2006-724: BIOREFINING OF RENEWABLE RESOURCES – EMERGING OPPORTUNITIES FOR ENGINEERING EDUCATION

Kurt Rosentrater, USDA-ARS KURT A ROSENTRATER is a Lead Scientist with the United States Department of Agriculture, Agriculture Research Service, as well as an Adjunct Assistant Professor in the Department of Agricultural and Biosystems Engineering, South Dakota State University, in Brookings, SD, where he is spearheading a new initiative to develop value-added uses for residue streams resulting from manufacturing operations. He is formerly an Assistant Professor at Northern Illinois University, DeKalb, IL, in the Department of Technology.

K Muthukumarappan, South Dakota State University Kasiviswanathan Muthukumarappan is an Associate Professor in the Department of Agricultural and Biosystems Engineering, South Dakota State University, in Brookings, SD, where he has been instrumental in developing an internationally competitive value-added food and bioprocessing research program. He has been involved in teaching several undergraduate and graduate courses in food and bioprocess engineering for the last nine years. He was formerly a Research Associate in the Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI. Page 11.278.1

© American Society for Engineering Education, 2006 BIOREFININGOFRENEWABLERESOURCES–EMERGING OPPORTUNITIESFORENGINEERINGEDUCATION Abstract Thesocietyinwhichwelivehasdevelopedaninsatiabledemandforenergyandmaterialgoods. Historically these needs have primarily been met by utilizing fossil fuels and other non- renewablerawmaterials.Asenvironmentalconcernsgrow,however,renewableresourcesare gaining increased attention. This paper examines industrial , which are at the leading edge of the development of emerging biobased industries. Biorefineries, similar in concept to traditional petroleum refineries, utilize various conversion technologies to produce multiple products, including fuels, chemicals, industrial products, and electrical power from renewablesources,suchascornstover,residuestraw,perennialgrasses,legumes,and other materials. Industrial biorefineries are rapidly increasing both in number as well as in capacity throughout this country, and are thus poised to add significantly to the nation’s industrial goods and energy supplies in coming years. Therefore it is vital for engineering graduatestounderstandthisdevelopingindustryanditsfundamentalconcepts,especiallythose involved in the Agricultural, Biological, Chemical, Environmental, Food, and Process Engineering disciplines. To adequately prepare engineering students for the opportunities presented by biorefining, it isimperative for engineering programs to address this burgeoning industrialsegment.Towardthisend,thispaperwilldiscussmajorconcepts,specific applications, and curriculum modification and incorporation techniques that can be used to achievetheseefforts.Thetrendsdiscussedhereandtheirimplicationsarecriticalforeducators, becauseincomingyearsbiorefiningwillbeusedtosimultaneouslymeettheneedsofoursociety aswellasthatofenvironmentalstewardship. Introduction Aswemoveintothe21stcentury,ithasbecomeapparentthathumansocietiesareover-taxing globalresources,andthatwearerapidlydepletingtheirfinitesupplies.Thisisespeciallytruein thepetroleumandpetrochemicalsectors.Scienceandtechnology,however,haveprogressedto the level that biorenewable materials can now be effectively utilized to produce various manufactured products in their place. Similar to refineries that are used in the petroleum industry, new processing facilities are being designed and constructed to manufacture, from biomass resources, multiple value streams including energy, fuels, chemicals, and various intermediate and finished products. Thus, biomass refineries (known as “biorefineries”) are poisedtocontributesignificantlytothegrowthandsustainabilityoftheU.S.economyincoming years [1]. Engineering expertise will be required to design, construct, and operate all of the equipment, processes, and facilities for these processing plants. Because biorefineriespresent many opportunities for the engineering profession, the main objective of this paper is to introduceengineeringeducatorstothisnewsubjectsothatcurriculacanbeaugmented.Toward Page 11.278.2 that end, several essential topics will be discussed, including concepts of biorefineries, the

relevanceofthesesystemstoengineeringeducation,resourcesfor educators,andstrategiesto usetheinformationpresentedheretobolstercurrentpracticeinengineeringeducation. BiorefineryConcepts IntheUS,tremendousquantitiesofbiomassareproducedannually.Itisestimatedthatbetween 1.8and3.2billiontonsareproducedeachyear,whichequatestopotentialenergyproductionof between34and60trillionGJ[1].Themaingoalofbiorefiningistoconvertthecarbohydrates, especially the lignocellulose matrix, that are in these raw product streams into a range of valuablechemicals,chemicalintermediates,finishedbio-basedproducts,foods,feeds,, or supplies, with minimal waste and emissions. The following discussions will attempttobrieflycapturethemainconceptsofbiorefining,asillustratedinFigure1,butwillnot becompletelyexhaustive.Morecomprehensivetreatmentscanbefoundin[1,5-11],towhich thereaderisreferredformoreinformation.Basedonthesetopics,Figure2illustratesthemajor processesandmaterialflowsforanexamplebiorefinery.Inthisexample,thecoretechnologyis a thermal reactor devoted to sequential, linear biomass fractionation through steam auto- hydrolysis.Itproduceshighpuritychemicalcommoditiesandhasenvironmentalexcellenceand soundeconomics.Thebiorefineryconceptisanalogoustothatofapetroleumrefinery,which producesmultiplefuelsandproductsfrompetroleum-basedfeedstocks.Abiorefineryintegrates a variety of conversion processes to produce various products such as motor fuels, heat, electricity and chemicals from biomass [12]. By producing multiple products, a biorefinery maximizesthevaluederivedfrombiomassfeedstocks. Potential biomass sources include wastes as well as energy crops. Waste streams include agricultural crop residues (e.g., stover, stalks, leaves, cobs, etc.) which are left after harvest, municipal solid waste (i.e., MSW), especially the paper, food, and other organic waste constituentswithintheMSW,andfoodprocessingwastes.Energycrops,ontheotherhand,are grownspecificallytobeusedforenergyproduction,asopposedtofoodorfeed.Herbaceous crops,suchassugarcane,Napiergrass,sorghum,reedcanarygrass,fescue,andswitchgrass,can beharvested annually,andcan yieldupto25Mg/ha/yr.Short-rotationwoodycrops,suchas poplar,maple,sycamore,andalder,cangenerallybeharvestedin10yearsorless,andcanyield upto43Mg/ha/yr. To establish a common understanding for subsequent discussions, it is important to delineate uniformterminology.Althoughpreciseagreementandconsensusinindustryhasnotactuallyyet beenachieved,severalkeytermsanddefinitionsthatareessentialtounderstandingbiorefining andutilizationofbiomasscanbefoundinliterature[2-4],butwillnotbediscussedfurtherhere. Industrialscalebiorefinerieshavebeenidentifiedasthemostpromisingroutetothecreationofa sustainablebio-basedeconomy.Allplantsareeffectivelyautonomouschemicalminifactories, producingsugarsandaminoacidsthatareessentialfortheirgrowth.Plantbiomassconsistsof carbohydrates,lignin,proteinsandfats/oilswithavarietyofminorconstituentssuchasvitamins, dyes, flavors etc. Biorefineries combine essential technologies to transform biological raw materialsintoarangeofindustriallyusefulintermediatesandfinishedproducts.Thebiorefinery conceptisgainingpopularityasamodelthatwillmaximizethevalueofbiomassresourcesinthe Page 11.278.3 U.S.Biorefinerieswillrevolutionizetheutilizationofthenation’svastrenewablesupplyof

