On-Site Wastewater Treatment Systems: Tickling Filter

Total Page:16

File Type:pdf, Size:1020Kb

On-Site Wastewater Treatment Systems: Tickling Filter L-5345 1-00 On-site wastewater treatment systems Trickling filter Soil absorption field Septic tank Clarifier/Dosing tank Figure 1: Trickling filters are a simple technology for treating wastewater. Trickling filter Bruce Lesikar and Russell Persyn Extension Agricultural Engineering Specialist, Extension Assistant-Water Conservation The Texas A&M University System trickling filter is a bed of gravel or plastic media over which allows biological materials to pretreated wastewater is sprayed. In trickling filter systems, mi- settle out of the water. It also croorganisms attach themselves to the media in the bed and form houses a pump to dose water over A the top of the filter. a biological film over it. As the wastewater trickles through the media, ✓ the microorganisms consume and remove contaminants from the water. A trickling filter, which is a tank of media such as gravel or plastic Trickling filters were a common Each trickling filter system has material. Wastewater is distrib- technology for treating municipal several components: uted over the top of the media wastewater before cities began using and flows downward across the ✓ A septic tank, which removes the activated sludge aeration systems. media surface in a thin film. It settleable and floatable solids Now, homes and businesses use then exits the bottom of the tank from the wastewater. trickling filters in on-site wastewater and flows into the clarifier/dosing treatment systems. ✓ A clarifier/dosing tank, which is a tank. concrete or fiberglass tank that ✓ A land application system, which The microorganisms remove allow the biological material to have distributes the treated water under nutrients and dissolved materials from good aeration. The large openings the ground surface. the wastewater, storing them as food. also enable the biological material to As the biological material grows, it flow to the bottom of the filter after it Although trickling filters are a becomes too large to remain attached falls off the media so that it can exit simple technology for improving to the media and breaks away. It is into the clarifier/dosing tank. wastewater quality, few manufactur- carried with the water back into the The pump should be elevated ers sell them already built. Most clarifier/dosing tank, where it accu- above the bottom of the clarifier/ trickling filters are professionally mulates in the bottom of the tank, dosing tank to ensure that clear water designed and built by an installer. forming a sludge blanket. In some can circulate to the trickling filter. The systems, a sludge pump sends this According to Texas regulations, pump requires little horsepower material to the septic tank, where it wastewater from trickling filter because it lifts the water only from can decompose further. systems cannot be applied to the the clarifier/dosing tank to the top of ground surface. Texas allows only the trickling filter, about 10 feet. systems certified as class I aerobic Design treatment units or sand filters to apply The flow rate for the pump can be When choosing an appropriate wastewater onto the ground surface, fairly low, about 3 gallons per minute, trickling filter system for a site, you unless the system is specially de- depending on the dosing rate and the must consider several components: signed by a professional engineer for surface area of the filter. A valve on the area and volume of the filter surface application. Wastewater the pipe entering the top of the trick- surface; the type of media; the size of distributed by such systems must be ling filter allows the pump flow to be the pump; and the requirements for tested periodically to make sure it adjusted. operating the trickling filter. meets the quality requirements for The wastewater must be distrib- surface application. Trickling filters can handle from uted evenly over the media so that it 25 to 100 gallons of wastewater per can flow in a thin film down through Treatment square foot of filter surface per day. the media. The water can be sprayed They are usually designed to treat 50 over the top of the media or channeled Wastewater dosed to a trickling gallons per square foot per day. filter must be pretreated, such as by a through a pipe and dropped onto a septic tank. Solids and greases must The amount of biological splash plate, which is a plastic or be removed before the wastewater is material that a treatment system can fiberglass plate lying on top of the sprayed over the trickling filter. If handle per day is called the organic media. these materials are not removed, they loading rate. For trickling filters, it is Dosing to the trickling filter can measured in pounds of BOD per day can