Genomweite Analyse Genetisch Bedingter Strahlenempfindlichkeit in Wismut-Bergarbeitern (Vertragsnr

Total Page:16

File Type:pdf, Size:1020Kb

Genomweite Analyse Genetisch Bedingter Strahlenempfindlichkeit in Wismut-Bergarbeitern (Vertragsnr Forschungsvorhaben: Genomweite Analyse genetisch bedingter Strahlenempfindlichkeit in Wismut-Bergarbeitern (Vertragsnr. 3615 S 32253) Auftraggeberin: Die Bundesrepublik Deutschland, vertreten durch das Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit, dieses vertreten durch den Präsidenten des Bundesamtes für Strahlenschutz Auftragnehmer: Universitätsmedizin Göttingen (UMG) Projektleitung: Prof. Dr. Heike Bickeböller UMG, Institut für Genetische Epidemiologie Wissenschaftlicher Mitarbeiter: Dr. Albert Rosenberger Laufzeit 1.3.2016-28.2.2017 Fachbetreuung BfS: Dr. Maria Gomolka Schussbericht Genomweite Analyse genetisch bedingter Strahlenempfindlichkeit in Wismut-Bergarbeitern – Datenauswertung und Bewertung der Assoziationsanalysen Der Bericht gibt die Auffassung und Meinung des Auftragnehmers wieder und muss nicht mit der Meinung der Auftraggeberin übereinstimmen. Göttingen, den 19.6.2017 BfS-Projekt 3615 S 32253 Schlussbericht 2 Schlussbericht BfS-Projekt 3615 S 32253 Inhalt 1 Kurzfassung ............................................................................................................................ 11 1.1 Hintergrund ........................................................................................................................... 11 1.2 Projektziel .............................................................................................................................. 11 1.3 Ergebnisse .............................................................................................................................. 12 1.4 Zukünftige Arbeiten und Auswahl zu validierender Kandidatengene (AP 3.3) ..................... 13 2 Summary ................................................................................................................................ 15 2.1 Background ............................................................................................................................ 15 2.2 Project Goal ........................................................................................................................... 15 2.3 Results ................................................................................................................................... 16 2.4 Additional project task .......................................................................................................... 17 3 Kurzdarstellung des FE-Vorhabens ........................................................................................ 19 3.1 Aufgabenstellung ................................................................................................................... 19 3.2 Voraussetzungen, unter denen das FE-Vorhaben durchgeführt wurde ............................... 19 3.3 Planung und Ablauf des Vorhabens ...................................................................................... 19 3.4 Wissenschaftlicher und technischer Stand, an den angeknüpft wurde ................................ 21 3.5 Zusammenarbeit mit anderen Stellen ................................................................................... 21 4 Eingehende Darstellung AP1-AP3 .......................................................................................... 23 4.1 Datentransfer und -harmonisierung ..................................................................................... 23 4.1.1 Zusammenführen und Harmonisieren phänotypischer Daten (AP 2.1a) ...................... 23 4.1.2 Deskriptives: Phänotypen .............................................................................................. 23 4.1.3 Zusammenführen und Harmonisieren genomischer Daten (AP 2.1b) .......................... 25 4.1.4 Deskriptives: Genotypen ................................................................................................ 29 4.2 Basismodell ohne Genotypen ................................................................................................ 31 4.2.1 Bestimmung der Gewichtung der Studienteilnehmer aus Nicht-Wismut-Studien ....... 31 4.2.2 Auswahl des besten mehrerer alternativer Basismodelle ............................................. 