Figure1.Majorconceptsassociatedwithbiorefineries. Page 11.278.4 Figure2.Majorprocessesandmaterialflowsforanexamplebiorefinery.

biomassresources.Biorefineriesprovidetwomainadvantagestoproduction:theywillincrease theproductiveutilizationoffeedstocksandincreasereturnstoscaleasadditionalproductsare added to the biorefinery’s output. Additionally, biorefinery production has the potential to propel bioenergy and biobased products into mainstream markets. The development of biorefinerieswillhavenumerousbenefitsforoursociety.Inadditiontoincreasingthepercentage of fuels, chemicals, and manufactured products derived from renewable sources, biorefineries can reduce U. S. dependence on imported oil, reduce greenhouse gas emissions, diversify marketsforrawagriculturalandforestryproducts,andenhanceruraleconomies. The amount of oil imported into the US has been steadily increasing during the last20 years (Figure3);thenationisnowverymuchdependentonimportedoil,especiallyfortransportation fuels.Theincreasingcostandpotentialscarcityoffossilresourcesarecontributingtoagrowing interest in and biofuels. Biomass can potentially be used to diversify our current fossil-energy based systems for fuel, power and products. Diversification can reduce our vulnerability to disruptions in energy supply as well as our dependence on imported energy sources for both fuels and important consumer products. Biomass is carbon-fixing, and representsawaytoproducefuels,productsandpowerwitha‘net-zero’contributiontoglobal warming.Thus,thebiorefineryrepresentsoneveryviablepartofthesolutionfortheimported oilissue.Thesehighlyflexiblefacilitieshavethepotentialtomanufacturemanyproductsthat are currently produced from petroleum. Biorefineries could thus help meet demand for both transportation fuels and consumer products, with decreased environmental impacts. Biomass currently supplies over 3% of total energy consumption in United States, mostly through industrialheatandsteamproductioninthepaperandpulpindustries,electricalgenerationusing forestryproductsandresidues,andmunicipalsolidwasteincineration. Archer Daniels Midland, in Decatur, IL, for example, has constructed a prototype for an advancedbiorefinery.Atthissitealargecornwet-millingplantproducesindustrialenzymes, lacticacid,citricacid,aminoacids,andbioethanol.Theenzymesareusedtoconvertstarchto maltodextrinsandsyrups,andthechemicalproductsaresubsequentlyusedinfoods,detergents, andbioplastics.Theethanolisusedasasolventandfortransportationfuels.Additionally,an on-sitecogenerationsystemprovideselectricityandsteamfortheconversionprocesses[14]. TheNationalRenewableEnergyLaboratory(NREL)biorefineryconcept(Figure4)isbuilton twodifferent"platforms"topromotespecificproductstreams.The"sugarplatform"isbasedon biochemical conversion processes and focuses on the fermentation of sugars extracted from biomassfeedstocks.The "syngasplatform"isbasedonthermochemicalconversionprocesses and focuses on the gasification of biomass feedstocks and by-products from conversion processes. Page 11.278.5

8,000,000

7,000,000

6,000,000

5,000,000

4,000,000

3,000,000

2,000,000

USPetroleum(thousandbarrels/year) 1,000,000

0 1950 1960 1970 1980 1990 2000 Year

USProduction USImports TotalUse Figure3.Trendsinoilsupplyanddemand[adaptedfrom13].

Figure4.NREL’sbiorefineryconcept[adaptedfrom www.nrel.gov ]. Currentlytherearethreemajorbiorefineryconceptsbeingpursuedinresearchanddevelopment. Thefirstisthe“WholeCropBiorefinery”,whichusesrawmaterialssuchascerealgrainsorcorn [6,7]. The second is the “Green Biorefinery”, which uses green grass, alfalfa, clover, or immaturecerealgrains[56-61].Thethirdisthe“LignocelluloseFeedstockBiorefinery”,which usesdryrawmaterials,suchaswasteorotherresiduebiomass,whichgenerallycontainshigh Page 11.278.6 levels of cellulose, hemicellulose, and lignin. Among the potential large-scale industrial