cover the thin layer of microor- 5 be continuous, or controlled with a ganisms growing on the media and per cubic foot. The organic loading timer. If the flow is continuous, the kill them. rate for a trickling filter is generally rate should be fairly low, about 3 from 0.005 to 0.025 pounds of BOD 5 gallons per minute, to allow the A trickling filter can reduce: per day per cubic foot of media. ✓ biological material that falls off the Biochemical oxygen demand The depth of the bed of media for media to settle in the clarifier/dosing (BOD ), a measurement of the 5 trickling filters can vary. The deeper a tank. If the flow is timer-controlled, amount of the dissolved oxygen trickling filter’s media, the more the system should be dosed often that microorganisms need to enough to prevent the biological BOD5 it can handle per day. Commu- decompose organic matter. High nity-scale trickling filters range from material from drying out. BOD normally indicates poor 5 3 to 8 feet deep. A home-scale water quality; a low BOD The pump should be connected to 5 trickling filter can be 2 to 3 feet deep. an on-off float in case the flow of generally indicates good water The depth chosen depends on the quality. Removing dissolved water is interrupted. Without an on- amount and strength of wastewater off float, the pump will run with no solids from the wastewater the system is expected to handle per lowers the BOD . water in the tank if flow is disrupted 5 day. ✓ from the home (such as when the Pathogens, or disease-causing The media in the trickling filter family goes on vacation) and the organisms. should be a porous material such as water evaporates from the trickling ✓ Fecal coliforms, or bacteria from rock or plastic. It should have a large filter, thus reducing the volume of human or animal wastes. surface area with large openings to water in the clarifier/dosing tank. The last step in the process is to apply the wastewater to the soil. For Splash plate gravity-flow systems, the wastewater flows by gravity through an outlet from the clarifier/dosing tank and into trenches in the drain field. If a pressurized land application Filter media system is needed, the wastewater flows from the clarifier/dosing tank into a pump tank, which collects the wastewater and then doses it to the drain field through a low-pressure dosing, subsurface drip or spray distribution system. Drain line How to keep it working To perform well, trickling filter systems require proper operation and maintenance. Please review the materials from the manufacturer or Figure 2: A trickling filter is a tank of media such as gravel or plastic material. designer to make sure you comply with their guidelines. You may have to have the filter of incoming wastewater by Trickling filter systems contain media removed and washed to managing the quantity of waste several components—a septic tank, reduce the amount of biological entering the system, such as by clarifier/dosing tank, trickling filter material on the media. Make sure discontinuing use of a garbage and land application field—working the outlet is large enough so that disposal or sending less grease together to improve the quality of the the wastewater can exit the filter. down the drain. effluent. For specific operation and ✓ Water not being dosed to the ✓ Biological growth being killed maintenance guidance on septic tanks trickling filter: Could be caused on the filter: Could be caused by and land application fields, see by failure of the pump, the on-off greases or solids entering the Extension publications on those float or the control panel, or filter, coating the biological topics. They can be ordered from the disruption of electrical power. growth and killing it; or, the Extension service and are available on wastewater could contain high Check these components to make the World Wide Web at amounts of cleaners, disinfectants sure they are functioning. http://agpublications.tamu.edu. or pesticides. ✓ Effluent water containing a Here are some common problems Check the septic tank to make high BOD concentration: with trickling filters, their possible 5 sure solids and grease are being Could be caused by the dosing causes and recommendations for retained. Evaluate your habits in rate to the filter being too low; or, remedies: the home to make sure you are the incoming water could be too not using too many cleaners or ✓ Standing water in the filter: strong. Could be caused by a plugged disinfectants, or continuous filter exit to the clarifier/dosing Raise the dosing rate by running disinfectants in the toilet bowl. tank or by a buildup of biological the pump longer or adjusting the Also, make sure you are not material in the filter. flow valve at the discharge to the disposing of solvents or pesti- filter surface. Lower the strength cides in the toilet.