32 4.2.3 Propensity-Score zur Zusammenfassung der nicht-genomischen Störgrößen ............. 36 4.2.4 Basismodell mit Propensity-Score ................................................................................. 41 4.3 Genomische Blockstruktur .................................................................................................... 43 4.4 Genomische Stratifikation ..................................................................................................... 46 4.4.1 Ergebnis Markersatz I (m=26.600 Zufallsmarker) .......................................................... 47 4.4.2 Ergebnis Markersatz II (m=33.661 Zufallsmarker) ......................................................... 48 4.4.3 Fazit ................................................................................................................................ 49 4.5 Analysemodell für eine Einzelmarker-Assoziationsanalyse .................................................. 51 4.6 Analysemodell für eine Multimarker-Assoziationsanalyse ................................................... 52 4.7 Einschränkungen der Interpretierbarkeit von Parameterschätzern ..................................... 54 4.8 Resultate der Einzelmarker-Assoziationsanalyse (AP 2.1c) ................................................... 57 4.8.1 Signifikanz für den Interaktionseffekt GxE bzw. für den Joint-Test G/GxE .................... 57 4.8.2 Signifikanz gemäß Hybrid-2-Schritt (H2)-Verfahren nach Murcray et al. ...................... 59 4.9 Resultate der Multimarker-Assoziationsanalyse ................................................................... 65 3 BfS-Projekt 3615 S 32253 Schlussbericht 4.9.1 Signifikanz gemäß GxE bzw. für G/GxE (joint test) mit einfacher Bonferroni- Korrektur ........................................................................................................................ 66 4.9.2 Signifikanz gemäß Hybrid-2-Schritt (H2)-Verfahren im taxativen Modell ..................... 68 4.9.3 Signifikanz gemäß Hybrid-2-Schritt (H2)-Verfahren im Modell mit Marker- Auswahl je LD-Block ....................................................................................................... 70 4.10 Übersicht: LD-Blöcke mit mindestens suggestiver Signifikanz .............................................. 73 4.10.1 Modellschätzung LD-Block Nr. 2271 (Chr. 1p31.3; UBE2U) ........................................... 74 4.10.2 Modellschätzung LD-Block Nr. 5078 (Chr. 1q25.3,intergenetischer Bereich) ............... 75 4.10.3 Modellschätzung LD-Block Nr. 33131 (Chr. 5q23.2, intergenetischer Bereich) ............ 76 4.10.4 Modellschätzung LD-Block Nr. 33135 (Chr. 5q23.2; zwischen CSNK1G3 und LINCO1170) .................................................................................................................... 77 4.10.5 Modellschätzung LD-Block Nr. 33137 (Chr. 5q23.2; zwischen CSNK1G3 und LINCO1170) .................................................................................................................... 77 4.10.6 Modellschätzung LD-Blöcke Nr. 33131-33137 (Chr. 5q23.2, nahe CSNK1G3) ............... 78 4.10.7 Modellschätzung LD-Block Nr. 58899 (Chr. 10p13; CUBN) ........................................... 80 4.10.8 Modellschätzung LD-Block Nr. 64068 (Chr. 11p15.1; CD163L1) .................................... 81 4.10.9 Modellschätzung LD-Block Nr. 68621 (Chr. 12p13.31; CD163L1/ACSM4, PEX5) .......... 82 4.10.10 Modellschätzung LD-Blöcke Nr. 68621-68623 (Chr. 12p13.31; CD163L1, LOC101927882, ACSM4) ................................................................................................ 83 4.10.11 Modellschätzung LD-Block Nr. 69267 (Chr. 12p12.1; SOX5, MIR920) ........................... 84 4.10.12 Modellschätzung LD-Blöcke Nr. 69250-69269 (Chr. 12p12.1; SOX5) ............................ 85 4.10.13 Modellschätzung LD-Block Nr. 82003 (Chr.15q25.1, CHRNB4) ..................................... 86 4.10.14 Modellschätzung LD-Blöcke Nr. 82002-82008 (Chr.15q25.1, CHRNA3, CHRNB4) ........ 87 4.10.15 Modellschätzung LD-Block Nr. 82566 (Chr.15q26.1, ST8SIA2, snoU109) ...................... 88 4.10.16 Modellschätzung LD-Block Nr. 91734 (Chr. 18q21.32; LOC107985187, LOC105372156, RP11-325K19.1) ................................................................................... 90 4.11 Gen-Set-Analyse GSA (AP 3) .................................................................................................. 