Development of Megakaryoblastic Leukaemia in Runx1-Evi1 Knock-In Chimaeric Mouse

Total Page:16

File Type:pdf, Size:1020Kb

Development of Megakaryoblastic Leukaemia in Runx1-Evi1 Knock-In Chimaeric Mouse Letter to the Editor 1458 control. The Mcl-1-specific T-cell clone did not kill this cell line Ms. Bodil K. Jakobsen, Department of Clinical Immunology, (Figure 1c). University Hospital, Copenhagen, for HLA-typing of patient blood The lower rates of relapse in allogeneic transplantation samples. This study was supported by grants from the Danish compared with autologous bone marrow transplantation, the Medical Research Council, The Novo Nordisk Foundation, The striking clinical benefit of donor-lymphocyte infusions as well as Danish Cancer Society, The John and Birthe Meyer Foundation, the finding that human T cells can destroy chemotherapy- and Danish Cancer Research Foundation. resistant cell lines from chronic myeloid leukemia and multiple RB Sørensen1, OJ Nielsen2, P thor Straten1 and MH Andersen1 myeloma, have prompted development of immunotherapeutic 1 strategies against hematological cancers.3 Among these ap- Tumor Immunology Group, Institute of Cancer Biology, Danish Cancer Society, Copenhagen, Denmark and proaches, active specific immunization or vaccination is 2Department of Hematology, State University Hospital, emerging as a valuable tool to boost the adaptive immune Copenhagen, Denmark. system against malignant cells. In this regard, the identification E-mail: [email protected] of leukemia-associated antigens is crucial. However, very few antigens are characterized in a conceptual framework in which the biology, microenvironment, and conventional disease management have been taken into consideration. Myeloid cell References factor-1 (Mcl-1) is a death-inhibiting member of the Bcl-2 family that is expressed in early monocyte differentiation. Elevated 1 Andersen MH, Becker JC, thor Straten P. The anti-apoptotic member levels of Mcl-1 have been reported for a number of solid and of the Bcl-2 family Mcl-1 is a CTL target in cancer patients. hematopoitic cancers, for example, B-cell chronic lymphocytic Leukemia 2005; 19: 484–485. 4–6 leukemia (B-CLL) and in AML and ALL upon relapse. In B-CLL 2 Andersen MH, Kvistborg P, Becker JC, thor Straten P. Identification patients, higher levels of Mcl-1 are strongly correlated with of an HLA-A1 restricted CTL epitope from Mcl-1. Leukemia 2005; failure to achieve complete remission after single-agent therapy. 19: 1084–1085. In multiple myeloma, Mcl-1 plays an important role in the 3 Mocellin S, Semenzato G, Mandruzzato S, Riccardo RC. Part II: 7 Vaccines for haematological malignant disorders. Lancet Oncol survival of malignant cells. We have reported that spontanous 2004; 5: 727–737. Mcl-1-specific T-cell responses are frequent in cancer patients 4 Zapata JM, Krajewska M, Krajewski S, Huang RP, Takayama S, and that these T-cells are highly cytotoxic against cancer cells. Wang HG et al. Expression of multiple apoptosis-regulatory genes in Hence, Mcl-1 appears to be a very attactrive target for human breast cancer cell lines and primary tumors. Breast Cancer anticancer immunotherapy both in hematopoetic and solid Res Treat 1998; 47: 129–140. cancers. 5 Tang L, Tron VA, Reed JC, Mah KJ, Krajewska M, Li G et al. Expression of apoptosis regulators in cutaneous malignant melano- ma. Clin Cancer Res 1998; 4: 1865–1871. 6 Shangary S, Johnson DE. Recent advances in the development of Acknowledgements anticancer agents targeting cell death inhibitors in the Bcl-2 protein family. Leukemia 2003; 17: 1470–1481. We thank Inge Marie Svane, Herlev University Hospital for 7 Zhang B, Gojo I, Fenton RG. Myeloid cell factor-1 is a critical collection of blood samples. We thank Professor A. Svejgaard and survival factor for multiple myeloma. Blood 2002; 99: 1885–1893. Development of megakaryoblastic leukaemia in Runx1-Evi1 knock-in chimaeric mouse Leukemia (2006) 20, 1458–1460. doi:10.1038/sj.leu.2404281; progenitors. Here, we report the development of megakaryo- published online 8 June 2006 blastic leukaemia