Effect of Increased Hoxb4 Or Aml1-Eto on Human Megakaryocytic

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Increased Hoxb4 Or Aml1-Eto on Human Megakaryocytic EFFECT OF INCREASED HOXB4 OR AML1-ETO ON HUMAN MEGAKARYOCYTIC DEVELOPMENT DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Yiming Zhong, M.S. Molecular Cellular and Developmental Biology Program The Ohio State University 2010 Dissertation Committee: Dr. Larry C. Lasky, Adviser Dr. James Waldman Dr. Joanne Trgovcich Dr. Xuefeng Bai ABSTRACT The transcription factors homeobox B4 (HoxB4) and acute myeloid leukemia-1 (AML1)-eight-twenty-one (ETO) have been shown to be important regulators in hematopoietic stem cells (HSCs) and in certain progenitor cells such as granulocyte-macrophage progenitors. However, their roles in megakaryopoiesis are unclear. In this study, we investigated the effect of increased HoxB4 or AML1-ETO on human megakaryocytic development and on in vitro platelet generation. We found that increased HoxB4 or AML1-ETO enhanced human early megakaryocytic development and that in vitro generation of platelets was increased by utilization of recombinant HoxB4 fusion protein and a three- dimensional (3D) culture system. Increased HoxB4 enhanced early megakaryocytic development in human erythro-megakaryocytic TF1 progenitor cell line and in CD34 positively-selected cord blood cells. Ectopic HoxB4 in human TF1 cells increased the antigen expression of two important megakaryocytic markers, CD61 and CD41a, increased the gene expression of thrombopoietin receptor (TpoR), stem cell leukemia-1 (Scl-1), Cyclin D1, Friend of GATA-1 (Fog-1) and Friend leukemia integration-1 (Fli-1) while it decreased the expression of cellular Myb (c-Myb) which contains sequences homologous to the avian myeloblastosis virus oncogene (v-myb). TpoR, cyclin D1, Fli-1 and Fog-1 are positive regulators of ii megakaryopoiesis and c-Myb is a potent negative modulator of megakaryopoiesis. HoxB4 RNA silencing in TF1 cells decreased the expression of CD61 and CD41a and decreased Fli-1 expression while it increased the expression of c-Myb. Recombinant triple protein transduction domain (tPTD)- HoxB4 fusion protein increased the percentages and absolute numbers of CD41a and CD61 positive cells during megakaryocytic differentiation of CD34 positively-selected cord blood cells and increased the numbers of colony-forming unit-megakaryocyte (CFU-Mk). Adding tPTD-HoxB4 fusion protein increased the gene expression of TpoR, Cyclin D1, Fog-1 and Fli-1 but inhibited c-Myb expression. In a four-stage 3D culture system, recombinant HoxB4 fusion protein was used to expand hematopoietic stem and progenitor cells in the first-two stages, and the expanded cells were induced for platelet differentiation in the last-two stages. We found that platelet production was increased in the 3D culture system with recombinant TAT-HoxB4 or tPTD-HoxB4 proteins added in the first two-stages of culture. The AML1-ETO fusion protein is generated by the t(8; 21) translocation and it is associated with about 40% of AML1 of M2 subtype. AML1 is a transcription factor belonging to the Runt-related transcription factor (RUNX) family and it involves in the development of normal hematopoiesis, for example, it is required for megakaryocytic maturation. AML1-ETO contains the DNA binding domain of AML1 but lacks the transcriptional activation domain of AML1 and it contains almost the entire ETO. So AML1-ETO functions as a dominant-negative factor of iii AML1 and represses transcription, and ETO domain contributes to this repression, which causes the development of AML. In this study, ectopic AML1- ETO was introduced into the human TF1 progenitor cells by lentivirus and its overexpression increased the expression of CD41a and CD61 in a dose- dependent manner. AML1-ETO overexpression in TF1 cells increased the gene expression of Fog-1 and decreased the c-Myb expression. Collectively, these data indicate that increased HoxB4 or AML1-ETO enhances human early megakaryocytic development by primarily regulating the gene expression of TpoR, Fog-1 and c-Myb and that in vitro generation of platelets is increased by utilization of recombinant HoxB4 proteins and 3D scaffolds. So manipulation of these transcription factors might be a way to produce platelets in vitro for use in transfusion medicine. iv DEDICATION Dedicated to my family v ACKNOWLEDGMENT I would like to thank my adviser, Dr. Larry C. Lasky, for his patience, support, advice and encouragement throughout my graduate education. I wish to express my appreciation to my dissertation committee members, Dr. James Waldman, Dr. Joanne Trgovcich and Dr. Xuefeng Bai, for their helpful advice and comments. I also thank my former advisers, Dr. Pan Zheng and Dr. Yang Liu, for their help. I would like to thank my colleagues, Brent Sullenbarger and Dr. Phil Wahr, for their assistance and cooperation. I also thank Dr. David Bisaro and Ms Jan Zinaich in the MCDB program for their help. I thank my family and friends for their continuous support, especially my wife Hongyan Liu and my two daughters for their love and support. vi VITA Nov. 13, 1976…………………......Born – Yueyang, China PR 1995 - 1999……………………..