Recommended publications
  • Water Treatment and Reverse Osmosis Systems
    Pure Aqua, Inc.® Water© 2012 TreatmentPure Aqua ,and Inc. ReverseAll Right sOsmosis Reserve dSystems. Worldwide Experience Superior Technology About the Company Pure Aqua is a company with a strong philosophy and drive to develop and apply solutions to the world’s water treatment challenges. We believe that both our technology and experience will help resolve the growing shortage of clean water worldwide. Capabilities and Expertise As an ISO 9001:2008 certified company with over a decade of experience, Pure Aqua has secured its position as a leading manufacturer of reverse osmosis systems worldwide. Goals and Motivations Our goal is to provide environmentally sustainable systems and equipment that produce high quality water. We provide packaged systems and technical support for water treatment plants, industrial wastewater reuse, and brackish and seawater reverse osmosis plants. Having strong working relationships with Thus, we ensure our technological our suppliers gives us the capability to contribution to water preservation by provide cost effective and competitive supplying the means and making it highly water and wastewater treatment systems accessible. for a wide range of applications. Seawater Reverse Osmosis Systems System Overview Designed to convert seawater to potable water, desalination systems use high quality reverse osmosis seawater membranes. The process separates dissolved salts by only allowing pure water to pass through the membrane fabric. System Capacities Pure Aqua desalination systems are designed to provide high
    [Show full text]
  • Landfill Leachate Pretreatment Process Evaluation and Pilot Study
    Landfill Leachate Pretreatment Process Evaluation and Pilot Study Richard Claus – Hazen and Sawyer, P.C. John Butler – Rumpke Consolidated Companies, Inc. Dan Miklos – Hazen and Sawyer, P.C. Presentation Overview Part 1 – Overview of Study, Piloting, and Design Introduction Timeline of Study, Evaluation, & Disposal Wastewater Characterization & Pretreatment Study Timeline of Piloting and Design Pretreatment Design Presentation Overview Part 2 – Pilot Treatment Sessil Media Trickling Filter Pilot Chemical Treatment Jar Testing and Pilot Considered ElectroCell Piloting Next Steps Introduction Rumpke Sanitary Landfill Cincinnati, OH, Colerain Township, Northwest Hamilton County Rumpke Consolidated Companies, Inc. Family Owned, Operated since 1945 One of the largest landfills in the nation, largest in Ohio Rumpke Colerain Township Landfill Introduction Northwest Area Landfill Portion of landfill undergoing a reaction since August, 2009 Source of extremely strong leachate Averaging 120-degrees Fahrenheit Average Volumes of 120,000 GPD (2010-2011) to 200,000 GPD (2012) Northwest Lift Station Lift Station No. 2 Pilot and Tanker Loadout Locations Northwest Area Landfill Introduction – NW Area Leachate Current Characteristics COD 30,000 to 50,000 mg/L BOD5 20,000 to 30,000 mg/L TSS 1,000 – 2,000 mg/L TKN 1,500 – 2,500 mg/L Fe 250 – 700 mg/L Ca 1,500 – 3,700 mg/L Temperature 120 degrees F Introduction – NW Area Leachate On –Going Issues Pipe scaling/clogging during conveyance Odors during handling/disposal Costs for disposal Study, Evaluation, and Disposal Timeline August, 2009 – Increasing leachate strength from Northwest Area August, 2010 to May, 2011 – Wastewater Characterization & Pretreatment Study August, 2011 to June, 2012 – Treatment Piloting and Pretreatment Design Study, Evaluation, and Disposal Timeline - Continued Historically until October 7, 2011 – “Blended” Flow Sewer Discharge into MSDGC Collection System NW Area Leachate (Approx.
    [Show full text]
  • Package Plants Arrive on Site Virtually Ready to Operate and Built to Minimize the Day-To-Day Attention Required to Operate the Equipment
    A NATIONAL DRINKING WATER CLEARINGHOUSE FACT SHEET Package Plants Summary Small water treatment systems often find it difficult to comply with the U.S. Environmental Protection Agency (EPA) regulations. Small communities often face financial problems in purchas- ing and maintaining conventional treatment systems. Their problem is further complicated if they do not have the services of a full-time, trained operator. The Surface Water Treatment Rule (SWTR) requirements have greatly increased interest in the possible use of package plants in many areas of the country. Package plants can also be applied to treat contaminants such as iron and manganese in groundwater via oxidation and filtration. ○○○○○○○○○○ Package Plants: Alternative to Conventional Treatment What is a package plant? How To Select a Package Plant Package technology offers an alternative to Package plant systems are most appropriate for in-ground conventional treatment technology. plant sizes that treat from 25,000 to 6,000,000 They are not altogether different from other gallons per day (GPD) (94.6 to 22,710 cubic treatment processes although several package ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○ meters per day). Influent water quality is the plant models contain innovative treatment most important consideration in determining elements, such as adsorptive clarifiers. The the suitability of a package plant application. primary distinction, however, between package Complete influent water quality records need plants and custom-designed plants is that to be examined to establish turbidity levels, package plants are treatment units assembled seasonal temperature fluctuations, and color in a factory, skid mounted, and transported level expectations. Both high turbidity and color to the site. may require coagulant dosages beyond many package plants design specifications.