in Runx1-Evi1 knock-in chimaeric mouse. Runx1-Evi1 knock-in chimaeric mice were created by injecting recombinant TT2 ES cells3 into wild-type blastocyst.4 Chromosomal translocations involving the Runx1 gene create We created six of such chimaeric mice, and five of them showed various chimaeric proteins that are believed to cause human sudden deaths after 7 months of age without any significant leukaemia. Runx1-ETO and Runx1-Evi1, generated as conse- finding in post mortem. Interestingly, one of the chimaeric mice quences of t(8;21) and t(3;21), respectively, share molecular that died at 5 months of age showed marked hepatospleno- structural similarities; they both contain DNA-binding domain megaly. Wright–Giemsa staining of stump preparation from the of Runx1 and transcriptional repression domains from either enlarged spleen demonstrated massive infiltration of large ETO or Evi1. Despite such similarity, the subtypes of leukaemia dysplastic cells, some of which contained multi-lobulated related to each of the chimaeric protein are different; Runx1- nuclei with various size of cytoplasm reminiscent of megakaryo- ETO typically occurs with acute myelocytic leukaemia of M2 blastic leukaemia (Figure 1a). Histology section showed subtype in the French–American–British classification, whereas disrupted gross architecture of the spleen, with white and red Runx1-Evi1 is mostly associated with megakaryoblastic leukae- pulp intermingling (Figure 1c). In the liver, substantial infiltra- mia of M7 subtype or megakaryoblastic crisis in chronic tion of leucocytes was observed around the portal vein myelocytic leukaemia. Experimental animals that express the (Figure 1d). Most of the infiltrating cells consisted of reactive fusion proteins in the hematopoietic cells have been created to neutrophils, with partial presence of the dysplastic megakaryo- recapitulate the diseases. Both Runx1-ETO transgenic1 and cytic cells observed in the spleen. Multiple fibrin thrombi were conditional knock-in2 mice do not develop leukaemia by itself identified in the portal vein, indicating the occurrence of and require additional genetic aberrations to transform myeloid disseminated intravascular coagulation. These findings all Leukemia Letter to the Editor 1459 Figure 1 Development of megakaryoblastic leukaemia in Runx1-Evi1 chimaeric mouse. (a) Wright–Giemsa staining of stump preparation from spleen (objective lens (OL), Â 40/0.65; original magnification (OM), Â 400). (b) Electron micrograph of spleen cells (OM, Â 3000). M, myeloid cell; Meg, megakaryocytic cell. (c, d) Hematoxylin–eosin staining of sections from spleen (c) (OL, Â 10/0.40; OM, Â 100) and liver (d) (OL, Â 20/ 0.70; OM, Â 200). indicate an aggressive form of leukaemia. The electron Health, Labour and Welfare, and Japanese Society for the microscopic analysis of the infiltrating cells in the spleen Promotion of Science. showed 20% of the cells positive for platelet-peroxidase, K Maki1, T Yamagata1, I Yamazaki2, H Oda3 and K Mitani1 substantiating megakaryocytic origin of the leukaemic cells 1 (Figure 1b). Taken together, we conclude that this chimaeric Department of Haematology, Dokkyo Medical University School of Medicine, Tochigi, Japan; mouse developed megakaryoblastic leukaemia. 2Department of Clinical Laboratory and Pathology, The key aspect of our observation is that Runx1-Evi1 protein is Inoue Memorial Hospital, Chiba, Japan and leukaemogenic per se, unlike Runx1-ETO. Such clear difference 3Department of Pathology, Tokyo Women’s Medical in the pathophysiological outcome likely arises from the Evi1 University, Tokyo, Japan portion of Runx1-Evi1 protein. Evi1 is reported to stimulate E-mail: [email protected] activator protein 1 activity,5 repress transforming growth factor- b signaling,6 and inhibit c-Jun N-terminal kinase function.7 Such versatile function of Evi1 may underlie stronger oncogenic capacity of Runx1-Evi1 than Runx1-ETO. Another important References aspect is that the affected lineage in human is conserved in the experimental animal. Our observation indicates strong causal 1 Yuan Y, Zhou