…B.S. Biology, Wuhan University 1999 – 2000………………............Department of Development, Red Heart King Group Co. Ltd 2000 – 2001……………….…….. Department of Scientific Research, Beijing Genomics Institute Chinese Academy of Sciences 2001 – 2004 ………………………M.S. Genetics, Institute of Genetics and Developmental Biology Chinese Academy of Sciences 2004 – Present……………..….….Graduate Research Associate The Ohio State University vii PUBLICATIONS 1. Yiming Zhong, Brent Sullenbarger, Larry C. Lasky. (2010) Effect of increased HoxB4 on human megakaryocytic development. Biochem Biophys Res Commun. 398(3):377-82. 2. ZHONG Yiming, JIANG Guanghuai, CHEN Xuewei, XIA Zhihui, LI Xiaobing, ZHU Lihuang, ZHAI Wenxue. (2003) Identification and gene prediction of a 24 kb region containing xa5, a recessive bacterial blight resistance gene in rice (Oryza sativa L.). CHINESE SCIENCE BULLETIN 48(24): 2725-2729 FIELDS OF STUDY Major Field: Molecular Cellular and Developmental Biology viii TABLE OF CONTENTS ABSTRACT .............................................................................................................. ii DEDICATION ........................................................................................................... v ACKNOWLEDGMENT ............................................................................................ vi VITA ......................................................................................................................... vii TABLE OF CONTENTS .......................................................................................... ix LIST OF TABLES ................................................................................................... xv LIST OF FIGURES .................................................................................................xvi ABREVIATIONS .....................................................................................................xix CHAPTER 1 ............................................................................................................. 1 General introduction ................................................................................................. 1 1.1 Hematopoietic stem/progenitor cells .......................................................... 1 1.2 Megakaryocytic development ..................................................................... 2 1.3 Regulation of megakaryocytic development .............................................. 3 1.4 Cell surface antigen expression during megakaryocytic development ..... 6 1.5 Human TF1 progenitor cell line .................................................................. 6 1.6 Cord blood................................................................................................... 7 ix 1.7 Significance and aims ................................................................................. 8 CHAPTER 2 ........................................................................................................... 15 Effect of increased HoxB4 on human megakaryocytic development ................... 15 2.1 Introduction ............................................................................................... 15 2.1.1 Roles of HoxB4 in hematopoiesis ..................................................... 15 2.1.2 In vitro expansion of HSCs can be achieved by HoxB4 overexpression or by directly adding recombinant HoxB4 protein................ 16 2.1.3 HoxB4 functions in a dose-dependent manner................................. 18 2.1.4 Molecular mechanisms of HoxB4’s effects on hematopoiesis ......... 19 2.1.5 Hypothesis.......................................................................................... 20 2.2 Materials and methods ................................................................................. 21 2.2.1 Cell culture ............................................................................................. 21 2.2.2 Lentiviral vectors .................................................................................... 22 2.2.3 Lentivirus production, concentration and titration ................................. 22 2.2.4 Recombinant HoxB4 protein ................................................................. 23 2.2.5 CFU and CFU-Mk assays ..................................................................... 23 2.2.6 Flow cytometry ......................................................................................
