Three Groups of Rocks

Total Page:16

File Type:pdf, Size:1020Kb

Three Groups of Rocks A Rock is… A group of minerals that have been “put together” in several different ways. Depending on how they are put together, rocks are classified as: 1. Sedimentary 2. Igneous 3. Metamorphic Sedimentary Rocks are formed by several different processes. 1. Deposition, Compaction and Cementation (Lithification) of Sediments. 2. Crystallization or Chemical Reaction of Minerals in Solution in water. Igneous Rocks are formed by the Crystallization, by Cooling and Hardening, of molten Magma (molten rock below ground) or Lava (molten rock above ground). Metamorphic rocks are formed by the Recrystallization or Chemical Change of minerals due to Heat and/or Pressure. Let’s Focus on… How are Igneous Rocks Classified? Igneous Rocks are classified based upon several different qualities or characteristics: 1. Mineral Composition 2. Location of Crystallization 3. Texture of Grain Size 1. Igneous rocks are identified based upon Mineral Composition (high or low Silica content) High Silica rocks are called Felsic Igneous Rocks and are light in color. Felsic Rocks and Minerals Silica-Rich, or Felsic Rocks Igneous rocks that have a Silicate composition of 65% or more are considered to be Felsic. Low Silica rocks are called Mafic Igneous Rocks, and are dark in color. Mafic Rocks Silica-Poor, or Mafic Rocks Igneous rocks that have a Silicate composition of 45-50% or less are considered to be Mafic. Igneous rocks that have a Silicate composition of 50-65% are considered to be Intermediate or Andesitic (named after a rock made from a mixture of Mafic magma and minerals from Felsic “country rock”). Igneous rock can be classified by Silica and Oxide content Pure Silica 2. Igneous rock can be classified based on where they were formed. (location of Crystallization) Igneous rocks formed underground from Magma are called Plutonic or Intrusive rocks. Notice the large crystals Igneous rocks formed above ground from lava are called “Extrusive” or “Volcanic” rocks. Felsite Obsidian Rhyolite 3. Igneous Rocks are identified based upon Texture (size of mineral crystals) Large-Grained Glassy Texture of Grain Size is evidence of rate of cooling; The faster magma or lava cools, the smaller the size of the crystals in the solidified material will be. Pumice Obsidian When Magma cools slowly underground, large crystals have time to form. Therefore, Igneous rocks with large crystals are most likely Plutonic. When Lava cools rapidly above ground, crystals have a limited time to form. Therefore, Igneous rocks with small or no crystals are most likely Volcanic. Igneous Rock Textures Obsidian-Glassy Felsic Basalt- Fine-grained Mafic Andesite- Fine-grained Intermediate Rhyolite- Fine-grained Felsic Granite- Coarse-grained Felsic Diorite- Coarse-grained Intermediate Gabbro- Coarse-grained Mafic Pumice- Vesicular Felsic Vesicular Basalt- Mafic Scoria-Vesicular Mafic Basalt Porphyry- Mafic Rhyolite Porphyry-Felsic Andesite Porphyry- Intermediate How does Mineral Composition of magma or lava affect an Igneous Rock or the molten material that it forms from? High Silica content causes Felsic Magma to be thick, or viscous, and slow-flowing. Felsic Dome Felsic Dome Low Silica content causes Mafic Magma to be thin or low-viscosity, and fast-flowing. Flood Basalt Plateau Intrusive Igneous Rock forms structures such as… Dikes Dike: Sheet-like Igneous rock that cuts across the structure of pre-existing rock. Dike Volcanic Neck Volcanic Dike This would form a Dike. Sills Sills: Sheet-like Igneous rock that lies parallel to the layering of pre-existing rock. Sill Sill Laccoliths Laccoliths: A Laccolith is a vertically developed sill. Exposed/Eroded Laccoliths Batholiths Batholiths: A Batholith is a large Plutonic mass of Igneous Rock (old Magma “bubble”). Halfdome- Yosemite, California Enchanted Rock-Texas Extrusive Igneous Rock forms structures such as… Felsic Lava Flows Mafic Lava Flows Pahoehoe Lava Domes Flood Basalt Plateaus- Mafic Lava Tephra or Ash Deposits Volcanic Cones Composite Cone (lava and Tephra)- Felsic Cinder Cone- Mafic Lava Shield Cone-Mafic Lava .