L, Miyamoto T, Iwasaki H, Harakawa N, Hether- relationship between the expression of Runx1-Evi1 protein and ington CJ et al. AML1-ETO expression is directly involved in the megakaryoblastic leukaemia. Indeed, the Runx1-Evi1 chimaeric development of acute myeloid leukemia in the presence of gene was isolated from a patient developing megakaryoblastic additional mutations. Proc Natl Acad Sci USA 2001; 98: 10398– 10403. crisis in chronic myelocytic leukaemia that accompanied 2 Higuchi M, O’Brien D, Kumaravelu P, Lenny N, Yeoh EJ, Downing 8 emergence of t(3;21). It is unknown whether Runx1-Evi1 is JR. Expression of a conditional AML1-ETO oncogene bypasses preferentially oncogenic in megakaryoblast, or show exclusive embryonic lethality and establishes a murine model of human maturation block in the megakaryocytic lineage when expressed t(8;21) acute myeloid leukemia. Cancer Cell 2002; 1: 63–74. in early haematopoietic cells. Foetal liver cells from Runx1-Evi1 3 Yagi T, Tokunaga T, Furuta Y, Nada S, Yoshida M, Tsukada T et al. A knock-in heterozygous embryo can give rise to dysplastic novel ES cell line, TT2, with high germline-differentiating potency. 4 Anal Biochem 1993; 214: 70–76. megakaryocytes. Such abnormal progenitors may have per- 4 Maki K, Yamagata T, Asai T, Yamazaki I, Oda H, Hirai H et al. Dys- sisted in the adult bone marrow and expanded to cause massive plastic definitive hematopoiesis in AML1/EVI1 knock-in embryos. infiltration of the megakaryoblasts in the liver and spleen. Blood 2005; 106: 2147–2155. 5 Tanaka T, Nishida J, Mitani K, Ogawa S, Yazaki Y, Hirai H. Evi-1 raises AP-1 activity and stimulates c-fos promoter transactivation with dependence on the second zinc finger domain. J Biol Chem Acknowledgements 1994; 269: 24020–24026. 6 Kurokawa M, Mitani K, Irie K, Matsuyama T, Takahashi T, Chiba S This work was supported by Grants-in-Aid from the Ministries in et al. The oncoprotein Evi-1 represses TGF-b signalling by inhibiting Japan of Education, Culture, Sports, Science and Technology, and Smad3. Nature 1998; 394: 92–96. Leukemia Letter to the Editor 1460 7 Kurokawa M, Mitani K, Yamagata T, Takahashi T, Izutsu K, 8 Mitani K, Ogawa S, Tanaka T, Miyoshi H, Kurokawa M, Mano H Ogawa S et al.
Recommended publications
  • Erythroid and Megakaryocytic Transformation
    Oncogene (2007) 26, 6803–6815 & 2007 Nature Publishing Group All rights reserved 0950-9232/07 $30.00 www.nature.com/onc REVIEW Erythroid and megakaryocytic transformation A Wickrema1 and JD Crispino2 1Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA and 2Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA Red blood cells and megakaryocytes arise from a common Accumulated evidence mostly from studies with precursor, the megakaryocyte-erythroid progenitor and mouse models and human primary cells suggests that share many regulators including the transcription factors cellular expansion and differentiation occur concur- GATA-1 and GFI-1B and signaling molecules such as JAK2 rently until the late stages of erythroid differentiation and STAT5. These lineages also share the distinction (polychromatic/orthochromatic) at which point the cells of being associated with rare, but aggressive malignancies exit the cell cycle and undergo terminal maturation that have very poor prognoses. In this review, we (Wickrema et al., 1992; Ney and D’Andrea, 2000; will briefly summarize features of normal development of Koury et al., 2002). A disruption of the balance between red blood cells and megakaryocytes and also highlight erythroid cell expansion and differentiation results in events that lead to their leukemic transformation. It is either myeloproliferative disorders (MPDs) such as clear that much more work needs to be done to improve our polycythemia vera, myelodysplastic syndrome, or rarely understanding of the unique biology of these leukemias in erythroleukemia. Furthermore, some patients initially and to pave the way for novel targeted therapeutics. diagnosed with MPDs ultimately progress to erythro- Oncogene (2007) 26, 6803–6815; doi:10.1038/sj.onc.1210763 leukemia.