91 4.11.1 Methode: Gen-Set Enrichment Analyse (GSEA) ............................................................ 91 4.11.2 Auswahl von Gen-Sets für die Gen-Set Analyse (AP 3.1) ............................................... 92 4.11.3 Gen-Sets (HGNC Genfamilien und GO-Begriffe), definiert durch in der GWA- Analyse auffällige Gene bzw. LD-Blöcke ........................................................................ 93 4.11.4 Gen-Sets (HGNC Genfamilien), definiert durch publizierte genetische Interaktionen mit einer Radon-Exposition hinsichtlich Lungenkrebs ............................ 95 4.11.5 Gen-Sets (GO-Begriffe), definiert durch progressionsassoziierte Gene, falls diese durch bekannte Wirkmechanismen einer Radon- bzw. Strahlungsbelastung plausible erscheinen .................................................................... 97 4.11.6 Übersicht: Auswahl der Gen-Sets: Genfamilien und Signalwege ................................ 102 4.11.7 GSA Ergebnisse
Recommended publications
  • Isyte: Integrated Systems Tool for Eye Gene Discovery
    Lens iSyTE: Integrated Systems Tool for Eye Gene Discovery Salil A. Lachke,1,2,3,4 Joshua W. K. Ho,1,4,5 Gregory V. Kryukov,1,4,6 Daniel J. O’Connell,1 Anton Aboukhalil,1,7 Martha L. Bulyk,1,8,9 Peter J. Park,1,5,10 and Richard L. Maas1 PURPOSE. To facilitate the identification of genes associated ther investigation. Extension of this approach to other ocular with cataract and other ocular defects, the authors developed tissue components will facilitate eye disease gene discovery. and validated a computational tool termed iSyTE (integrated (Invest Ophthalmol Vis Sci. 2012;53:1617–1627) DOI: Systems Tool for Eye gene discovery; http://bioinformatics. 10.1167/iovs.11-8839 udel.edu/Research/iSyTE). iSyTE uses a mouse embryonic lens gene expression data set as a bioinformatics filter to select candidate genes from human or mouse genomic regions impli- ven with the advent of high-throughput sequencing, the cated in disease and to prioritize them for further mutational Ediscovery of genes associated with congenital birth defects and functional analyses. such as eye defects remains a challenge. We sought to develop METHODS. Microarray gene expression profiles were obtained a straightforward experimental approach that could facilitate for microdissected embryonic mouse lens at three key devel- the identification of candidate genes for developmental disor- opmental time points in the transition from the embryonic day ders, and, as proof-of-principle, we chose defects involving the (E)10.5 stage of lens placode invagination to E12.5 lens primary ocular lens. Opacification of the lens results in cataract, a leading cause of blindness that affects 77 million persons and fiber cell differentiation.
    [Show full text]
  • Rabbit Anti-TAF1C/FITC Conjugated Antibody
    SunLong Biotech Co.,LTD Tel: 0086-571- 56623320 Fax:0086-571- 56623318 E-mail:[email protected] www.sunlongbiotech.com Rabbit Anti-TAF1C/FITC Conjugated antibody SL24053R-FITC Product Name: Anti-TAF1C/FITC Chinese Name: FITC标记的TATA盒Binding protein相关因子TAF1C抗体 RNA polymerase I-specific TBP-associated factor 110 kDa; SL1; Taf1c; TAF1C_MOUSE; TAFI110; TAFI95; TATA box binding protein associated factor 1C; TATA box-binding protein-associated factor 1C; TATA box-binding protein-associated Alias: factor RNA polymerase I subunit C; TBP associated factor 1C; TBP associated factor RNA polymerase I 95 kDa; TBP associated factor, RNA polymerase I, 110-KD; TBP- associated factor 1C; Transcription initiation factor SL1/TIF-IB subunit C. Organism Species: Rabbit Clonality: Polyclonal React Species: ICC=1:50-200IF=1:50-200 Applications: not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. Molecular weight: 95kDa Form: Lyophilized or Liquid Concentration: 2mg/1ml immunogen: KLHwww.sunlongbiotech.com conjugated synthetic peptide derived from mouse TAF1C Lsotype: IgG Purification: affinity purified by Protein A Storage Buffer: 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year Storage: when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. background: Initiation of transcription by RNA polymerase I requires the formation of a complex Product Detail: composed of the TATA-binding protein (TBP) and three TBP-associated factors (TAFs) specific for RNA polymerase I.
