Column-Stores vs. Row-Stores: How Different Are They Really? Daniel J. Abadi Samuel R. Madden Nabil Hachem Yale University MIT AvantGarde Consulting, LLC New Haven, CT, USA Cambridge, MA, USA Shrewsbury, MA, USA
[email protected] [email protected] [email protected] ABSTRACT General Terms There has been a significant amount of excitement and recent work Experimentation, Performance, Measurement on column-oriented database systems (“column-stores”). These database systems have been shown to perform more than an or- Keywords der of magnitude better than traditional row-oriented database sys- tems (“row-stores”) on analytical workloads such as those found in C-Store, column-store, column-oriented DBMS, invisible join, com- data warehouses, decision support, and business intelligence appli- pression, tuple reconstruction, tuple materialization. cations. The elevator pitch behind this performance difference is straightforward: column-stores are more I/O efficient for read-only 1. INTRODUCTION queries since they only have to read from disk (or from memory) Recent years have seen the introduction of a number of column- those attributes accessed by a query. oriented database systems, including MonetDB [9, 10] and C-Store [22]. This simplistic view leads to the assumption that one can ob- The authors of these systems claim that their approach offers order- tain the performance benefits of a column-store using a row-store: of-magnitude gains on certain workloads, particularly on read-intensive either by vertically partitioning the schema, or by indexing every analytical processing workloads, such as those encountered in data column so that columns can be accessed independently. In this pa- warehouses.