    [Show full text]
  • Exposure of Patient-Derived Mesenchymal Stromal Cells To
    Author Manuscript Published OnlineFirst on July 8, 2020; DOI: 10.1158/1541-7786.MCR-20-0091 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 Research Article 2 Exposure of patient-derived mesenchymal stromal cells to TGFB1 supports fibrosis 3 induction in a pediatric acute megakaryoblastic leukemia model 4 Theresa Hack1, Stefanie Bertram2, Helen Blair3, Verena Börger4, Guntram Büsche5, Lora 5 Denson1, Enrico Fruth1, Bernd Giebel4, Olaf Heidenreich3,6, Ludger Klein-Hitpass7, 6 Laxmikanth Kollipara8, Stephanie Sendker1, Albert Sickmann8,9,10, Christiane Walter1, Nils 7 von Neuhoff1, Helmut Hanenberg1,11, Dirk Reinhardt1, Markus Schneider1,* and Mareike 8 Rasche1,* 9 1 Department of Pediatric Hematology and Oncology, University Children’s Hospital Essen, 10 Essen, Germany 11 2 Department of Pathology, University Hospital Essen, Essen, Germany 12 3 Newcastle University, Wolfson Childhood Cancer Research Centre, Translation and Clinical 13 Research Institute, Newcastle upon Tyne, United Kingdom 14 4 Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany 15 5 Department of Pathology, Hannover Medical School, Hannover, Germany 16 6 Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands 17 7 Department of Cell Biology, University Hospital Essen, Essen, Germany 18 8 Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Dortmund, Germany 19 9 Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, 20 Scotland, United Kingdom 21 10 Medizinische Fakultät, Medizinische Proteom-Center (MPC), Ruhr-Universität Bochum, 22 Bochum, Germany 23 11 Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, 24 Düsseldorf, Germany 25 * These authors contributed equally to this work.
    [Show full text]
  • Bleeding Fevers! Thrombocytopenia and Neutropenia
    Bleeding fevers! Thrombocytopenia and neutropenia Faculty of Physician Associates 4th National CPD Conference Monday 21st October 2019, Royal College of Physicians, London @jasaunders90 | #FPAConf19 Jamie Saunders MSc PA-R Physician Associate in Haematology, Guy’s and St Thomas’ NHS Foundation Trust Board Member, Faculty of Physician Associates Bleeding fevers; Thrombocytopenia and neutropenia Disclosures / Conflicts of interest Nothing to declare Professional Affiliations Board Member, Faculty of Physician Associates Communication Committee, British Society for Haematology Education Committee, British Society for Haematology Bleeding fevers; Thrombocytopenia and neutropenia What’s going to be covered? - Thrombocytopenia (low platelets) - Neutropenia (low neutrophils) Bleeding fevers; Thrombocytopenia and neutropenia Thrombocytopenia Bleeding fevers; Thrombocytopenia (low platelets) Pluripotent Haematopoietic Stem Cell Myeloid Stem Cell Lymphoid Stem Cell A load of random cells Lymphoblast B-Cell Progenitor Natural Killer (NK) Precursor Megakaryoblast Proerythroblast Myeloblast T-Cell Progenitor Reticulocyte Megakaryocyte Promyelocyte Mature B-Cell Myelocyte NK-Cell Platelets Red blood cells T-Cell Metamyelocyte IgM Antibody Plasma Cell Secreting B-Cell Basophil Neutrophil Eosinophil IgE, IgG, IgA IgM antibodies antibodies Bleeding fevers; Thrombocytopenia (low platelets) Platelet physiology Mega Liver TPO (Thrombopoietin) TPO-receptor No negative feedback to liver Plt Bleeding fevers; Thrombocytopenia (low platelets) Platelet physiology
    [Show full text]
  • Pre and Postnatal Hematopoiesis