    [Show full text]
  • Cross-Cohort Analysis Identifies a TEAD4– MYCN Positive Feedback Loop As the Core Regulatory Element of High-Risk Neuroblastoma
    Cross-Cohort Analysis Identifies a TEAD4– MYCN Positive Feedback Loop as the Core Regulatory Element of High-Risk Neuroblastoma The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Rajbhandari, Presha et al. “Cross-Cohort Analysis Identifies a TEAD4–MYCN Positive Feedback Loop as the Core Regulatory Element of High-Risk Neuroblastoma.” Cancer Discovery 8, 5 (March 2018): 582–599 © 2018 AACR As Published http://dx.doi.org/10.1158/2159-8290.CD-16-0861 Publisher American Association for Cancer Research Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/117503 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Cancer Manuscript Author Discov. Author manuscript; Manuscript Author available in PMC 2018 August 01. Published in final edited form as: Cancer Discov. 2018 May ; 8(5): 582–599. doi:10.1158/2159-8290.CD-16-0861. Cross-cohort analysis identifies a TEAD4 ↔ MYCN positive- feedback loop as the core regulatory element of high-risk neuroblastoma Presha Rajbhandari1,2,$, Gonzalo Lopez1,3,$, Claudia Capdevila1, Beatrice Salvatori1, Jiyang Yu1,#, Ruth Rodriguez-Barrueco4,5, Daniel Martinez3, Mark Yarmarkovich3, Nina Weichert-Leahey6, Brian J. Abraham7, Mariano J Alvarez1, Archana Iyer1, Jo Lynne Harenza3, Derek Oldridge3, Katleen De Preter8, Jan Koster9, Shahab Asgharzadeh10,11, Robert
    [Show full text]
  • OTX2 Homeoprotein Functions in Adult Choroid Plexus
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.28.441734; this version posted April 28, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. OTX2 homeoprotein functions in adult choroid plexus Anabelle Planques1†, Vanessa Oliveira Moreira1†, David Benacom1, Clémence Bernard1, Laurent Jourdren2, Corinne Blugeon2, Florent Dingli3, Vanessa Masson3, Damarys Loew3, Alain Prochiantz1,4, Ariel A. Di Nardo1* 1. Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241, INSERM U1050, Labex MemoLife, PSL University, Paris, France 2. Genomics Core Facility, Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, PSL University, 75005 Paris, France 3. Institut Curie, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 75248 Paris Cedex 05, France 4. Institute of Neurosciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China †contributed equally *corresponding author: [email protected] Abstract Choroid plexus secretes cerebrospinal fluid important for brain development and homeostasis. The OTX2 homeoprotein is critical for choroid plexus development and remains highly expressed in adult choroid plexus. Through RNA sequencing analyses of constitutive and conditional knockdown adult mouse models, we reveal putative roles for OTX2 in choroid plexus function, including cell signaling and adhesion, and show that it regulates the expression of factors secreted into cerebrospinal fluid, notably transthyretin. We show that Otx2 expression impacts choroid plexus immune and stress responses, and also affects splicing which leads to changes in mRNA isoforms of proteins implicated in oxidative stress response and DNA repair.
    [Show full text]
  • Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
    Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A.
