomotor impairment, a common phenotype of neurodegenerative disorders. Along this line, we show PCB 28-initiated caspase activation in diferentiated fy neurons.
    [Show full text]
  • Testing the Hypothesis of Recent Population Expansions in Nematode Parasites of Human-Associated Hosts
    Heredity (2005) 94, 426–434 & 2005 Nature Publishing Group All rights reserved 0018-067X/05 $30.00 www.nature.com/hdy Testing the hypothesis of recent population expansions in nematode parasites of human-associated hosts DA Morrison and J Ho¨glund Department of Parasitology (SWEPAR), National Veterinary Institute and Swedish University of Agricultural Sciences, 751 89 Uppsala, Sweden It has been predicted that parasites of human-associated prediction. However, it is likely that the situation is more organisms (eg humans, domestic pets, farm animals, complicated than the simple hypothesis test suggests, and agricultural and silvicultural plants) are more likely to show those species that do not fit the predicted general pattern rapid recent population expansions than are parasites of provide interesting insights into other evolutionary processes other hosts. Here, we directly test the generality of this that influence the historical population genetics of host– demographic prediction for species of parasitic nematodes parasite relationships. These processes include the effects of that currently have mitochondrial sequence data available in postglacial migrations, evolutionary relationships and possi- the literature or the public-access genetic databases. Of the bly life-history characteristics. Furthermore, the analysis 23 host/parasite combinations analysed, there are seven highlights the limitations of this form of bioinformatic data- human-associated parasite species with expanding popula- mining, in comparison to controlled experimental
    [Show full text]
  • Herbicide Genotoxicity Revealed with the Somatic
    Rev. Int. Contam. Ambie. 35 (2) 295-305, 2019 DOI: 10.20937/RICA.2019.35.02.03 HERBICIDE GENOTOXICITY REVEALED WITH THE SOMATIC WING SPOT ASSAY OF Drosophila melanogaster (Detección de la genotoxicidad inducida por herbicidas en el ensayo somático de las alas de Drosophila melanogaster) América Nitxin CASTAÑEDA-SORTIBRÁN, Claudia FLORES-LOYOLA, Viridiana MARTÍNEZ-MARTÍNEZ, María Fernanda RAMÍREZ-CORCHADO and Rosario RODRÍGUEZ-ARNAIZ* Laboratorio de Genética y Evolución, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Esterior s/n, Col. Universidad Nacional Autónoma de México, 04510 Ciudad de México, México *Autora para correspondencia: [email protected] (Received April 2017, accepted June 2018) Key words: clomazone, linuron, simazine, somatic mutation and recombination test ABSTRACT The genotoxicity of the herbicides clomazone, linuron and simazine was detected using the somatic wing spot assay of Drosophila melanogaster. For the evaluation of the mutagenic and recombinogenic activities induced by the herbicides two crosses were used: the standard cross (ST) which expresses basal levels of cytochrome P450 enzymes and the high bioactivation cross (HB) with overexpression of P450 genes conferring increased sensitivity to promutagens and procarcinogens. Third-instar lar- vae were exposed by chronic feeding (48 h) to three different concentrations of each herbicide. The frequencies of spots per individual in the treated series were compared to the negative concurrent control series (water or 5 % ethanol solution depending on the herbicide). Clomazone showed positive results for small and total spots in both the ST and the HB crosses. Linuron was positive at all concentrations tested for small and total spots in the ST cross while only positive for small and total spots at the high- est concentration assayed in the HB cross.
    [Show full text]