    Pre_ and postnatal hematopoiesis Assoc. Prof. Sinan Özkavukcu Department of Histology and Embryology Lab Director, Center for Assisted Reproduction, Dep. of Obstetrics and Gynecology [email protected] 3 8 6 40 8 28 18 E Hemopoiesis (Hematopoiesis) • It is carried out in hematopoietic organs. • Erythropoiesis • Leukopoiesis • Thrombopoiesis ■Erythrocytes, platelets and granulocytes (neutrophils, eosinophils, basophil leukocytes) of blood cells are produced in myeloreticular tissue (red bone marrow). ■Agranulocytes (lymphocytes and monocytes); they are made both in the red bone marrow and in the lymphoreticular tissues (lymphoid organs). Ensuring continuity • The circulating blood cells have certain lifetimes. The cells are constantly destroyed and renewed. Therefore, a continuous production dynamics is needed. Blood product Life span Red blood cells 120 days Fetal red blood cells 90 days Platelets 7-12 days Transfused platelets 36 hours 8-12 hours in circulation Neutrophils 4-5 days in tissue Prenatal hematopoiesis • Yolk sac Stage 3rd Week Hemangioblast formation Prenatal Hemopoez Mesoblastic phase (2nd week-mesoderm of the yolk sac) Hepatosplenothymic phase Liver (6th week) Spleen (8th week) Thymus (8th week) Medullalymphatic phase (3-5th month) Temporary blood islets of the yolk sac • In the 3rd week of embryological development, mesodermal cells in the yolk sac wall are differentiated into hemangioblast cells. • These cells are the precursors of both blood cells and endothelial cells that will form the vascular system. • Blood precursors formed in this region are temporary. • The main hematopoietic stem cells develop from the mesoderm surrounding the aorta, called the aorta-gonad-mesonephros region (AGM), next to the developing mesonephric kidney. • These cells colonize the liver and form the main fetal hematopoietic organ (2-7th month of pregnancy) • Cells in the liver then settle into the bone marrow, and from the 7th month of pregnancy, the bone marrow becomes the final production center 1.
    [Show full text]
  • Hematopoyesis
    HEMATOPOYESIS Dr Blaz Lesina Otoño de 2009 2.5 billones de Gr Kg/peso/día 2.5 billones de Plq Kg/peso/día 1 billon de Gran Kg/peso/día Esqueleto 600 gr de tejido hematopoyético 70% pelvis, vértebras y esternón Saco vitelino Médula ósea 100 Hígado Vértebra 80 Esternón 60 40 Bazo Tibia Costilla ACTIVIDAD ACTIVIDAD HEMATOPOYETICA 20 Femur 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 Meses de gestación Edad en años Nacimiento Routes a stem cell can take self-renew differentiate Hematopoietic Cell Differentiation CFU-L pluripotential blast colony-forming cell self renew lymphocyte CFU-GEMM self renew BFU-E CFU-GM CFU-Eo CFU-Bas CFU-Meg CFU-E CFU-G CFU-M erythrocyte neutrophil monocyte eosinophil basophil megakaryocyte Plasticidad Célula troncal Tejido Tejido no Referencias convencional convencional Hematopoyética Células de la Nervioso epitelial Petersen 1999, sangre hepático músculo Krause 2001 esquelético y cardiaco Neuronal Nervioso Sangre músculo Bjornson1999, Galli 2000 Muscular Muscular Nervioso sangre Gussoni 1999, Jackson 1999 Mesenquimática Óseo, cartílago Koppen 1999, Ito adiposo músculo 2001 mervioso pulmón estroma hematopoyético renal Dale, D. C. et al. Blood 2008;112:935-945 Lodish y cols.: ”Molecular Cell Biology”.5º Ed. W.H. Freeman 2004 CD34 +, CD34 +, CD38 ++, CD38 --, CD38 -- CD3, cc--kitkit + (CD117) cc--kitkit ++ CD4, CD8,……. Hematopoietic Microenvironment Stromal cells : fibroblasts endothelial cells adipocytes Growth Factors Basal Hematopoiesis SCF IL-6 GM-CSF G-CSF SCF: stem cell factor GM-CSF: granulocyte-macrophage colony-stimulating factor G-CSF: granulocyte colony-stimulating factor IL-1 TNF ααα Ag SCF GM-CSF IL-1 G-CSF IL-3 IL-6 GM-CSF Ag IL-4 TNF ααα Papayannopoulou, T.