biorefineries,the LignocelluloseFeedstock(LCF)Biorefinery willmostprobably bedeployed withhighestsuccess.Thesupplyofrawmaterials(e.g.,straw,reed,grass,wood,paper-waste etc.)isabundant,andtheconversiontovariousproductshasprogressed,bothasreplacementsof traditionalpetrochemical-basedproductsaswellasotherbiobasedmaterials. Lignocellulosic materials consist of three primary chemical fractions, or precursors: a) hemicellulose/polyose,whichispredominantlyasugar-polymerofpentoses;b)cellulose,which isaglucose-polymer;andc)lignin,whichisapolymerofphenols(Figure5)[9]. + → + + Lignocellu lose H 2 O Lignin Cellulose Hemicellul ose Hemicellul ose + H O →Xylose 2 + → + Xylose (C 5 H 10 O5 ) acid Catalyst Furfural (C 5 H 4 O2 ) 3H 2O + → Cellulose (C 6 H 10 O5 ) H 2O Glucose (C 6 H 12 O6 ) Figure5.GeneralequationsforbiomassconversioninanLCF-Biorefinery. Biomassstreamsgenerallycannotbeutilizeddirectlyasbioenergy,biofuels,orbioproducts;they typicallymustundergoconversionoperationsinordertobesuccessfullyused.Thekey objectiveofbiomassconversionistoimprovetherelativelypoorcharacteristicsofthematerial asafuelormaterialprecursor.Thepoorcharacteristicsoffreshbiomasswhencomparedto fossilfuelscaninclude:1)modestthermalcontent;2)highmoisturecontent,whichcaninhibit combustion,therebycausingsignificantenergyloss;3)lowbulkdensityofbiomass,whichleads totheuseofrelativelylargeequipmentforhandling,storageandburning;and4)biomassis generallynothomogeneousandfreeflowing,whichcancreateproblemsinconveying,pumping, metering,storing,andfeedingtoend-useequipment.Conversionofbiomassintochemicalsor intermediatesisusuallyaccomplishedviaseveralmanufacturingsteps,includingpre-treatment andhydrolysis,fermentation,anddistillation.Additionally,thermochemicalconversion technologies,suchaspyrolysisandliquefaction,alsoappearpromising.Pre-treatment,suchas grinding,andacid,enzymatic,orsteamexplosionhydrolysisareusedtogenerateavailable sugarsfromlignocellulosicmaterials,andthusmakethebiomasssuitableforsubsequent fermentation.Fermentationisanoperationwheremicroorganismsdigestthecarbohydrates, especiallysugarsandstarches,inthebiomassmatrix,andproducevarioussubstances,depending onthespecificorganisms,biomassstream,andoperationalconditionsimplemented.Potential fermentationproductsincludeethanol,butanediol,aliphaticacid,lacticacidandsuccinicacid. Additionally,distillationcanbeusedsubsequenttofermentationtoseparatevariouswater- solublecompounds.Moreinformationregardingindustrialfermentationofbiomasscanbe foundin[15-18].Thermochemicalconversionincludespyrolysis,wherethebiomassisheated intheabsenceofoxygentoproduceabio-oilalongwithresidualsolids(i.e.,char),andvarious gases(suchasmethane,carbonmonoxide,andcarbondioxide),andliquefaction,wherethe biomassisconvertedatmoderatetemperaturesandpressuresintoaliquidstate.Theproducts producedviathermochemicalconversioncontainhighconcentrationsoforganiccompounds,and thusareusefulasaconcentratedsourceforfurtherutilization.Moreinformationregarding thermochemicalconversionofbiomasscanbefoundin[19-25]. Convertedbiomasscanthenbetransformedintoenergy,primarilyintheformofheatorelectric Page 11.278.7 power(e.g.,stationarygeneration).Generallyitisonlythelignocellulosiccomponentsofthe

biomassthatareusedtoproduceenergy,though,astheotherconstituentsaretypicallyutilizedin othervalue-addedproductssuchasbiofuelsandbio-basedproducts,includingchemicalsand polymers.Combustion,gasification,andanaerobicdigestionarethreetechniquesthatare commonlyusedtogeneratebioenergy.Combustion,whichessentiallyistheconversionof biomassintoheat,canbeaccomplishedingrate-fired,suspension,andfluidizedbedcombustors, furnaces,andboilers.Moreinformationregardingcombustionofbiomasscanbefoundin[26- 28].Gasification,whichistheconversionofbiomassintoflammablegasusinganatmosphere whichisdeficientinoxygen,canbeaccomplishedinupdraft,downdraft,orfluidizedbed gasifiers.Moreinformationregardinggasificationcanbefoundin[29-32].Anaerobic digestion,whichisthedecompositionandconversionofbiomassusingmicrobesintoflammable gas,canbeaccomplishedinbatch-fed,intermittently-fed,andcontinuously-feddigesters.More informationregardinganaerobicdigestioncanbefoundin[33-40].Thegasproducedby gasifiersandanaerobicdigesterscanthenbecombustedandusedtodriveelectricgeneration turbines. Convertedbiomasscanalsobeprocessedintoliquidfuelsthatareusedtopowertransportation vehicles.Biofuels,whicharerenewablesourcesofenergy,canhelpmeetincreasingenergy needs,andareproducedfromvariousbiomasssourcesincludingresiduestraw,cornstover, perennialgrassesandlegumes,andotheragriculturalandbiologicalmaterials.Atthemoment, themostheavilyutilizediscorngrain,becausecornstarchcanbereadilyfermentedintoethanol onanindustrialscale.Althoughdirectlytiedtothemarketvalueofthegrainitself,industrial ethanolproductionfromcornisreadilyaccomplishedatarelativelylowcostvis-à-visother biomasssources.Incomingyears,however,duetorapidtechnologicaladvances,thehydrolysis andconversionofotherlignocellulosicmaterialsisexpectedtobecomecost-competitiveasthis industrymatures[41].Moreinformationregardingtheproductionofbioethanolcanbefoundin [42-45].Currently,bioethanolisthebiofuelwithgreatestuseintheUS,butbiodieselisalso poisedtosignificantlycontributetothenation’senergysupplyincomingyears.Biodieselis producedbyconvertingtriglyceridesintomethylorethylestersviachemicalmodification. Soybean,sunflower,safflower,cottonseed,andotheroilseedcropsaretargetedforproduction ofcommercialtriglyceridesforbiodieselproduction.Moreinformationregardingtheproduction ofbiodieselcanbefoundin[46-48]. Convertedbiomasscanalsobemanufacturedintomanydifferentbio-basedproducts.Using biomaterialsinthemanufactureofvariousindustrialproducts,suchasbio-basedchemicals, fibers,andbiopolymers,areprimetargetsforutilization.Thisincludesfinishedproductsaswell asintermediateswhicharereadyforfurthermanufacture.Atthemoment,severalimportant chemicalsarecurrentlymanufacturedfromvariousbiomasssources,includingmannitol, sorbitol,xylitol,gluconicacid,lacticacid,andfurfural.Moreover,severaladditionalchemicals andmaterialsshouldbecommercially-viableintheforeseeablefuture,including polyhydroxybutyrate,acetylatedwood,bio-basedpolymers,hydroxyacetaldehyde,levoglucosan, andlevulinicacid.Moreinformationregardingtheproductionofbio-basedchemicalscanbe foundin[1,37,49-52].Moreover,conversionoffibersintovariousproductshasbeen successfullyadvancedandhighlyutilizedovertheyearsinthepulp,paper,andtextileindustries. Fibersare,however,increasinglybeingusedtodevelopnovelbiocompositematerialsandplastic reinforcements.Traditionalplasticsmanufacturingoperations,suchascompressionand Page 11.278.8 injectionmolding,aswellasextrusionprocessing,havebeenshowntobequitesuccessfulin