Recommended publications
  • Megakaryocyte Growth and Platelet Production (Blood Platelet/Hematopoleflc Growth Factor/Thrombocyoena/B~Usfan) DAVID J
    Proc. Natl. Acad. Sci. USA Vol. 91, pp. 11104-11108, November 1994 Physiology The purification of megapoietin: A physiological regulator of megakaryocyte growth and platelet production (blood platelet/hematopoleflc growth factor/thrombocyoena/b~usfan) DAVID J. KUTER*tt§, DAVID L. BEELER*, AND ROBERT D. ROSENBERGt1¶ *Hematology Unit, Massachusetts General Hospital, Boston, MA; tHarvard Medical School, Boston, MA; tDepartment of Biology, Massachusetts Institute of Technology, Cambridge, MA; and 'Department of Medicine, Beth Israel Hospital, Boston, MA Communicated by Laszlo Lorand, July 8, 1994 (receivedfor review June 3, 1994) ABSTRACT The circulating blood platelet is produced by To characterize this putative thrombopoietic factor, we the bone marrow megkarocyte. In response to a decrease in have analyzed the physiological relationship between the the platelet count, megryocytes increase in number and bone marrow megakaryocytes and the circulating platelets. ploidy. Although this feedback loop has long been thought to be We have found that the magnitude of the changes in the medlated by a circulating hematopoletic factor, no such factor number and ploidy of megakaryocytes was inversely and has been purified. Using a model ofthrombocytopenia in sheep, proportionally related to the circulating platelet mass (3) and we have identified an active substance called megapoetin, that megakaryocyte number and ploidy were therefore mark- which simulated an increase in the number and ploldy of ers of this feedback loop in vivo. We next developed a bone meg-karyocytes in bone marrow culture. Circulating levels of marrow assay in which increases in the number and ploidy of this factor could be quantified with this assay and were found megakaryocytes in vitro (6) were used to identify an active to be Inversely proportional to the platelet count of the sheep.
    [Show full text]
  • Pulmonary Megakaryocytes: "Missing Link" Between Cardiovascular and Respiratory Disease?
    J Clin Pathol: first published as 10.1136/jcp.39.9.969 on 1 September 1986. Downloaded from J Clin Pathol 1986;39:969-976 Pulmonary megakaryocytes: "missing link" between cardiovascular and respiratory disease? G K SHARMA, I C TALBOT From the Department ofPathology, University ofLeicester, Leicester Royal Infirmary SUMMARY Pulmonary megakaryocytes were quantitated in a series of 30 consecutive hospital nec- ropsies using a two stage immunoperoxidase stain for factor VIII related antigen. In all 30 cases they were found with a mean density of 14 65 megakaryocytes/cm2 in lung sections of 5 gm in thickness. The maximum concentration of intrapulmonary megakaryocytes was consistently found to be in the central zone of the right upper lobe. Less than 22% of the observed cells possessed abundant cytoplasm, the rest appearing as effete, naked, and seminaked nuclei. The mean megakaryocyte count was found to be increased in association with both respiratory pathology (positive smoking history and impaired lung function) and cardiovascular disease states-shock; thromboembolism; myocardial infarction; and severe atheroma in the abdominal aorta, the coronary circulation, and the circle of Willis. Pulmonary megakaryocytes probably embolise from bone marrow. This may reflect stimulated thrombopoiesis, caused by increased platelet consumption in association with atherosclerotic disease, but it cannot be taken to confirm that the lung is the principal site of platelet production. copyright. The megakaryocyte is now firmly established as the 2 Intact megakaryocytes
    [Show full text]
  • Development of Plasmacytoid and Conventional Dendritic Cell Subtypes from Single Precursor Cells Derived in Vitro and in Vivo
    ARTICLES Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo Shalin H Naik1,2, Priyanka Sathe1,3, Hae-Young Park1,4, Donald Metcalf1, Anna I Proietto1,3, Aleksander Dakic1, Sebastian Carotta1, Meredith O’Keeffe1,4, Melanie Bahlo1, Anthony Papenfuss1, Jong-Young Kwak1,4,LiWu1 & Ken Shortman1 The development of functionally specialized subtypes of dendritic cells (DCs) can be modeled through the culture of bone marrow with the ligand for the cytokine receptor Flt3. Such cultures produce DCs resembling spleen plasmacytoid DCs (pDCs), http://www.nature.com/natureimmunology CD8+ conventional DCs (cDCs) and CD8– cDCs. Here we isolated two sequential DC-committed precursor cells from such cultures: dividing ‘pro-DCs’, which gave rise to transitional ‘pre-DCs’ en route to differentiating into the three distinct DC subtypes (pDCs, CD8+ cDCs and CD8– cDCs). We also isolated an in vivo equivalent of the DC-committed pro-DC precursor cell, which also gave rise to the three DC subtypes. Clonal analysis of the progeny of individual pro-DC precursors demonstrated that some pro-DC precursors gave rise to all three DC subtypes, some produced cDCs but not pDCs, and some were fully committed to a single DC subtype. Thus, commitment to particular DC subtypes begins mainly at this pro-DC stage. Dendritic cells (DCs) are antigen-presenting cells crucial for the innate macrophages12. Further ‘downstream’, ‘immediate’ precursors have and adaptive response to infection as well as for maintaining immune been identified for several DC types, including Ly6Chi monocytes as 3,4,6 13 Nature Publishing Group Group Nature Publishing tolerance to self tissue.