    [Show full text]
  • Reticulated Platelets: Analytical Aspects and Clinical Utility
    DOI 10.1515/cclm-2014-0165 Clin Chem Lab Med 2014; 52(8): 1107–1117 Review Johannes J.M.L. Hoffmann* Reticulated platelets: analytical aspects and clinical utility Abstract: Reticulated platelets are immature platelets Formation and maturation circulating in blood; they reflect the activity of megakary- opoiesis in the bone marrow. Therefore, they can be used of megakaryocytes as a non-invasive test in patients with thrombocytopenia in various clinical conditions. The preferred method of The study of blood platelets or thrombocytes started in analysis is by flow cytometry. However, there is an evident the late 19th century, when Wright had developed his lack of analytical standardization, making it difficult to variant of the Romanovsky stain that allowed detailed compare results obtained in different laboratories. Cur- observations of the smallest blood elements [1]. Plate- rently, two types of hematology analyzers are on the mar- lets represent the terminal stage of megakaryopoiesis, ket offering fully automated measurement of reticulated a highly complex sequence of events that can be traced or immature platelets: the high end analyzers manufac- back to the generation of the pluripotent hematopoietic tured by Sysmex (XE- and XN-series) and Abbott (CELL- stem cell in bone marrow. This pluripotent stem cell pro- DYN Sapphire). Although the methods are essentially liferates and differentiates via several intermediates into different and cannot be used interchangeably, both have a megakaryoblast and eventually into a megakaryocyte been proven to have clinical utility. Reticulated or imma- (Figure 1). Megakaryopoiesis is regulated by various ture platelet assays are useful for the differential diagno- growth factors and cytokines, of which thrombopoietin sis of thrombocytopenia and for monitoring bone marrow (TPO) is the most important.
    [Show full text]
  • Immunology-Sheet-2.Pdf
    2 Obada Froukh Obada Froukh Obada Froukh Anas Abu-Humaidan Immunology We will talk about the cells of the immune system. Immune system has cells, molecules and physical barrier which do the immunity job. •The cells of the innate and adaptive immune system are normally present as circulating cells in the blood and lymph, as anatomically defined collections in lymphoid organs, and as scattered cells in virtually all tissues. The majority of the immune cells and the cells in the blood come from the bone marrow, so in the bone marrow we have stem cells (Hematopoietic stem cell) that give other stem cells: 1) Lymphoid stem cells: Differentiate into Natural killer cell (NK cells), T-cell and B-cell (T and B cells are in the adaptive immunity and we will talk about them in the next lecture). 2) Myeloid stem cells (MSC): which differentiate into the majority of the cells in the blood, some of these cells have a relation with the immune system and others don’t have a relation with the Immune system. A) Cells that don’t have a relation with immune system: 1- Erythroblast: is differentiated into Erythrocytes that will lose its nucleus and is converted into (RBCs). 2-Megakaryoblast: is differentiated into Megakaryocytes which is converted into platelets after fragmentation. B) Cells that have a relation with immune system: 1) Putative mast cell precursor: scientists know that the mast cell has a precursor, but we don’t know from where this precursor is originated and hence it is putative. 2) Myeloblast: It gives us three precursor cells that will differentiate into three cells known together as Granulocytes (because all of them have granules).
    [Show full text]
  • UNIT-I Topic- Hematopoiesis Hematopoiesis
    FACULTY OF ENGINEERING & TECHNOLOGY TOPIC UNIT-I Topic- Hematopoiesis Hematopoiesis Production of red blood cells, white cells, and platelets (blood cell formation) Anatomy of Hematopoiesis: .First Trimester: Yolk Sac .Second Trimester: Liver and Spleen .Third Trimester: Central, Peripheral Skeleton . Adulthood: Axial Skeleton, Vertebral Bodies, Sternum, Ribs, Pelvis. Hematopoiesis may re-expand into fetal sites in times of severe demand, e.g. thalassemia, MF (Extramedullary hematopoiesis). The cellular pathways of Hematopoiesis: •Overall Cellular Organization of Hematopoiesis: 1. Stem Cells: o Totipotential. o Multipotential. 2. Progenitor Cells. 3. Precursor Cells. 4. Effector Cells. The cellular pathways of hematopoiesis: I. Stem cells: Totipotential Stem Cells :"The Godfather Cells”: 1. Unlimited Self-Renewal. 2. Unlimited Differentiation: can give rise to any cellular element. 3. Present in Marrow in Small Numbers. 4. Highly Resistant to Chemotherapy. 5. Reside Primarily in Marrow. Small numbers circulate in blood. 6. Surface Antigen -CD34+ ("Cluster of Differentiation 34"). 7. Look like Small Lymphocytes. 8. Dysfunction leads to aplastic anemia or certain types of leukemia. Multipotential Stem Cells: -i.e. Lymphoid, Myeloid Stem Cells 1. Derived from Totipotential Stem Cells. 2. Capable of Extended Self Renewal. 3. Capable of Extended Differentiation • Lymphoid stem cells give rise to all categories of mature lymphocytes. • Myeloid stem cells give rise to red cells, granulocytes, monocytes, and platelets. 4. Lymphoid stem cell can give rise to so-called "lymphoproliferative" malignancies such as acute lymphocytic leukemia 5. Myeloid Stem cell can give rise to so-called "myeloproliferative” malignancies such as acute myeloid leukemia II. Progenitor Cells:- CFU's(Colony Forming Units): 1. Derived from Multipotential StemCells.