developingtheseproducts.Moreinformationregardingproductionofbiomaterialscanbefound in[53-55]. RelevancetoEngineeringEducation Although it exists at the intersection of multiple sciences, including chemistry, biochemistry, microbiology, enzymology, and biology, the topic of biorefineries is very germane to the engineering discipline. For example, equipment, processes, and unit operations must be designed; these systems must be optimized; and they must be examined via modelling and simulation. Furthermore, facilities to house and service these processes, as well as human- machineinterfaces,mustbedesignedandconstructed.Thus,engineeringisfundamentaltothe successfuldesignanddeploymentoftheseoperations.Specificengineeringareasthatwillbe vital to these efforts include Agricultural, Biological, Biochemical, Bioprocess, Chemical, Industrial,Manufacturing,Mechanical,andStructural. ResourcesforEducators Biorefineryinformation iscurrentlyquitedispersed;nosinglecomprehensiveliteraturesource exists. For instructors who are interested in incorporating individual, specific modules into existingengineering courseworkatappropriatelocationsduringthesemester, aswellasthose who may design and implement entire courses devoted to biorefining, supporting teaching materialsarecriticaltosuccess.Therefore,athoroughlistingofrecenttextbooks,currentonline publicationsandwebsiteshasbeencompiledandisprovidedbelowinTable1. Table1.Biorefiningresourcesforeducators. Books Brown,R.C.2003.BiorenewableResources–EngineeringNewProductsfromAgriculture. BlackwellPublishingCo.NewYork,NY. Dokon,L.E.2001.TheAlcoholFuelHandbook.InfinityPublishing. Klass,D.L.1998.BiomassforRenewableEnergy,Fuels,andChemicals.AcademyPress. NewYork,NY. Pahl,G.2005.Biodiesel:GrowingaNewEnergyEconomy.ChelseaGreenPublishing Company. Sorensen,B.2004.RenewableEnergy.AcademicPress. Wyman,C.1996.HandbookonBioethanol:ProductionandUtilization.Taylor&Francis. OnlinePublications AVisionforBioenergy:GrowinganIntegratedIndustryGrowinganIndustry:Overviewof DOE’sBioenergyActivitiesandProposedPlanofAction. http://www.eren.doe.gov/bioenergy_initiative/page3.html BiobasedIndustrialProducts:ResearchandCommercializationPriorities.1999. http://books.nap.edu/books/0309053927/html/1.html Page 11.278.9 BioenergyTerminology–FactsheetNo.atlas_006.2005.Zimmermann,L.andI.Nuberg.

http://data.brs.gov.au/mapserv/biomass/factsheets/Atlas_006.pdf . BiomassProgram:FeedstockCompositionGlossary.2005.US.DOE. http://www.eere.energy.gov/biomass/feedstock_glossary.html . BiomassProgramMulti-YearTechnicalPlan.September2003.U.S.DOE. http://www.bioproducts-bioenergy.gov/pdfs/MYTP%20FY%202002%20v13.pdf BiomassResearchandDevelopmentTechnicalAdvisoryCommitteeRecommendations. December2001. BiomassResearchandDevelopmentActof2000.TitleIIIoftheAgricultureRiskProtection Actof2000(PublicLaw106-224).www.bioproducts-bioenergy.gov/bio_act.html CoProductsandNearCoProductsofFuelEthanolFermentationfromGrain.1996.Tibelius, C.http://res2.agr.ca/publications/cfar/index_e.htm . FeedCo-ProductsoftheDryCornMillingProcess.2005.Weigel,Loy,andKilmer. www.iowacorn.org/ethanol/ethanol_17.html . FosteringtheBioeconomicRevolutioninBiobasedProductsandBioenergy.January2001. BiomassResearchandDevelopmentBoard.www.bioproducts- bioenergy.gov/pdfs/BioVision_03_Web.pdf . FY2004andBeyond-Multi-YearTechnicalPlan–OfficeoftheBiomassProgram.National BioenergyCenter,U.S.DepartmentofEnergy.www.bioproducts- bioenergy.gov/pdfs/MYTP%20FY%202002%20v13.pdf IndustrialBioproducts:TodayandTomorrow.July2003.PreparedbyEnergetics IncorporatedforU.S.DepartmentofEnergy,OfficeofEnergyEfficiencyandRenewable Energy.OfficeoftheBiomassprogram.www.bioproducts- bioenergy.gov/pdfs/BioProductsOpportunitiesReportFinal.pdf NationalRenewableEnergyLaboratory.BiomassResearch.WhatisaBiorefinery?. www.nrel.gov/biomass/biorefinery.html NationalRenewableEnergyLaboratory.TheBiomassEconomy.(NREL/JA-810-31967July 2002.)www.nrel.gov/docs/gen/fy04/36369.pdf OutlookforBiomassEthanolProductionandDemand.2000.DiPardo,J. http://www.eia.doe.gov/oiaf/analysis.htm . RoadmapforAgriculturalBiomassFeedstockSupplyintheUnitedStates.November2003. U.S.DepartmentofEnergy,OfficeofEnergyEfficiencyandRenewableEnergy,Office ofBiomassProgram.(DOE/NE-ID-11129Rev.1) www.eere.energy.gov/biomass/publications.html#feed RoadmapforBiomassTechnologiesintheUnitedStates.December2002.Biomass TechnicalAdvisoryCommittee.www.bioproducts- bioenergy.gov/pdfs/FinalBiomassRoadmap.pdf RoyalCommissiononEnvironmentalPollution.BiomassasaRenewableEnergySource. www.rcep.org.uk/bioreport.htm TechnologyVision2020:TheU.S.ChemicalIndustry.1996. www.oit.doe.gov/chemicals/page10.html TopValueAddedChemicalsfromBiomass.August2004. http://www.nrel.gov/docs/fy04osti/35523.pdf U.S.DepartmentofEnergy–EnergyEfficiencyandRenewableEnergyInformation Resources. Bioenergy:AnOverview. www.eere.energy.gov/consumerinfo/factsheets/nb2.html Page 11.278.10 VisionforBioenergyandBiobasedProductsintheUnitedStates.October2002.Biomass