Recommended publications
  • Geology and Mineralization of the Sierra Blanca Peaks, Hudspeth County, Texas W
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/31 Geology and mineralization of the Sierra Blanca Peaks, Hudspeth County, Texas W. N. McAnulty, 1980, pp. 263-266 in: Trans Pecos Region (West Texas), Dickerson, P. W.; Hoffer, J. M.; Callender, J. F.; [eds.], New Mexico Geological Society 31st Annual Fall Field Conference Guidebook, 308 p. This is one of many related papers that were included in the 1980 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • Bedrock Geology Glossary from the Roadside Geology of Minnesota, Richard W
    Minnesota Bedrock Geology Glossary From the Roadside Geology of Minnesota, Richard W. Ojakangas Sedimentary Rock Types in Minnesota Rocks that formed from the consolidation of loose sediment Conglomerate: A coarse-grained sedimentary rock composed of pebbles, cobbles, or boul- ders set in a fine-grained matrix of silt and sand. Dolostone: A sedimentary rock composed of the mineral dolomite, a calcium magnesium car- bonate. Graywacke: A sedimentary rock made primarily of mud and sand, often deposited by turbidi- ty currents. Iron-formation: A thinly bedded sedimentary rock containing more than 15 percent iron. Limestone: A sedimentary rock composed of calcium carbonate. Mudstone: A sedimentary rock composed of mud. Sandstone: A sedimentary rock made primarily of sand. Shale: A deposit of clay, silt, or mud solidified into more or less a solid rock. Siltstone: A sedimentary rock made primarily of sand. Igneous and Volcanic Rock Types in Minnesota Rocks that solidified from cooling of molten magma Basalt: A black or dark grey volcanic rock that consists mainly of microscopic crystals of pla- gioclase feldspar, pyroxene, and perhaps olivine. Diorite: A plutonic igneous rock intermediate in composition between granite and gabbro. Gabbro: A dark igneous rock consisting mainly of plagioclase and pyroxene in crystals large enough to see with a simple magnifier. Gabbro has the same composition as basalt but contains much larger mineral grains because it cooled at depth over a longer period of time. Granite: An igneous rock composed mostly of orthoclase feldspar and quartz in grains large enough to see without using a magnifier. Most granites also contain mica and amphibole Rhyolite: A felsic (light-colored) volcanic rock, the extrusive equivalent of granite.
    [Show full text]
  • Neuro-Fuzzy Classification of Felsic Lava Geomorphology at Alarcon Rise, Mexico Christina Hefron Maschmeyer University of South Carolina
    University of South Carolina Scholar Commons Theses and Dissertations 2016 Neuro-Fuzzy Classification of Felsic Lava Geomorphology at Alarcon Rise, Mexico Christina Hefron Maschmeyer University of South Carolina Follow this and additional works at: https://scholarcommons.sc.edu/etd Part of the Geology Commons Recommended Citation Maschmeyer, C. H.(2016). Neuro-Fuzzy Classification of Felsic Lava Geomorphology at Alarcon Rise, Mexico. (Master's thesis). Retrieved from https://scholarcommons.sc.edu/etd/3566 This Open Access Thesis is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. NEURO-FUZZY CLASSIFICATION OF FELSIC LAVA GEOMORPHOLOGY AT ALARCON RISE, MEXICO by Christina Hefron Maschmeyer Bachelor of Science College of Charleston, 2014 Bachelor of Arts College of Charleston, 2014 Submitted in Partial Fulfillment of the Requirements For the Degree of Master of Science in Geological Sciences College of Arts and Sciences University of South Carolina 2016 Accepted by: Scott White, Director of Thesis Michael Bizimis, Reader Brian Dreyer, Reader Lacy Ford, Senior Vice Provost and Dean of Graduate Studies © Copyright by Christina Hefron Maschmeyer, 2016 All Rights Reserved. ii DEDICATION This thesis is dedicated to Dr. Jim Carew for making me go to graduate school. iii ACKNOWLEDGEMENTS Data for this study were collected during cruises in 2012 aboard the R/V Zephyr and R/V Western Flyer and during 2015 on the R/V Rachel Carson and R/V Western Flyer from the Monterey Bay Aquarium Research Institute. I want to thank the captains, crews, ROV pilots and science parties for their work during these expeditions.