    [Show full text]
  • Establishment of a Human Megakaryoblastic Cell Line (T-33) from Chronic Myelogenous Leukemia in Megakaryoblastic Crisis1
    [CANCER RESEARCH 48. 6137-6144, November 1. 1988] Establishment of a Human Megakaryoblastic Cell Line (T-33) from Chronic Myelogenous Leukemia in Megakaryoblastic Crisis1 Tsuyoshi Tange,2 Kazuhiko Nakahara, Kinuko Mitani, leharu Yamasaki, Hideyuki Yasuda, Fumihiko Tanaka, Masaru Mizuguchi, Hideaki Oda, Yutaka Yatomi, Riichiro Takanashi, Seitoku Fujioka, Kazuyoshi Yamaguchi, and Yoshinori Urano Department of Pathology and the First Department of Internal Medicine, University of Tokyo, and Mitsui Memorial Hospital, Tokyo, Japan ABSTRACT peripheral blood of a female with megakaryoblastic crisis of CML (13) and here report this cell line termed as T-33 as a A megakaryoblastic cell line, termed T-33, was established from the human megakaryoblastic cell line capable of differentiating into peripheral blood of a patient with Philadelphia chromosome-positive chronic myelogenous leukemia in megakaryoblastic crisis. T-33 cells megakaryocyte. have been maintained in RPMI 1640 medium containing 10% fetal calf serum in a single cell suspension with a doubling time of 24-36 h for MATERIALS AND METHODS over 2 years. Giemsa-banded karyotypes were female hyperdiploid with Case History. A 55-year-old female was diagnosed as Ph'-positive a modal chromosomal number of 51, all cells including Philadelphia chromosome. The cells showed strong positivity for periodic acid-Schiff CML and treated with busulfan at Mitsui Memorial Hospital (Tokyo) and a-naphthyl acetate esterase, and weak for a-naphthyl butyrate in 1978. In 1983, blastic crisis of CML was suspected because of the esterase, but were negative for myeloperoxidase. Flow cytometric analysis appearance of hip joint pain but the bone marrow was still in the of cell surface markers showed the existence of HLA-DR, MY-7, MY- chronic phase with myelofibrosis.
    [Show full text]
  • GG Pur Bone Marrow Fm/C1 FNL-Br
    $50. 00 Bone Marrow Evaluation in Dogs and Cats Maxey L. Wellman, DVM, PhD, DACVP M. Judith Radin, DVM, PhD, DACVP Clinical Handbook Series Published by The Gloyd Group, Inc. Wilmington, Delaware © 2004 by Nestlé Purina PetCare Company. All rights reserved. Printed in the United States of America. Nestlé Purina PetCare Company: Checkerboard Square, Saint Louis, Missouri, 63188 First printing, 1999. This book is protected by copyright. ISBN 0-9678005-0-1 Table of Contents Introduction ......................................1 Part I Chapter 1 Normal Hematopoiesis ......................................5 Chapter 2 Indications for Bone Marrow Evaluation ................................13 Chapter 3 Procedures for Bone Marrow Aspiration and Biopsy ........................................................15 Chapter 4 Cytologic and Histologic Evaluation of the Bone Marrow Bone Marrow ....................................................17 Evaluation Part II in Dogs and Cats Chapter 5 Evaluation of Abnormal Bone Marrow ..........29 Maxey L. Wellman, DVM, PhD, DACVP Chapter 6 M. Judith Radin, DVM, PhD, DACVP Hematopoietic Neoplasia .................................43 Chapter 7 Case Studies .....................................................61 Part III Hematology Reference Ranges of the Dog and Cat .....................................................89 Index of Figures ...............................................90 Glossary of Terms ............................................96 Suggested Reading .........................................100 Clinical
    [Show full text]
  • Cleavage Fragments of the Third Complement Component (C3