    [Show full text]
  • Safe Use of Wastewater in Agriculture: Good Practice Examples
    SAFE USE OF WASTEWATER IN AGRICULTURE: GOOD PRACTICE EXAMPLES Hiroshan Hettiarachchi Reza Ardakanian, Editors SAFE USE OF WASTEWATER IN AGRICULTURE: GOOD PRACTICE EXAMPLES Hiroshan Hettiarachchi Reza Ardakanian, Editors PREFACE Population growth, rapid urbanisation, more water intense consumption patterns and climate change are intensifying the pressure on freshwater resources. The increasing scarcity of water, combined with other factors such as energy and fertilizers, is driving millions of farmers and other entrepreneurs to make use of wastewater. Wastewater reuse is an excellent example that naturally explains the importance of integrated management of water, soil and waste, which we define as the Nexus While the information in this book are generally believed to be true and accurate at the approach. The process begins in the waste sector, but the selection of date of publication, the editors and the publisher cannot accept any legal responsibility for the correct management model can make it relevant and important to any errors or omissions that may be made. The publisher makes no warranty, expressed or the water and soil as well. Over 20 million hectares of land are currently implied, with respect to the material contained herein. known to be irrigated with wastewater. This is interesting, but the The opinions expressed in this book are those of the Case Authors. Their inclusion in this alarming fact is that a greater percentage of this practice is not based book does not imply endorsement by the United Nations University. on any scientific criterion that ensures the “safe use” of wastewater. In order to address the technical, institutional, and policy challenges of safe water reuse, developing countries and countries in transition need clear institutional arrangements and more skilled human resources, United Nations University Institute for Integrated with a sound understanding of the opportunities and potential risks of Management of Material Fluxes and of Resources wastewater use.
    [Show full text]
  • Sedimentation and Clarification Sedimentation Is the Next Step in Conventional Filtration Plants
    Sedimentation and Clarification Sedimentation is the next step in conventional filtration plants. (Direct filtration plants omit this step.) The purpose of sedimentation is to enhance the filtration process by removing particulates. Sedimentation is the process by which suspended particles are removed from the water by means of gravity or separation. In the sedimentation process, the water passes through a relatively quiet and still basin. In these conditions, the floc particles settle to the bottom of the basin, while “clear” water passes out of the basin over an effluent baffle or weir. Figure 7-5 illustrates a typical rectangular sedimentation basin. The solids collect on the basin bottom and are removed by a mechanical “sludge collection” device. As shown in Figure 7-6, the sludge collection device scrapes the solids (sludge) to a collection point within the basin from which it is pumped to disposal or to a sludge treatment process. Sedimentation involves one or more basins, called “clarifiers.” Clarifiers are relatively large open tanks that are either circular or rectangular in shape. In properly designed clarifiers, the velocity of the water is reduced so that gravity is the predominant force acting on the water/solids suspension. The key factor in this process is speed. The rate at which a floc particle drops out of the water has to be faster than the rate at which the water flows from the tank’s inlet or slow mix end to its outlet or filtration end. The difference in specific gravity between the water and the particles causes the particles to settle to the bottom of the basin.
    [Show full text]
  • Introduction to Trickling Filters and RBC's Study Guide September 1995 Edition
    Wisconsin Department of Natural Resources Wastewater Operator Certification Introduction to Trickling Filters and RBC's Study Guide September 1995 Edition Subclass B Wisconsin Department of Natural Resources Bureau of Science Services Operator Certification Program P.O. Box 7921, Madison, WI 53707 http://dnr.wi.gov The Wisconsin Department of Natural Resources provides equal opportunity in its employment, programs, services, and functions under an Affirmative Action Plan. If you have any questions, please write to Equal Opportunity Office, Department of Interior, Washington, D.C. 20240. This publication is available in alternative format (large print, Braille, audio tape. etc.) upon request. Please call (608) 266-0531 for more information. Printed on 12/07/12 Introduction to Trickling Filters and RBC's Study Guide - September 1995 Edition Preface This operator's study guide represents the results of an ambitious program. Operators of wastewater facilities, regulators, educators and local officials, jointly prepared the objectives and exam questions for this subclass. How to use this study guide with references In preparation for the exams you should: 1. Read all of the key knowledges for each objective. 2. Use the resources listed at the end of the study guide for additional information. 3. Review all key knowledges until you fully understand them and know them by memory. It is advisable that the operator take classroom or online training in this process before attempting the certification exam. Choosing A Test Date Before you choose a test date, consider the training opportunities available in your area. A listing of training opportunities and exam dates is available on the internet at http://dnr.wi.gov, keyword search "operator certification".