TechnicalAdvisoryCommittee.www.bioproducts- bioenergy.gov/pdfs/BioVision_03_Web.pdf Websites AEBIOM.EuropeanBiomassAssociation.www.ecop.ucl.ac.be/aebiom AmericanBioenergyAssociation.www.biomass.org AmericanSoybeanAssociation.www.oilseeds.org/asa/ AssociationfortheAdvancementofIndustrialCrops.http://www.aaic.org/ BioenergyAustralia.www.bioenergyaustralia.org BioenergyInformationNetwork.OakRidgeNationalLaboratory.bioenergy.ornl.gov/ BiomassResearch&DevelopmentInitiative.www.bioproducts-bioenergy.gov/ .National BiomassInitiative.U.S.DepartmentsofEnergyandAgriculture(USDAandDOE) BiomassResourceInformationClearinghouse.www.rrdec.nrel.gov/biomass CanadianRenewableEnergyNetwork(CAREN).Bioenergy.www.canren.gc.ca/bio CarbohydrateEconomyClearinghouse. http://www.ilsr.org/ CNE(ChinaNewEnergy).Biomass.Overview.www.newenergy.org.cn/english/biomass CornRefinersAssociation.www.corn.org EUBIA(EuropeanBiomassIndustryAssociation).www.eubia.org/ EnergyEfficiencyandRenewableEnergyNetwork.www.eren.doe.gov EREC.EuropeanRenewableEnergyCouncil.www.erec-renewables.org IEABioenergy.InternationalCollaborationinBioenergy.www.ieabioenergy.com/ IndustrialAgriculturalProductsCenter. http://ianrwww.unl.edu/ianr/iapc/research.htm NationalBiofuelsProgramWebsite.www.ott.doe.gov/biofuels NationalCornGrowersAssociation.www.ncga.com NationalEnergyFoundation,UnitedKingdom.TheGreenenergywebsite. www.nef.org.uk/greenenergy NationalRenewableEnergyLaboratory(NREL).BiomassResearch.www.nrel.gov/biomass/ NewUsesCouncil.www.newuses.org OfficeoftheBiomassProgramOfficialWebsite.http://www.bioproducts-bioenergy.gov/ RegionalBiomassEnergyProgramWebsites.www.rredc.nrel.gov/biomass/doe/rbep/ U.S.DepartmentofEnergy.EnergyEfficiencyandRenewableEnergy.BiomassProgram. www.eere.energy.gov/biomass/ U.S.DepartmentofEnergy.EnergyEfficiencyandRenewableEnergy. www.eere.energy.gov/RE/bioenergy.html Page 11.278.11

CurriculumInfusionTechniques Within the context of engineering, an untapped, but growing need for biorefinery education currentlypresentsanopportunitytoinfuseundergraduatecurriculawithcutting-edgesciencethat depends,toalargemeasure,uponthedesignandimplementationofengineeringconcepts.To adequatelycovertheextensiverangeoftopicsrelevanttothisproposal,theauthorsrecommenda full-semester stand-alone course dedicated to biorefining andbioprocessing. Table 2 presents coretopicsforsuchacoursewhich,inconjunctionwiththeothertopicsdiscussedinthispaper, couldeasilybeconvertedintoasyllabus. Table2.Potentialbiorefiningcoursetopics. Section Topic 1 INTRODUCTION Definitions,briefhistoryofbioprocessing,etc. 2 FUNDAMENTALCONCEPTSINBIOBASEDPRODUCTS Reviewoforganicchemistryconcepts,plantmaterialbiologyandchemistry. 3 BIOMASSRESOURCEBASEANDPRODUCTION Nationalproductionstatistics,properties,yields,size,etc. 4 PROCESSSINGBIOMASSINTOBIO-BASEDPRODUCTSANDENERGY Bioenergy,industrialproducts,fibers,etc.Conversiontechniques. 5 PROCESSINGBIOMASSINTOCHEMICALSANDFUELS Chemicals,fuels,etc.Chemicalconversion,thermo-mechanicalconversion,thermo- chemicalconversion,biologicalconversion,etc. 6 MANUFACTUREOFBIO-BASEDPRODUCTS;ECONOMICANALYSISOF BIOPROCESSES Manufacturingprocesses,processeconomics,capitalandoperationalexpenditures. 7 ENVIRONMENTALIMPACTSOFBIOPROCESSES Industrialregulations,industrialecologyconcepts. Moreover, the development of this type of course could logically provide a basis for an engineeringprogramtoofferaminorinbiorefiningand/orbioprocessing.Thiswould,however, requireadditionalsupportingcourses,suchasthoselistedinTable3. Table3.Potentialbiorefining/bioprocessingminor. Sequence SupportingCourses 1 Biology 2 InorganicChemistry 3 OrganicChemistry 4 Biochemistry/Biotechnology 5 PlantScience/Biology 6 Microbiology 7 Biorefining/Bioprocessing