    [Show full text]
  • The Biogenesis of Platelets from Megakaryocyte Proplatelets
    The biogenesis of platelets from megakaryocyte proplatelets Sunita R. Patel, … , John H. Hartwig, Joseph E. Italiano Jr. J Clin Invest. 2005;115(12):3348-3354. https://doi.org/10.1172/JCI26891. Review Series Platelets are formed and released into the bloodstream by precursor cells called megakaryocytes that reside within the bone marrow. The production of platelets by megakaryocytes requires an intricate series of remodeling events that result in the release of thousands of platelets from a single megakaryocyte. Abnormalities in this process can result in clinically significant disorders. Thrombocytopenia (platelet counts less than 150,000/μl) can lead to inadequate clot formation and increased risk of bleeding, while thrombocythemia (platelet counts greater than 600,000/μl) can heighten the risk for thrombotic events, including stroke, peripheral ischemia, and myocardial infarction. This Review will describe the process of platelet assembly in detail and discuss several disorders that affect platelet production. Find the latest version: https://jci.me/26891/pdf Review series The biogenesis of platelets from megakaryocyte proplatelets Sunita R. Patel, John H. Hartwig, and Joseph E. Italiano Jr. Hematology Division, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA. Platelets are formed and released into the bloodstream by precursor cells called megakaryocytes that reside within the bone marrow. The production of platelets by megakaryocytes requires an intricate series of remodeling events that result in the release of thousands of platelets from a single megakaryocyte. Abnormalities in this process can result in clinically significant disorders. Thrombocytopenia (platelet counts less than 150,000/µl) can lead to inadequate clot formation and increased risk of bleeding, while thrombocythemia (platelet counts greater than 600,000/µl) can heighten the risk for thrombotic events, including stroke, peripheral ischemia, and myocardial infarction.
    [Show full text]
  • A Mutation in the Translation Initiation Codon of Gata-1 Disrupts Megakaryocyte Maturation and Causes Thrombocytopenia
    A mutation in the translation initiation codon of Gata-1 disrupts megakaryocyte maturation and causes thrombocytopenia Ian J. Majewski*†, Donald Metcalf*‡, Lisa A. Mielke*, Danielle L. Krebs*, Sarah Ellis§, Marina R. Carpinelli*, Sandra Mifsud*, Ladina Di Rago,* Jason Corbin*, Nicos A. Nicola*, Douglas J. Hilton*, and Warren S. Alexander*‡ *The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia; †Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia; and §Peter MacCallum Cancer Centre, Trescowthick Research Laboratories, St. Andrew’s Place, East Melbourne, Victoria 3002, Australia Contributed by Donald Metcalf, July 27, 2006 We have generated mice from a N-ethyl-N-nitrosourea mutagen- progenitors in fetal life, an abnormality that resolves spontane- esis screen that carry a mutation in the translation initiation codon ously at birth. This phenotype resembles the transient myelo- of Gata-1, termed Plt13, which is equivalent to mutations found in proliferative disorder associated with trisomy 21 that resolves patients with acute megakaryoblastic leukemia and Down syn- shortly after birth and is followed later in life by AML-M7 DS drome. The Gata-1 locus is present on the X chromosome in in a proportion of affected children (18). humans and in mice. Male mice hemizygous for the mutation We report here a N-ethyl-N-nitrosourea (ENU)-induced mu- (Gata-1Plt13͞Y) failed to produce red blood cells and died during tation in the translation initiation codon of Gata-1, designated embryogenesis at a similar stage to Gata-1-null animals. Female Plt13, which is analogous to mutations detected in patients with mice that carry the Plt13 mutation are mosaic because of random AML-M7 DS and transient myeloproliferative disorder (10–13).