    [Show full text]
  • Three-Dimensional Magmatic Architecture of a Buried Shield Volcano
    https://doi.org/10.1130/G47941.1 Manuscript received 22 January 2020 Revised manuscript received 24 August 2020 Manuscript accepted 29 August 2020 © 2020 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. Published online 12 October 2020 Inside the volcano: Three-dimensional magmatic architecture of a buried shield volcano Faye Walker1*, Nick Schofield1, John Millett1,2, Dave Jolley1, Simon Holford3, Sverre Planke2,4, Dougal A. Jerram4,5 and Reidun Myklebust6 1 Geology and Petroleum Geology, University of Aberdeen, Aberdeen AB24 3UE, UK 2 Volcanic Basin Petroleum Research, Blindernveien 5, N-0361 Oslo, Norway 3 Australian School of Petroleum, University of Adelaide, Adelaide, South Australia 5000, Australia 4 Centre for Earth Evolution and Dynamics (CEED), University of Oslo, N-0315 Oslo, Norway 5 DougalEARTH Ltd., Solihull B91 3NU, UK 6 TGS, Asker N-1386, Norway ABSTRACT its magma chamber have never been imaged in The nature and growth of magmatic plumbing systems are of fundamental importance detail before. to igneous geology. Traditionally, magma chambers have been viewed as rapidly emplaced Magma chambers have traditionally been bodies of molten rock or partially crystallized “magma mush” connected to the surface viewed as large, long-lived, geometrically sim- by a narrow cylindrical conduit (referred to as the “balloon-and-straw” model). Recent ple bodies of molten rock, which are emplaced data suggest, however, that magma chambers beneath volcanoes are formed incrementally rapidly and slowly crystallize to form plutons through amalgamation of smaller intrusions. Here we present the first high-resolution three- (Glazner et al., 2004; Annen et al., 2015; Jerram dimensional reconstruction of an ancient volcanic plumbing system as a large laccolithic and Bryan, 2018; Sparks et al., 2019).
    [Show full text]
  • Igneous Activity and Volcanism Homework
    DATE DUE: Name: Ms. Terry J. Boroughs Geology 300 Section: IGNEOUS ROCKS AND IGNEOUS ACTIVITY Instructions: Read each question carefully before selecting the BEST answer. Use GEOLOGIC vocabulary where applicable! Provide concise, but detailed answers to essay and fill-in questions. TURN IN YOUR 882 –ES SCANTRON AND ANSWER SHEET ONLY! MULTIPLE CHOICE QUESTIONS: 1. Gabbro and Granite a. Have a similar mineral composition b. Have a similar texture c. Answers A. and B. d. Are in no way similar 2. Which of the factors listed below affects the melting point of rock and sediment? a. Composition of the material d. Water content b. The confining pressure e. All of the these c. Only composition of the material and the confining pressure 3. Select the fine grained (aphanitic) rock, which is composed mainly of sodium-rich plagioclase feldspar, amphibole, and biotite mica from the list below: a. Basalt b. Andesite c. Granite d. Diorite e. Gabbro 4. __________ is characterized by extremely coarse mineral grains (larger than 1-inch)? a. Pumice b. Obsidian c. Granite d. Pegmatite 5. Basalt exhibits this texture. a. Aphanitic b. Glassy c. Porphyritic d. Phaneritic e. Pyroclastic 6. Rocks that contain crystals that are roughly equal in size and can be identified with the naked eye and don’t require the aid of a microscope, exhibits this texture: a. Aphanitic b. Glassy c. Porphyritic d. Phaneritic e. Pyroclastic 7. The texture of an igneous rock a. Is controlled by the composition of magma. b. Is the shape of the rock body c. Determines the color of the rock d.