Page 11.278.12

Currently,oneoftheonlycollegiatebiorefinerycoursesisunderdevelopmentattheUniversity of Idaho, in the Department of Biological and Agricultural Engineering (http://www.webpages.uidaho.edu/~bhe/biorefinery/index.html ). Even though the course structurediffersfromthatdiscussedinTable2somewhat,itdoesappeartocoververysimilar topics,especiallythefundamentalconceptsdiscussedhere. Understandably,notallacademicprogramswillbeabletoaccommodatethisadditionwithall otherprogrammaticrequirementscurrentlyinplace.Therefore,itisbeneficialtoexamineother mechanismsforincorporatingbiorefineryinstruction,eitherasindividualtopics,components,or unitsthatcanbeusedasspecificlearningmodules,intoexistingcoursework.Manyapproaches havebeenfoundtobequitesuccessfulvis-à-visaugmentingengineeringinstructionbyinserting additionalmaterialsintomainstreaminstruction[62].Addressingengineeringethicsisaprime example. Some avenues that have been shown to work well include integrating focused components (theory as well as case study analyses) into specific technical courses [63-67], examiningissuesduringtechnicalproblemsolvinginspecifictechnicalcourses[68],issuesand topics for review during capstone experiences [69-70], specific components in coursework dedicatedtoprofessionalism[71-72],topicalseminars[73],aswellasintegrationthroughoutthe entire curriculum [74-76]. Ultimately, the inclusion of biorefinery concepts in undergraduate engineering education will be dependent upon individual faculty interest and implementation, andwillbeprimarilyinfluencedbythecreativityoftheinstructor. Conclusions This paper has been intended to introduce engineering educators to the emerging field of biorefining. Essential definitions and concepts have been discussed, as have the relevance to engineering education and curriculum infusion techniques. Although it is not completely comprehensiveinnature,manyreferenceshavebeenincluded,soeducatorsshouldfindthisa usefulresourcebasefromwhichtowork. References 1. Brown,R.C...2003.BiorenewableResources–EngineeringNewProductsfromAgriculture.Blackwell PublishingCo.NewYork,NY 2. USDOE.2002.RoadmapforBiomassTechnologiesintheUnitedStates.Washington,D.C.:U.S. DepartmentofEnergy,NationalBiomassInitiative.Availableonline:www.bioproducts- bioenergy.gov/pdfs/FinalBiomassRoadmap.pdf . 3. USDOE.2005.BiomassProgram:FeedstockCompositionGlossary.Washington,D.C.:U.S.Departmentof Energy.Availableonline:http://www.eere.energy.gov/biomass/feedstock_glossary.html . 4. Zimmermann,L.andI.Nuberg.2005.BioenergyTerminology–FactsheetNo:atlas_006.BioenergyAtlas forAustraliaProject.Availableonline:http://data.brs.gov.au/mapserv/biomass/factsheets/Atlas_006.pdf . 5. Abbas,C.A.andM.Cheryan.2002.Emergingbiorefineryopportunities.AppliedBiochemistryand Biotechnology98-100:1147. 6. Audsley,E.andJ.E.Annetts.2003.Modelingthevalueofaruralbiorefinery–partI:themodeldescription. AgriculturalSystems76:39-59. Page 11.278.13 7. Annetts,J.E.andE.Audsley.2003.Modelingthevalueofaruralbiorefinery–partII:analysisand implications.AgriculturalSystems76:61-76.