    [Show full text]
  • 1 Program/Abstract # 1 Role of the Core Promoter in the Regulation Of
    1 Program/Abstract # 1 Role of the core promoter in the regulation of gene expression Kadonaga, Jim, UC San Diego, United States The RNA polymerase II core promoter comprises the stretch of DNA that directs the initiation of transcription. This basic definition might suggest that core promoters are simple transcriptional elements that function via common mechanism. Current evidence indicates, however, that there is extraordinary diversity in core promoter structure and activity. For instance, there are a variety of sequence-specific DNA elements in core promoters that include the TATA box, Inr, MTE, DPE, BRE, and TCT motifs. These elements do not act universally – the well-known TATA box is present in only about 15% of human promoters. Instead, specific core promoter elements confer distinct transcriptional activities to core promoters. For example, nearly all of the Drosophila Hox genes have DPE-dependent core promoters, and the Caudal protein, a master regulator of the Hox genes, is an enhancer-binding protein that activates transcription specifically through the DPE motif. Hence, the Hox genes are a DPE-based transcriptional network, and Caudal is a DPE-specific activator. In addition, another core promoter element, the TCT motif, is dedicated to the expression of the network of ribosomal protein genes. These and other findings collectively indicate that the core promoter is a diverse transcriptional regulatory element that is employed for the regulation not only of individual genes, but also of gene networks. Moreover, at a more practical level, optimized versions of the core promoter can be used to achieve the desired specificity and level of expression of transgenes.
    [Show full text]
  • Chromosomal Microarray Analysis in Turkish Patients with Unexplained Developmental Delay and Intellectual Developmental Disorders
    177 Arch Neuropsychitry 2020;57:177−191 RESEARCH ARTICLE https://doi.org/10.29399/npa.24890 Chromosomal Microarray Analysis in Turkish Patients with Unexplained Developmental Delay and Intellectual Developmental Disorders Hakan GÜRKAN1 , Emine İkbal ATLI1 , Engin ATLI1 , Leyla BOZATLI2 , Mengühan ARAZ ALTAY2 , Sinem YALÇINTEPE1 , Yasemin ÖZEN1 , Damla EKER1 , Çisem AKURUT1 , Selma DEMİR1 , Işık GÖRKER2 1Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey 2Faculty of Medicine, Department of Child and Adolescent Psychiatry, Trakya University, Edirne, Turkey ABSTRACT Introduction: Aneuploids, copy number variations (CNVs), and single in 39 (39/123=31.7%) patients. Twelve CNV variant of unknown nucleotide variants in specific genes are the main genetic causes of significance (VUS) (9.75%) patients and 7 CNV benign (5.69%) patients developmental delay (DD) and intellectual disability disorder (IDD). were reported. In 6 patients, one or more pathogenic CNVs were These genetic changes can be detected using chromosome analysis, determined. Therefore, the diagnostic efficiency of CMA was found to chromosomal microarray (CMA), and next-generation DNA sequencing be 31.7% (39/123). techniques. Therefore; In this study, we aimed to investigate the Conclusion: Today, genetic analysis is still not part of the routine in the importance of CMA in determining the genomic etiology of unexplained evaluation of IDD patients who present to psychiatry clinics. A genetic DD and IDD in 123 patients. diagnosis from CMA can eliminate genetic question marks and thus Method: For 123 patients, chromosome analysis, DNA fragment analysis alter the clinical management of patients. Approximately one-third and microarray were performed. Conventional G-band karyotype of the positive CMA findings are clinically intervenable.