    Leukemia (2007) 21, 973–982 & 2007 Nature Publishing Group All rights reserved 0887-6924/07 $30.00 www.nature.com/leu ORIGINAL ARTICLE Cleavage fragments of the third complement component (C3) enhance stromal derived factor-1 (SDF-1)-mediated platelet production during reactive postbleeding thrombocytosis M Wysoczynski1, M Kucia1, J Ratajczak1 and MZ Ratajczak1,2 1Stem Cell Biology Program, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA and 2Department of Physiopathology, Pomeranian Medical University, Szczecin, Poland We hypothesized that the third complement component (C3) The a-chemokine stromal-derived factor-1 (SDF-1) has been cleavage fragments (C3a and des-ArgC3a) are involved in stress/ proposed as a new regulator of Megs maturation and platelet inflammation-related thrombocytosis, and investigated their 11–16 potential role in reactive thrombocytosis induced by bleeding. formation. A recently published study clearly demonstrated We found that platelet counts are lower in C3-deficient mice in that SDF-1, together with fibroblast growth factor-4 (FGF-4), À/À À/À response to excessive bleeding as compared to normal restored thrombopoiesis in Tpo and Mpl mice by directing littermates and that C3a and des-ArgC3a enhance stromal- trans-localization of megakaryocytic progenitors positive for derived factor-1 (SDF-1)-dependent megakaryocyte (Megs) CXCR4, the receptor for SDF-1, from the endostial to the migration, adhesion and platelet shedding. At the molecular vascular niche, thereby promoting survival, maturation to level, C3a stimulates in Megs MAPKp42/44 phosphorylation, 17 and enhances incorporation of CXCR4 into membrane lipid megakaryocytes and platelet production. rafts increasing the responsiveness of Megs to SDF-1.
    [Show full text]
  • Haematopoesis Solarsystem
    Haematopoiesis Peripheral blood Lymph nodes Bone marrow Haematopoietic stem cell B lymphocyte Pro-B Lymphoid-primed multipotent progenitor Common Multipotent lymphoid progenitor progenitor Lymphoblast Monoblast Promonocyte Granulocyte- monocyte Monocyte Common myeloid progenitor progenitor Bone marrow NK-cell Neutrophilic Neutrophilic myelocyte metamyelocyte Neutrophilic Pro-T Myeloblast band cell Neutrophilic granulocyte Promyelocyte Thymus Eosinophilic myelocyte Megakaryocyte-erythroid T lymphocyte progenitor Bone marrow Proerythroblast Eosinophilic metamyelocyte Megakaryoblast Basophilic Eosinophilic myelocyte band cell Basophilic erythroblast Peripheral blood Eosinophilic granulocyte Basophilic metamyelocyte Polychromatic Promegakaryocyte erythroblast Basophilic Orthochromatic band cell erythroblast The illustration of haematopoiesis as a ‘solar system’ model is based on the idea of a high plasticity of haematopoiesis and an intimate relationship Peripheral blood between various types of progenitor cells.* Many progenitors share common transcription factors. The proximity of radial sectors of different cell Megakaryocyte lineages depicts how close the ontogeny of these lineages is. Gradual colour change reflects the potential of early and intermediate progenitors Basophilic to follow different cells’ fates. granulocyte Reticulocyte Reticulated platelet Haematopoietic stem cell Common lymphoid progenitor Granulocyte-monocyte progenitor A true stem cell that has a potential to self-renew The early progenitor committed to lymphoid This intermediate progenitor is committed and differentiate into any lineage of blood cells. lineage. Gives rise to precursors of T and B to monocytic and granulocytic lineages. lymphocytes and natural killer cells. Lymphoid Multipotent progenitor progenitors leave the bone marrow for matu- Megakaryocyte-erythroid progenitor Can give rise to any blood cell lineage. ration in the thymus and lymph nodes. Intermediate progenitor that can only differ- entiate into a red blood cell or megakaryocyte.
    [Show full text]