    [Show full text]
  • The Biological Treatment Method for Landfill Leachate
    E3S Web of Conferences 202, 06006 (2020) https://doi.org/10.1051/e3sconf/202020206006 ICENIS 2020 The biological treatment method for landfill leachate Siti Ilhami Firiyal Imtinan1*, P. Purwanto1,2, Bambang Yulianto1,3 1Master Program of Environmental Science, School of Postgraduate Studies, Diponegoro University, Semarang - Indonesia 2Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang - Indonesia 3Department of Marine Sciences, Faculty of Fisheries and Marine Sciences, Diponegoro University, Semarang - Indonesia Abstract. Currently, waste generation in Indonesia is increasing; the amount of waste generated in a year is around 67.8 million tons. Increasing the amount of waste generation can cause other problems, namely water from the decay of waste called leachate. Leachate can contaminate surface water, groundwater, or soil if it is streamed directly into the environment without treatment. Between physical and chemical, biological methods, and leachate transfer, the most effective treatment is the biological method. The purpose of this article is to understand the biological method for leachate treatment in landfills. It can be concluded that each method has different treatment results because it depends on the leachate characteristics and the treatment method. These biological methods used to treat leachate, even with various leachate characteristics, also can be combined to produce effluent from leachate treatment below the established standards. Keywords. Leachate treatment; biological method; landfill leachate. 1. Introduction Waste generation in Indonesia is increasing, as stated by the Minister of Environment and Forestry, which recognizes the challenges of waste problems in Indonesia are still very large. The amount of waste generated in a year is around 67.8 million tons and will continue to grow in line with population growth [1].
    [Show full text]
  • Troubleshooting Activated Sludge Processes Introduction
    Troubleshooting Activated Sludge Processes Introduction Excess Foam High Effluent Suspended Solids High Effluent Soluble BOD or Ammonia Low effluent pH Introduction Review of the literature shows that the activated sludge process has experienced operational problems since its inception. Although they did not experience settling problems with their activated sludge, Ardern and Lockett (Ardern and Lockett, 1914a) did note increased turbidity and reduced nitrification with reduced temperatures. By the early 1920s continuous-flow systems were having to deal with the scourge of activated sludge, bulking (Ardem and Lockett, 1914b, Martin 1927) and effluent suspended solids problems. Martin (1927) also describes effluent quality problems due to toxic and/or high-organic- strength industrial wastes. Oxygen demanding materials would bleedthrough the process. More recently, Jenkins, Richard and Daigger (1993) discussed severe foaming problems in activated sludge systems. Experience shows that controlling the activated sludge process is still difficult for many plants in the United States. However, improved process control can be obtained by systematically looking at the problems and their potential causes. Once the cause is defined, control actions can be initiated to eliminate the problem. Problems associated with the activated sludge process can usually be related to four conditions (Schuyler, 1995). Any of these can occur by themselves or with any of the other conditions. The first is foam. So much foam can accumulate that it becomes a safety problem by spilling out onto walkways. It becomes a regulatory problem as it spills from clarifier surfaces into the effluent. The second, high effluent suspended solids, can be caused by many things. It is the most common problem found in activated sludge systems.
    [Show full text]
  • Trickling Filters English , PDF, 1.29MB
    FS-BIO-003 TECHNOLOGY FACT SHEETS FOR EFFLUENT TREATMENT PLANTS OF TEXTILE INDUSTRY TRICKLING FILTERS SERIES: SECONDARY TREATMENTS TITLE TRICKLING FILTERS (FS-BIO-003) Last update September 2015 Last revised TRICKLING FILTERS FS-BIO-003 TRICKLING FILTERS (FS-BIO-003) Date September 2015 Authors Alfredo Jácome Burgos Joaquín Suárez López Pablo Ures Rodríguez Revised by Last update Date Done by: Update main topics TRICKLING FILTERS FS-BIO-003 Page 1 of 17 INDEX 1. - INTRODUCTION 1.1.- Trickling filter classifications 1.1.1.- Standard Rate Filter 1.1.2.- Intermediate Rate Filter 1.1.3.- High Rate Filter 1.1.4.- Roughing Filter 1.1.5.- Super High Rate Filter 2.- DESCRIPTION 2.1.- Filling media characteristics 2.2.- Wastewater distribution characteristics 2.3.- Aeration characteristics 3.- DESIGN 3.1.- Design parameters 3.2.- Sizing criteria 3.2.1.- Low and medium load beds 3.2.2.- Roughing filter 3.3.- Application intensity (SK) 3.4.- Forced aeration 3.5.- Sludge production 4.- SECONDARY CLARIFIER 4.1.- Design variables 4.2.- Summary of design values 5.- SPECIFIC TECHNICAL CONDITIONS 6.- SPECIFICATIONS IN THE TREATMENT OF WASTEWATER OF TEXTILE INDUSTRY 7.- PARAMETERS AND CONTROL STRATEGIES 8.- OPERATION TROUBLESHOOTING BIBLIOGRAPHY ANNEX 1 REQUIRED SURFACE ESTIMATION ANNEX 2 GRAPHIC DESCRIPTION OF PROCESSING UNITS TRICKLING FILTERS FS-BIO-003 Page 2 of 17 1. - INTRODUCTION The operating principle of a trickling filter consists on a pre-treated or settled wastewater, flowing through a filtering bed where a bacterial culture, called biofilm, has been adhered and developed. The wastewater, thus irrigated on the filter material (or filling material), contacts with the biomass achieving pollution degradation.