    [Show full text]
  • CASC3 Promotes Transcriptome-Wide Activation of Nonsense
    bioRxiv preprint doi: https://doi.org/10.1101/811018; this version posted October 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 2 CASC3 promotes transcriptome-wide activation of nonsense- 3 mediated decay by the exon junction complex 4 5 Jennifer V. Gerbracht1, Volker Boehm1, Thiago Britto-Borges2,3, Sebastian Kallabis4, Janica L. 6 Wiederstein4, Simona Ciriello1,5, Dominik U. Aschemeier1, Marcus Krüger4, Christian K. 7 Frese4,6, Janine Altmüller7,8, Christoph Dieterich2,3, Niels H. Gehring1 8 1 Institute for Genetics, University of Cologne, 50674 Cologne, Germany 9 2 Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus 10 Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, 69120 Heidelberg, 11 Germany 12 3 DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, 69120 13 Heidelberg, Germany 14 4 CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany 15 5 present address: AO Research Institute Davos, Clavadelerstrasse 8, CH-7270 Davos Platz, Switzerland 16 6 present address: Max Planck Unit for the Science of Pathogens, 10117 Berlin, Germany 17 7 Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany 18 8 Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany 19 20 21 Contact 22 Niels H. Gehring, University of Cologne, Institute for Genetics, Zuelpicher Str. 47a, 50674 Cologne, 23 Germany; email: [email protected] 24 25 26 27 Running Title (40 Characters) 28 CASC3 promotes EJC-dependent NMD 29 Keywords (5, alphabetical order, separated by slash) 30 CRISPR-Cas9/gene expression/mRNA quality control/NMD/RNA degradation 31 1 bioRxiv preprint doi: https://doi.org/10.1101/811018; this version posted October 21, 2019.
    [Show full text]
  • Full-Text.Pdf
    Systematic Evaluation of Genes and Genetic Variants Associated with Type 1 Diabetes Susceptibility This information is current as Ramesh Ram, Munish Mehta, Quang T. Nguyen, Irma of September 23, 2021. Larma, Bernhard O. Boehm, Flemming Pociot, Patrick Concannon and Grant Morahan J Immunol 2016; 196:3043-3053; Prepublished online 24 February 2016; doi: 10.4049/jimmunol.1502056 Downloaded from http://www.jimmunol.org/content/196/7/3043 Supplementary http://www.jimmunol.org/content/suppl/2016/02/19/jimmunol.150205 Material 6.DCSupplemental http://www.jimmunol.org/ References This article cites 44 articles, 5 of which you can access for free at: http://www.jimmunol.org/content/196/7/3043.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 23, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Systematic Evaluation of Genes and Genetic Variants Associated with Type 1 Diabetes Susceptibility Ramesh Ram,*,† Munish Mehta,*,† Quang T.
    [Show full text]
  • Granulocyte Colony-Stimulating Factor-Induced TAF9 Modulates P53-TRIAP1-CASP3 Axis to Prevent Retinal Ganglion Cell Death After Optic Nerve Ischemia
    Granulocyte Colony-Stimulating Factor-Induced TAF9 Modulates P53-TRIAP1-CASP3 Axis to Prevent Retinal Ganglion Cell Death after Optic Nerve Ischemia Yao-Tseng Wen Buddhist Tzu Chi General Hospital Hualien: Hualien Tzu Chi Hospital Keh-Liang Lin Chung Shan Medical University Hospital Chin-Te Huang Tzu Chi University Rong Kung Tsai ( [email protected] ) Hualien Tzu Chi Hospital https://orcid.org/0000-0001-8760-5739 Research article Keywords: Granulocyte colony-stimulating factor, Rat anterior ischemic optic neuropathy model, Retinal ganglion cell, TBP associated factor 9, TP53, TRIAP1 Posted Date: January 6th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-138908/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/25 Abstract Background Optic nerve head (ONH) infarct can result in progressive retinal ganglion cell (RGC) death. Some evidences indicated that the granulocyte colony-stimulating factor (GCSF) provides positive effects against ischemic damage on RGCs. However, protective mechanisms of the GCSF after ONH infarct are complex and remain unclear. Methods To investigate the complex mechanisms, the transcriptome proles of the GCSF-treated retinas were examined using microarray technology. The retinal mRNA samples on days 3 and 7 post rat anterior ischemic optic neuropathy model (rAION) were analyzed by microarray and bioinformatics analyses. To evaluate the TAF9 function in RGC apoptosis, GCSF plus TAF9 siRNA-treated rats were evaluated using retrograde labeling with FluoroGold assay, TUNEL assay, and Western blotting in a rAION. Results GCSF treatment inuenced 3101 genes and 3332 genes on days 3 and 7 post rAION, respectively.