    [Show full text]
  • Megakaryocyte Emperipolesis Mediates Membrane Transfer from Intracytoplasmic Neutrophils to Platelets
    RESEARCH ARTICLE Megakaryocyte emperipolesis mediates membrane transfer from intracytoplasmic neutrophils to platelets Pierre Cunin1, Rim Bouslama1, Kellie R Machlus2, Marta Martı´nez-Bonet1, Pui Y Lee1,3, Alexandra Wactor1, Nathan Nelson-Maney1, Allyn Morris1, Li Guo4, Andrew Weyrich4, Martha Sola-Visner5, Eric Boilard6, Joseph E Italiano2,7, Peter A Nigrovic1,3* 1Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States; 2Department of Medicine, Hematology Division, Brigham and Women’s Hospital and Harvard Medical School, Boston, United States; 3Department of Medicine, Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, United States; 4Program in Molecular Medicine and Department of Internal Medicine, University of Utah, Salt Lake City, United States; 5Department of Neonatology, Boston Children’s Hospital, Harvard Medical School, Boston, United States; 6Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du Centre Hospitalier Universitaire de Que´bec, Faculte´ de Me´decine de l’Universite´ Laval, Que´bec, Canada; 7Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, United States Abstract Bone marrow megakaryocytes engulf neutrophils in a phenomenon termed emperipolesis. We show here that emperipolesis is a dynamic process mediated actively by both lineages, in part through the b2-integrin/ICAM-1/ezrin pathway. Tethered neutrophils enter in membrane-bound vesicles before penetrating into the megakaryocyte cytoplasm. Intracytoplasmic neutrophils develop membrane contiguity with the demarcation membrane system, thereby *For correspondence: [email protected] transferring membrane to the megakaryocyte and to daughter platelets. This phenomenon occurs in otherwise unmanipulated murine marrow in vivo, resulting in circulating platelets that bear Competing interest: See membrane from non-megakaryocytic hematopoietic donors.
    [Show full text]
  • Neutrophil Transit Time and Localization Within the Megakaryocyte Define
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.26.441404; this version posted April 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Distinct forms of emperipolesis Neutrophil transit time and localization within the megakaryocyte define morphologically distinct forms of emperipolesis Frank Y. Huang1,2, Pierre Cunin1, Felix A. Radtke1,2, Ricardo Grieshaber-Bouyer1,2, Peter A. Nigrovic1,3* 1Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston MA, USA 2Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany 3Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston MA, USA Corresponding Author: Peter A. Nigrovic, MD Division of Immunology Boston Children’s Hospital Karp Family Research Building, 10th Floor 1 Blackfan Circle Boston, MA 02115 Ph: 617-919-2482 Fax: 617-730-0528 Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.04.26.441404; this version posted April 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Distinct forms of emperipolesis Key Points • Neutrophil passage through megakaryocytes, termed emperipolesis, diverges into fast and slow forms that differ in transit time, morphology, and intracellular localization • During emperipolesis, neutrophils can reside in vacuoles (emperisomes) or escape into the cell cytoplasm to assume positions near the megakaryocyte’s demarcation membrane system, endoplasmic reticulum, or nucleus.