8. Gravitis,J.,J.Zandersons,N.Vedernikov,I.Kruma,andV.Ozols-Kalnins.2004.Clusteringofbio-products technologiesforzeroemissionsandeco-efficiency.IndustrialCropsandProducts20:169-180. 9. Kamm,B.,andM.Kamm.2004a.Biorefinerysystems.Chem.Biochem.Eng.Q.18(1):1-6. 10. Kamm,B.andM.Kamm.2004b.Principlesofbiorefineries.AppliedMicrobiologyandBiotechnology64: 137-145. 11. Ohara,H.2003.Biorefinery.AppliedMicrobiologyandBiotechnology62:474-477. 12. Askew,M.2005.Thebiorefineryconcept.Renews,RenewableEnergyNewsletter,EuropeanCommission. 13. EIAAEO.2002.AnnualEnergyOutlook2002.U.S.DepartmentofEnergy,EnergyInformation Administration. 14. US DOE. 2003. Industrial Bioproducts: Today and Tomorrow. Prepared by Energetics, Incorporated, Columbia,MarylandfortheU.S.DepartmentofEnergy. 15. Dien,B.S.,L.B.Iten,C.D.Skory.2005.ConvertingHerbaceousEnergyCropstoBioethanol:AReview withEmphasisonPretreatmentProcesses.In:HandbookofIndustrialBiocatalysis,Chapter23.BocaRaton, Fl:Taylor&FrancisGroup. 16. Lynd,L.R.1996.Overviewandevaluationoffuelethanolfromcellulosicbiomass:technology,economics, theenvironment,andpolicy.AnnualReviewofEnergyandEnvironment21:403-465. 17. Watson,S.A.andP.E.Ramstad.1987.Corn:ChemistryandTechnology.St.Paul,MN:American AssociationofCerealChemists. 18. Wayman,M.andS.R.Parekh.1990.Cerealgrains.InBiotechnologyofBiomassConversion:Fuelsand ChemicalfromRenewableResources.Philadelphia,PA:OpenUniversityPress. 19. Amen-Chen,C.,H.Pakdel,andC.Roy.2001.Productionofmonomericphenolsbythermochemical conversionofbiomass:areview.BioresourceTechnology79:277-299. 20. Bridgewater,A.V.2000.Fastpyrolysisprocessesforbiomass.RenewableandSustainableEnergyReviews 4:1-73. 21. Bridgewater,A.V.,S.Czernik,J.Diebold,D.Meier,A.Oasmaa,C.Peacocke,J.Piskorz,andD.Radlein. 1999.FastPyrolysisofBiomass:AHandbook.Newbury,UK:CPLPress. 22. Bridgewater,A.V.,A.J.Toft,andJ.G.Brammer.2002.Atechno-economiccomparisonofpowerproduction bybiomassfastpyrolysiswithgasificationandcombustion.RenewableandSustainableEnergyReviews6: 181-248. 23. Luo,Z.,S.Wang,Y.Liao,J.Zhou,Y.Gu,andK.Cen.2004.Researchonbiomassfastpyrolysisforliquid fuel.BiomassandBioenergy26:455-462. 24. Scott,D.S.P.Majerski,J.Piskorz,andD.Radlein.1999.Asecondlookatfastpyrolysisofbiomass–theRTI process.JournalofAnalyticalandAppliedPyrolysis51:23-37. 25. Zanzi,R.,K.Sjostrom,andE.Bjornbom.2002.Rapidpyrolysisofagriculturalresiduesathightemperature. BiomassandBioenergy23:357-366. 26. Annamalai,K.,M.Sami,andM.Wooldrige.2001.Co-firingofcoalandbiomassfuelblends.Progressin Energy&CombustionScience27:171-214. 27. Borman,G.L.andK.W.Ragland.1998.CombustionEngineering.McGraw-Hill. 28. Jenkins,B.M.,L.L.Baxter,T.R.Miles,Jr.,andT.R.Miles,Sr.1998.Combustionpropertiesofbiomass. FuelProcessingTechnology54:17-46. 29. Dasappa,S.,H.V.Sridhar,G.Sridhar,P.J.Paul,andH.S.Mukunda.2003.Biomassgasification–a substitutetofossilfuelsforheatapplication.BiomassandBioenergy25:637-649. 30. McKendry,P.2002.Energyproductionfrombiomass(part3):gasificationtechnologies.Bioresource Technology83:55-63. 31. Reed,T.1981.BiomassGasification:PrinciplesandTechnology.ParkRidge,NJ:NoyesDataCorporation. 32. Warnecke,R.2000.Gasificationofbiomass:comparisonoffixedbedandfluidizedbedgasifier.Biomassand Bioenergy18:489-497. 33. Belgiorno,V.,G.DeFeo,C.DellaRocca,andR.M.A.Mapoli.2003.Energyfromgasificationofsolid wastes.WasteManagement23:1-15. 34. Brammer,J.G.andA.V.Bridgewater.1999.Dryingtechnologiesforanintegratedgasificationbio-energy plant.RenewableandSustainableEnergyReviews3:243-289. 35. Cummer,K.R.andR.C.Brown.2002.Ancillaryequipmentforbiomassgasification.Biomassand Bioenergy23:113-128. Page 11.278.14 36. Kashyap,D.R.,K.S.Dadhich,andS.K.Sharma.2003.Biomethanationunderpsychrophilicconditions:a review.BioresourceTechnology87:147-153. 37. Klass,D.L.1998.BiomassforRenewableEnergy,Fuels,andChemicals.SanDiego,CA:AcademicPress.