    [Show full text]
  • 3D Seismic Imaging of the Shallow Plumbing System Beneath the Ben Nevis 2 Monogenetic Volcanic Field: Faroe-Shetland Basin 3 Charlotte E
    ArticleView metadata, text citation and similar papers at core.ac.uk Click here to download Article text Ben Nevis Paperbrought to you by CORE MASTER.docx provided by Aberdeen University Research Archive Plumbing systems of monogenetic edifices 1 3D seismic imaging of the shallow plumbing system beneath the Ben Nevis 2 Monogenetic Volcanic Field: Faroe-Shetland Basin 3 Charlotte E. McLean1*; Nick Schofield2; David J. Brown1, David W. Jolley2, Alexander Reid3 4 1School of Geographical and Earth Sciences, Gregory Building, University of Glasgow, G12 8QQ, UK 5 2Department of Geology and Petroleum Geology, University of Aberdeen AB24 3UE, UK 6 3Statoil (U.K.) Limited, One Kingdom Street, London, W2 6BD, UK 7 *Correspondence ([email protected]) 8 Abstract 9 Reflective seismic data allows for the 3D imaging of monogenetic edifices and their 10 corresponding plumbing systems. This is a powerful tool in understanding how monogenetic 11 volcanoes are fed and how pre-existing crustal structures can act as the primary influence 12 on their spatial and temporal distribution. This study examines the structure and lithology of 13 host-rock as an influence on edifice alignment and provides insight into the structure of 14 shallow, sub-volcanic monogenetic plumbing systems. The anticlinal Ben Nevis Structure 15 (BNS), located in the northerly extent of the Faroe-Shetland Basin, NE Atlantic Margin, was 16 uplifted during the Late Cretaceous and Early Palaeocene by the emplacement of a laccolith 17 and a series of branching sills fed by a central conduit. Seismic data reveals multiple 18 intrusions migrated up the flanks of the BNS after its formation, approximately 58.4 Ma 19 (Kettla-equivalent), and fed a series of scoria cones and submarine volcanic cones.
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • Origin of Gabbroic Xenoliths Within the Lone Mountain Dacite Intrusion, Big Sky, Montana: a Field and Petrographic Analysis Emily Clement
    Undergraduate Review Volume 2 Article 28 2006 Origin of Gabbroic Xenoliths within the Lone Mountain Dacite Intrusion, Big Sky, Montana: A Field and Petrographic Analysis Emily Clement Follow this and additional works at: http://vc.bridgew.edu/undergrad_rev Part of the Geochemistry Commons, and the Geology Commons Recommended Citation Clement, Emily (2006). Origin of Gabbroic Xenoliths within the Lone Mountain Dacite Intrusion, Big Sky, Montana: A Field and Petrographic Analysis. Undergraduate Review, 2, 214-222. Available at: http://vc.bridgew.edu/undergrad_rev/vol2/iss1/28 This item is available as part of Virtual Commons, the open-access institutional repository of Bridgewater State University, Bridgewater, Massachusetts. Copyright © 2006 Emily Clement ,>4 Origin ofGabbroic Xenoliths within the Lone Mountain Dacite Intrusion, Big Sky, Montana: A Field and Petrographic Analysis BY EMILY CLEMENT Emily is an Earth Science major graduating Abstract in 2006. Her project, funded with an AlP one Mountain represents a dacite laccolith that intruded in Late gran, allowed her to conduct research in Cretaceous time -68 Ma. This intrusion resulted in contact meta· the lab at Big Sky, Montana. She and her morphism of the sedimentary country rock resulting in formation mentor, Dr. Michael Krol, are continuing L ofa thin zone of black hornfels. Field work reveals the presence of to research both geochemical and micro­ abundant, 1~9 em sized gabbro xenoliths and lesser amounts of siltstone inclu­ structural analysis. sions within the dacite intrusion. Compositionally, the Lone Mountain dacite consists of hornblende + plagioclase + biotite + quartz + opaques. Whereas the gabbroic xenoliths consist of pyroxene + hornblende + plagioclase + minor chlorite. This study is concerned with the origin of the gabbroic xenoliths and their relation to the dacite intrusion.