    [Show full text]
  • Development of Megakaryoblastic Leukaemia in Runx1-Evi1 Knock-In Chimaeric Mouse
    Letter to the Editor 1458 control. The Mcl-1-specific T-cell clone did not kill this cell line Ms. Bodil K. Jakobsen, Department of Clinical Immunology, (Figure 1c). University Hospital, Copenhagen, for HLA-typing of patient blood The lower rates of relapse in allogeneic transplantation samples. This study was supported by grants from the Danish compared with autologous bone marrow transplantation, the Medical Research Council, The Novo Nordisk Foundation, The striking clinical benefit of donor-lymphocyte infusions as well as Danish Cancer Society, The John and Birthe Meyer Foundation, the finding that human T cells can destroy chemotherapy- and Danish Cancer Research Foundation. resistant cell lines from chronic myeloid leukemia and multiple RB Sørensen1, OJ Nielsen2, P thor Straten1 and MH Andersen1 myeloma, have prompted development of immunotherapeutic 1 strategies against hematological cancers.3 Among these ap- Tumor Immunology Group, Institute of Cancer Biology, Danish Cancer Society, Copenhagen, Denmark and proaches, active specific immunization or vaccination is 2Department of Hematology, State University Hospital, emerging as a valuable tool to boost the adaptive immune Copenhagen, Denmark. system against malignant cells. In this regard, the identification E-mail: [email protected] of leukemia-associated antigens is crucial. However, very few antigens are characterized in a conceptual framework in which the biology, microenvironment, and conventional disease management have been taken into consideration. Myeloid cell References factor-1 (Mcl-1) is a death-inhibiting member of the Bcl-2 family that is expressed in early monocyte differentiation. Elevated 1 Andersen MH, Becker JC, thor Straten P. The anti-apoptotic member levels of Mcl-1 have been reported for a number of solid and of the Bcl-2 family Mcl-1 is a CTL target in cancer patients.
    [Show full text]
  • Erythroid and Megakaryocytic Transformation
    Oncogene (2007) 26, 6803–6815 & 2007 Nature Publishing Group All rights reserved 0950-9232/07 $30.00 www.nature.com/onc REVIEW Erythroid and megakaryocytic transformation A Wickrema1 and JD Crispino2 1Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA and 2Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA Red blood cells and megakaryocytes arise from a common Accumulated evidence mostly from studies with precursor, the megakaryocyte-erythroid progenitor and mouse models and human primary cells suggests that share many regulators including the transcription factors cellular expansion and differentiation occur concur- GATA-1 and GFI-1B and signaling molecules such as JAK2 rently until the late stages of erythroid differentiation and STAT5. These lineages also share the distinction (polychromatic/orthochromatic) at which point the cells of being associated with rare, but aggressive malignancies exit the cell cycle and undergo terminal maturation that have very poor prognoses. In this review, we (Wickrema et al., 1992; Ney and D’Andrea, 2000; will briefly summarize features of normal development of Koury et al., 2002). A disruption of the balance between red blood cells and megakaryocytes and also highlight erythroid cell expansion and differentiation results in events that lead to their leukemic transformation. It is either myeloproliferative disorders (MPDs) such as clear that much more work needs to be done to improve our polycythemia vera, myelodysplastic syndrome, or rarely understanding of the unique biology of these leukemias in erythroleukemia. Furthermore, some patients initially and to pave the way for novel targeted therapeutics. diagnosed with MPDs ultimately progress to erythro- Oncogene (2007) 26, 6803–6815; doi:10.1038/sj.onc.1210763 leukemia.
    [Show full text]
  • 761070Orig1s000
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 761070Orig1s000 NON-CLINICAL REVIEW(S) Tertiary Pharmacology/Toxicology Review Date: November 1, 2017 From: Timothy J. McGovern, PhD, ODE Associate Director for Pharmacology and Toxicology, OND IO BLA: 761070 Agency receipt date: November 16, 2016 Drug: FASENRA (benralizumab) injection, for subcutaneous use Sponsor: AstraZeneca Pharmaceuticals LP Indication: Add-on maintenance treatment of patients with severe asthma aged 12 years and older, and with an eosinophilic phenotype. Reviewing Division: Division of Pulmonary, Allergy, and Rheumatology Products The primary pharmacology/toxicology reviewer and team leader concluded that the nonclinical data for FASENRA (benralizumab) solution for subcutaneous injection support approval for the indication listed above. Benralizumab is a humanized, afucosylated IgG1 kappa monoclonal antibody that targets interleukin-5 receptor alpha. The recommended dose of benralizumab is 30 mg administered once every 4 weeks for the first 3 doses, and then once every 8 weeks thereafter. The Established Pharmacologic Class (EPC) for benralizumab is “interleukin- 5 receptor alpha-directed cytolytic monoclonal antibody”. Pivotal nonclinical studies were conducted in Cynomolgus monkeys. In toxicology studies up to 39 weeks duration, NOAELs of 10 mg/kg IV and 30 mg/kg SC were identified. The primary finding at a dose of 25 mg/kg IV was a post-dose reaction in one high-dose female that included bruising in the areas of the eyes, face, chest and lower abdomen, a decrease in platelet counts, and abnormal erythrocytes after the fourth dose. The NOAEL doses were associated with systemic exposures (AUC) that provided 153- to 271-fold exposure margins compared to the recommended clinical dose.