38. Rajeshwari,K.V.,M.Balakrishnan,A.Kansal,K.Lata,andV.V.N.Kishore.2000.Renewableand SustainableEnergyReviews4:135-156. 39. Rao,M.S.andS.P.Singh.2004.BioenergyconversionstudiesoforganicfractionofMSW:kineticstudies andgasyield-organicloadingrelationshipsforprocessoptimization.BioresourceTechnology95:173-185. 40. Speece,R.E.1996.AnaerobicBiotechnologyforIndustrialWastewaters.Nashville,TN:ArchaePress. 41. DiPardo,J.2000. Outlookforbiomassethanolproductionanddemand .U.S.DepartmentofEnergy,Energy InformationAgency.[Online]URL:http://www.eia.doe.gov/oiaf/analysis.htm . 42. Dien,B.S.,R.J.Bothast,N.N.Nichols,andM.A.Cotta.2003.TheU.S.cornethanolindustry:anoverview ofcurrenttechnologyandfutureprospects.In TheThirdInternationalStarchTechnologyConference– CoproductsProgramProceedings, eds.M.Tumbleson,V.Singh,andK.Rausch,2-4June,2003,Universityof Illinois,pp.10-21. 43. Jaques,K.A.,T.P.Lyons,andD.R.Kelsall.2003. TheAlcoholTextbook .NottinghamUniversityPress: Nottingham,UK. 44. Tibelius,C.1996. CoproductsandNearCoproductsofFuelEthanolFermentationfromGrain. Agriculture andAgri-FoodCanada–CanadianGreenPlanEthanolProgram:StarchyWasteStreamsEvaluationProject. [Online]URL:http://res2.agr.ca/publications/cfar/index_e.htm . 45. Weigel,J.C.,D.Loy,andL.Kilmer.2005. FeedCo-ProductsoftheDryCornMillingProcess. IowaState UniversityandIowaCornPromotionBoard.[Online]URL:www.iowacorn.org/ethanol/ethanol_17.html . 46. Carter,D.andJ.Halle.2005.HowtoMakeBiodiesel.Low-ImpactLivingInitiative 47. Knothe,G.2005.TheBiodieselHandbook.AOCSPress. 48. Pahl,G.2005.Biodiesel:GrowingaNewEnergyEconomy.ChelseaGreenPublishingCompany. 49. Bozell,J.J.andR.Landucci.1993.AlternativeFeedstocksProgramTechnicalandEconomicAssessment: Thermal/ChemicalandBioprocessingComponents.Washington,D.C.:U.S.DepartmentofEnergy. 50. Kamm,B.,M.Kamm,M.Schmidt,I.Starke,andE.Kleinpeter.2005.Chemicalandbiochemicalgeneration ofcarbohydratesfromlignocellulose-feedstock(Lupinusnootkatensis)–quantificationofglucose.Inpress. 51. Rowell,R.M.,T.P.Schultz,andR.Narayan.1992.EmergingTechnologiesforMaterialandChemicalsfrom Biomass.ACSSymposiumSeries476.Washington,D.C.:AmericanChemicalSociety. 52. Stevens,E.S.2002.GreenPlastics:AnIntroductiontotheNewScienceofBiodegradablePlastics.Princeton, NJ:PrincetonUniversityPress. 53. Rosentrater,K.A.andA.W.Otieno.2005.Essentialconsiderationsformanufacturingproductscontaining biomaterials.ASAEPaperNo.:MC05-406.St.Joseph,MI:AmericanSocietyofAgriculturalEngineers. 54. Rowell,R.M.1992.Opportunitiesforlignocellulosicmaterialsandcomposites.InEmergingTechnologies forMaterialsandChemicalfromBiomass,ACSSymposiumSeries476.Washington,D.C.:American ChemicalSociety. 55. Rowell,R.M.,R.A.Young,andJ.R.Rowell.1997.PaperandCompositesfromAgro-BasedResources. CRCPress. 56. Andersen,M.andP.Kiel.2000.Integratedutilisationofgreenbiomassinthegreenbiorefinery.Industrial CropsandProducts11:129-137. 57. Halasz, L., G. Povoden, and M. Narodoslawsky. 2005. Sustainable processes synthesis for renewable resources.ResourcesConservation&Recycling44:293-307. 58. Koschuh, W., G. Povoden, V. H. Thang, S. Kromus, K. D. Kulbe, S. Novalin, andC. Krotscheck. 2004. Production of leaf protein concentrate from ryegrass (Lolium perenne x multiflorum) and alfalfa (Medicago sativasubsp.Sativa).Comparisonbetweenheatcoagulation/centrifugationandultrafiltration.Desalination163: 253-259. 59. Koschuh,W.,V.H.Thang,S.Krasteva,S.Novalin,andK.D.Kulbe.2005.Fluxandretentionbehaviourof nanofiltration and fine ultrafiltration membranes in filtrating juice from a green biorefinery: a membrane screening.JournalofMembraneScience261:121-128. 60. Lamsal,B.P.,R.G.Koegel,andM.E.Boettcher.2003.Separationofproteinfractionsinalfalfajuice:effects ofsomepre-treatmentmethods.TransactionsoftheASAE46(3):715-720. 61. Marcotte, D., P. Savoie, D.Hamel, and L.-P. Vezina. 2002. A mobile extractor for alfalfa fractionation. ASAEMeetingPaperNo.021070.St.Joseph,MI:ASAE. 62. Dyrud,M.Ethicseducationforthethirdmillennium.1998.Proceedingsofthe1998AmericanSocietyfor EngineeringEducationAnnualConference&Exhibition.Session1347. Page 11.278.15 63. Alenskis,B.A.1997.Integratingethicsintoanengineeringtechnologycourse:aninterspersedcomponent approach.Proceedingsofthe1997AmericanSocietyforEngineeringEducationAnnualConference& Exhibition.Session2247.

64. Arnaldo,S.1999.Teachingmoralreasoningskillswithinstandardcivilengineeringcourses.Proceedingsof the1999AmericanSocietyforEngineeringEducationAnnualConference&Exhibition.Session1615. 65. Case,E.1998.Integratingprofessionalethicsintotechnicalcoursesinmaterialsscience.Proceedingsofthe 1998AmericanSocietyforEngineeringEducationAnnualConference&Exhibition,Session1664. 66. Krishnamurthi,M.1998.Integratingethicsintomodelingcoursesinengineering.Proceedingsofthe1998 AmericanSocietyforEngineeringEducationAnnualConference&Exhibition.Session2461. 67. Whiting,W.,J.Shaeiwitz,R.Turton,andR.Cailie.1998.1998ASEEAnnualConferenceProceedings, Session2213. 68. Rabins,M.,C.Harris,J.Hanzlik.1996.AnNSF/Bovayendowmentsupportedworkshoptodevelopnumerical problemsassociatedwithethicscasesforuseinrequiredundergraduateengineeringcourses.1996ASEE AnnualConferenceProceedings,Session3332. 69. Pappas,E.andJ.Lesko.2001.Thecommunication-centeredseniordesignclassatVirginiaTech.Proceedings ofthe2001AmericanSocietyforEngineeringEducationAnnualConference&Exhibition,Session1161. 70. Soudek,I.1996.Teachingethicstoundergraduateengineeringstudents:understandingprofessional responsibilitythroughexamples.1996ASEEAnnualConferenceProceedings,Session1661. 71. Bhatt,B.L.1993.Teachingprofessionalethicalandlegalaspectsofengineeringtoundergraduatestudents. 1993ASEEFrontiersinEducationConferenceProceedings,p.415-418. 72. Fulle,R.,C.Richardson,G.Zion.2004.Buildingethicsandprojectmanagementintoengineeringtechnology programs.Proceedingsofthe2004AmericanSocietyforEngineeringEducationAnnualConference& Exhibition,Session1348. 73. Alford,E.andT.Ward.1999.Integratingethicsintothefreshmancurriculum:aninterdisciplinaryapproach. Proceedingsofthe1999AmericanSocietyforEngineeringEducationAnnualConference&Exhibition. Session2561. 74. Marshall,J.andJ.Marshall.2003.Integratingethicseducationintotheengineeringcurriculum.Proceedings ofthe2003AmericanSocietyforEngineeringEducationAnnualConference&Exhibition.Session1675. 75. Davis,M.1992.Integratingethicsintotechnicalcourses:IIT’sexperimentinitssecondyear.1992ASEE FrontiersinEducationConferenceProceedings,p.64-68. 76. Leone,D.andB.Isaacs.2001.Combiningengineeringdesignwithprofessionalethicsusinganintegrated learningblock.Proceedingsofthe2001AmericanSocietyforEngineeringEducationAnnualConference& Exhibition.Session2525. Page 11.278.16