    [Show full text]
  • Felsic Magmatism and Uranium Deposits
    IAEA-CN-216 Abstact 087 Felsic magmatism and uranium deposits M. Cuney CNRS - GeoRessources - CREGU - Université de Lorraine, Nancy, France E-mail address of main author: [email protected] Uranium strongly incompatible behaviour in silicate magmas results in its concentration in the most felsic melts and a prevalence of granites and rhyolites as primary U sources for the formation of U deposits. Despite its incompatible behaviour, U deposits resulting directly from magmatic processes are quite rare. In most deposits, U is mobilized by hydrothermal fluids or ground water well after the emplacement of the igneous rocks. Of the broad range of granite types, only a few have have U contents and physico-chemical properties that permit the crystallization of accessory minerals from which uranium can be leached for the formation of U deposits. The first granites on Earth which crystallized uraninite appeared at 3.1 Ga, are the potassic granites from the Kaapval craton (South Africa) which were also the source of the detrital uraninite for the Dominion Reef and Witwatersrand quartz pebble conglomerate deposits. Four types of granites or rhyolites can be sufficiently enriched in U to represent a significant source for the genesis of U deposits: peralkaline, high-K metaluminous calc-alkaline, L-type peraluminous ones and anatectic pegmatoids. L-type peraluminous plutonic rocks in which U is dominantly hosted in uraninite or in the glass in their volcanic equivalents represent the best U source. Peralkaline granites or syenites represent the only magmatic U-deposits formed by extreme fractional crystallization. The refractory character of the U-bearing minerals does not permit their extraction at the present economic conditions and make them unfavourable U sources for other deposit types.
    [Show full text]
  • Report 104: Geochemistry of Volcanic Rocks of the Northern Pilbara Craton
    REPORT GEOCHEMISTRY OF VOLCANIC ROCKS 104 OF THE NORTHERN PILBARA CRATON WESTERN AUSTRALIA by R. H. Smithies, D. C. Champion, M. J. Van Kranendonk and A. H. Hickman Keep 3 mm border around photo. Resize white box as required. GEOLOGICAL SURVEY OF WESTERN AUSTRALIA REPORT 104 GEOCHEMISTRY OF VOLCANIC ROCKS OF THE NORTHERN PILBARA CRATON by R. H. Smithies, D. C. Champion1, M. J. Van Kranendonk, and A. H. Hickman 1 Geoscience Australia, GPO Box 378, Canberra, ACT 2601 Perth 2007 MINISTER FOR ENERGY; RESOURCES; INDUSTRY AND ENTERPRISE Hon. Francis Logan MLA DIRECTOR GENERAL, DEPARTMENT OF INDUSTRY AND RESOURCES Jim Limerick EXECUTIVE DIRECTOR, GEOLOGICAL SURVEY OF WESTERN AUSTRALIA Tim Griffi n REFERENCE The recommended reference for this publication is: SMITHIES, R. H., CHAMPION, D. C., VAN KRANENDONK, M. J., and HICKMAN, A. H., 2007, Geochemistry of volcanic rocks of the northern Pilbara Craton, Western Australia: Western Australia Geological Survey, Report 104, 47p. National Library of Australia Cataloguing-in-publication entry (Geochemistry of volcanic rocks of the northern Pilbara Craton, Western Australia) Bibliography. ISBN 978-1-74168-122-2 (web) 1. Geochemistry — Western Australia — Pilbara 2. Volcanic ash, tuff, etc. — Western Australia — Pilbara 3. Rocks, Igneous — Analysis I. Smithies, Robert Hugh, 1962– II. (Title. (Series: Report (Geological Survey of Western Australia); 104). 552.06 ISSN 0508–4741 Grid references in this publication refer to the Geocentric Datum of Australia 1994 (GDA94). Locations mentioned in the text are referenced using Map Grid Australia (MGA) coordinates, Zones 50 and 51. All locations are quoted to at least the nearest 100 m. Copy editor: J.