    [Show full text]
  • An Expanded Proteome of Cardiac T-Tubules☆
    Cardiovascular Pathology 42 (2019) 15–20 Contents lists available at ScienceDirect Cardiovascular Pathology Original Article An expanded proteome of cardiac t-tubules☆ Jenice X. Cheah, Tim O. Nieuwenhuis, Marc K. Halushka ⁎ Department of Pathology, Division of Cardiovascular Pathology, Johns Hopkins University SOM, Baltimore, MD, USA article info abstract Article history: Background: Transverse tubules (t-tubules) are important structural elements, derived from sarcolemma, found Received 27 February 2019 on all striated myocytes. These specialized organelles create a scaffold for many proteins crucial to the effective Received in revised form 29 April 2019 propagation of signal in cardiac excitation–contraction coupling. The full protein composition of this region is un- Accepted 17 May 2019 known. Methods: We characterized the t-tubule subproteome using 52,033 immunohistochemical images covering Keywords: 13,203 proteins from the Human Protein Atlas (HPA) cardiac tissue microarrays. We used HPASubC, a suite of Py- T-tubule fi Proteomics thon tools, to rapidly review and classify each image for a speci c t-tubule staining pattern. The tools Gene Cards, Caveolin String 11, and Gene Ontology Consortium as well as literature searches were used to understand pathways and relationships between the proteins. Results: There were 96 likely t-tubule proteins identified by HPASubC. Of these, 12 were matrisome proteins and 3 were mitochondrial proteins. A separate literature search identified 50 known t-tubule proteins. A comparison of the 2 lists revealed only 17 proteins in common, including 8 of the matrisome proteins. String11 revealed that 94 of 127 combined t-tubule proteins generated a single interconnected network. Conclusion: Using HPASubC and the HPA, we identified 78 novel, putative t-tubule proteins and validated 17 within the literature.
    [Show full text]
  • HBO1-MLL Interaction Promotes AF4/ ENL/P-Tefb-Mediated
    RESEARCH ARTICLE HBO1-MLL interaction promotes AF4/ ENL/P-TEFb-mediated leukemogenesis Satoshi Takahashi1,2, Akinori Kanai3, Hiroshi Okuda1, Ryo Miyamoto1, Yosuke Komata1, Takeshi Kawamura4, Hirotaka Matsui5, Toshiya Inaba3, Akifumi Takaori-Kondo2, Akihiko Yokoyama1,2,6* 1Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Japan; 2Department of Hematology and Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan; 3Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan; 4Isotope Science Center, The University of Tokyo, Tokyo, Japan; 5Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; 6Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan Abstract Leukemic oncoproteins cause uncontrolled self-renewal of hematopoietic progenitors by aberrant gene activation, eventually causing leukemia. However, the molecular mechanism underlying aberrant gene activation remains elusive. Here, we showed that leukemic MLL fusion proteins associate with the HBO1 histone acetyltransferase (HAT) complex through their trithorax homology domain 2 (THD2) in various human cell lines. MLL proteins associated with the HBO1 complex through multiple contacts mediated mainly by the ING4/5 and PHF16 subunits in a chromatin-bound context where histone H3 lysine 4 tri-methylation marks were present. Of the many MLL fusions, MLL-ELL particularly depended on the THD2-mediated association with the HBO1 complex for leukemic transformation. The C-terminal portion of ELL provided a binding platform for multiple factors including AF4, EAF1, and p53. MLL-ELL activated gene expression in murine hematopoietic progenitors by loading an AF4/ENL/P-TEFb (AEP) complex onto the target *For correspondence: promoters wherein the HBO1 complex promoted the association with AEP complex over EAF1 and [email protected] p53.
    [Show full text]