    [Show full text]
  • Exposure of Patient-Derived Mesenchymal Stromal Cells To
    Author Manuscript Published OnlineFirst on July 8, 2020; DOI: 10.1158/1541-7786.MCR-20-0091 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 Research Article 2 Exposure of patient-derived mesenchymal stromal cells to TGFB1 supports fibrosis 3 induction in a pediatric acute megakaryoblastic leukemia model 4 Theresa Hack1, Stefanie Bertram2, Helen Blair3, Verena Börger4, Guntram Büsche5, Lora 5 Denson1, Enrico Fruth1, Bernd Giebel4, Olaf Heidenreich3,6, Ludger Klein-Hitpass7, 6 Laxmikanth Kollipara8, Stephanie Sendker1, Albert Sickmann8,9,10, Christiane Walter1, Nils 7 von Neuhoff1, Helmut Hanenberg1,11, Dirk Reinhardt1, Markus Schneider1,* and Mareike 8 Rasche1,* 9 1 Department of Pediatric Hematology and Oncology, University Children’s Hospital Essen, 10 Essen, Germany 11 2 Department of Pathology, University Hospital Essen, Essen, Germany 12 3 Newcastle University, Wolfson Childhood Cancer Research Centre, Translation and Clinical 13 Research Institute, Newcastle upon Tyne, United Kingdom 14 4 Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany 15 5 Department of Pathology, Hannover Medical School, Hannover, Germany 16 6 Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands 17 7 Department of Cell Biology, University Hospital Essen, Essen, Germany 18 8 Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Dortmund, Germany 19 9 Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, 20 Scotland, United Kingdom 21 10 Medizinische Fakultät, Medizinische Proteom-Center (MPC), Ruhr-Universität Bochum, 22 Bochum, Germany 23 11 Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, 24 Düsseldorf, Germany 25 * These authors contributed equally to this work.
    [Show full text]
  • Bleeding Fevers! Thrombocytopenia and Neutropenia
    Bleeding fevers! Thrombocytopenia and neutropenia Faculty of Physician Associates 4th National CPD Conference Monday 21st October 2019, Royal College of Physicians, London @jasaunders90 | #FPAConf19 Jamie Saunders MSc PA-R Physician Associate in Haematology, Guy’s and St Thomas’ NHS Foundation Trust Board Member, Faculty of Physician Associates Bleeding fevers; Thrombocytopenia and neutropenia Disclosures / Conflicts of interest Nothing to declare Professional Affiliations Board Member, Faculty of Physician Associates Communication Committee, British Society for Haematology Education Committee, British Society for Haematology Bleeding fevers; Thrombocytopenia and neutropenia What’s going to be covered? - Thrombocytopenia (low platelets) - Neutropenia (low neutrophils) Bleeding fevers; Thrombocytopenia and neutropenia Thrombocytopenia Bleeding fevers; Thrombocytopenia (low platelets) Pluripotent Haematopoietic Stem Cell Myeloid Stem Cell Lymphoid Stem Cell A load of random cells Lymphoblast B-Cell Progenitor Natural Killer (NK) Precursor Megakaryoblast Proerythroblast Myeloblast T-Cell Progenitor Reticulocyte Megakaryocyte Promyelocyte Mature B-Cell Myelocyte NK-Cell Platelets Red blood cells T-Cell Metamyelocyte IgM Antibody Plasma Cell Secreting B-Cell Basophil Neutrophil Eosinophil IgE, IgG, IgA IgM antibodies antibodies Bleeding fevers; Thrombocytopenia (low platelets) Platelet physiology Mega Liver TPO (Thrombopoietin) TPO-receptor No negative feedback to liver Plt Bleeding fevers; Thrombocytopenia (low platelets) Platelet physiology
    [Show full text]