    [Show full text]
  • Inelastic Deformation During Sill and Laccolith Emplacement: Insights from an Analytic Elastoplastic Model J
    Inelastic deformation during sill and laccolith emplacement: Insights from an analytic elastoplastic model J. Scheibert, O. Galland, A. Hafver To cite this version: J. Scheibert, O. Galland, A. Hafver. Inelastic deformation during sill and laccolith emplacement: Insights from an analytic elastoplastic model. Journal of Geophysical Research : Solid Earth, American Geophysical Union, 2017, 122 (2), pp.923 - 945. 10.1002/2016JB013754. hal-01657360 HAL Id: hal-01657360 https://hal.archives-ouvertes.fr/hal-01657360 Submitted on 6 Dec 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Inelastic deformation during sill and laccolith emplacement: insights from an analytic elasto-plastic model J. Scheibert1 1Laboratory of Tribology and System Dynamics, UMR CNRS-ECL 5513, University of Lyon, France O. Galland2 and A. Hafver2 2Physics of Geological Processes (PGP), Department of Geosciences, University of Oslo, Norway Numerous geological observations evidence that inelastic deformation occurs during sills and lac- coliths emplacement. However, most models of sill and laccolith emplacement neglect inelastic processes by assuming purely elastic deformation of the host rock. This assumption has never been tested, so that the role of inelastic deformation on the growth dynamics of magma intrusions re- mains poorly understood.
    [Show full text]
  • Komatiites of the Weltevreden Formation, Barberton Greenstone
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2005 Komatiites of the Weltevreden Formation, Barberton Greenstone Belt, South Africa: implications for the chemistry and temperature of the Archean mantle Keena Kareem Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Earth Sciences Commons Recommended Citation Kareem, Keena, "Komatiites of the Weltevreden Formation, Barberton Greenstone Belt, South Africa: implications for the chemistry and temperature of the Archean mantle" (2005). LSU Doctoral Dissertations. 3249. https://digitalcommons.lsu.edu/gradschool_dissertations/3249 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. KOMATIITES OF THE WELTEVREDEN FORMATION, BARBERTON GREENSTONE BELT, SOUTH AFRICA: IMPLICATIONS FOR THE CHEMISTRY AND TEMPERATURE OF THE ARCHEAN MANTLE A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Geology and Geophysics by Keena Kareem B.S., Tulane University, 1999 May 2005 ACKNOWLEDGMENTS The author wishes to thank, Dr. Gary Byerly, the author’s major advisor for guidance and support in defining the project, technical assistance with instrumentation, and practical advice concerning non-dissertation related issues. Appreciation goes out to the other members of the advisory committee: Drs. Huiming Bao, Lui-Heung Chan, Ray Ferrell, Darrell Henry, of the Department of Geology and Geophysics, and Dr.
    [Show full text]