    [Show full text]
  • Wastewater Technology Fact Sheet: Trickling Filters
    United States Office of Water EPA 832-F-00-014 Environmental Protection Washington, D.C. September 2000 Agency Wastewater Technology Fact Sheet Trickling Filters DESCRIPTION ADVANTAGES AND DISADVANTAGES Trickling filters (TFs) are used to remove organic Some advantages and disadvantages of TFs are matter from wastewater. The TF is an aerobic listed below. treatment system that utilizes microorganisms attached to a medium to remove organic matter Advantages from wastewater. This type of system is common to a number of technologies such as rotating C Simple, reliable, biological process. biological contactors and packed bed reactors (bio- towers). These systems are known as C Suitable in areas where large tracts of land attached-growth processes. In contrast, systems in are not available for land intensive treatment which microorganisms are sustained in a liquid are systems. known as suspended-growth processes. C May qualify for equivalent secondary APPLICABILITY discharge standards. TFs enable organic material in the wastewater to be C Effective in treating high concentrations of adsorbed by a population of microorganisms organics depending on the type of medium (aerobic, anaerobic, and facultative bacteria; fungi; used. algae; and protozoa) attached to the medium as a biological film or slime layer (approximately 0.1 to C Appropriate for small- to medium-sized 0.2 mm thick). As the wastewater flows over the communities. medium, microorganisms already in the water gradually attach themselves to the rock, slag, or C Rapidly reduce soluble BOD5 in applied plastic surface and form a film. The organic wastewater. material is then degraded by the aerobic microorganisms in the outer part of the slime layer.
    [Show full text]
  • Trickling Filter Technology for Treating Abattoir Wastewater
    Trickling Filter Technology for Treating Abattoir Wastewater Project code: 2014 /1016 Prepared by: GHD Pty Ltd Date Published: April 2015 Published by: Australian Meat Processor Corporation Disclaimer: The information contained within this publication has been prepared by a third party commissioned by Australian Meat Processor Corporation Ltd (AMPC). It does not necessarily reflect the opinion or position of AMPC. Care is taken to ensure the accuracy of the information contained in this publication. However, AMPC cannot accept responsibility for the accuracy or completeness of the information or opinions contained in this publication, nor does it endorse or adopt the information contained in this report. No part of this work may be reproduced, copied, published, communicated or adapted in any form or by any means (electronic or otherwise) without the express written permission of Australian Meat Processor Corporation Ltd. All rights are expressly reserved. Requests for further authorisation should be directed to the Chief Executive Officer, AMPC, Suite 1, Level 5, 110 Walker Street Sydney NSW. Table of Contents Executive Summary 4 1. Introduction 6 1.1 Project Background 6 1.2 Objectives 6 1.3 Workscope and Basis 6 1.4 Overview 7 2. Treatment of Abattoir Wastewater 11 2.1 Characterisation of Wastewater 11 2.2 Typical Treatment Train 11 2.3 Treatment 12 3. Trickling Filtration 15 3.1 General 15 3.2 Description 15 3.3 Trickling Filter Media 17 3.4 Construction 18 3.5 Recirculation 19 3.6 Air Access / Circulation 19 3.7 Broad Design 19 3.8 Activated Sludge Versus Trickling Filters 22 4.
    [Show full text]
  • Advanced Trickling Filtration and RBC's Study Guide September 1995 Edition
    Wisconsin Department of Natural Resources Wastewater Operator Certification Advanced Trickling Filtration and RBC's Study Guide September 1995 Edition Subclass B Wisconsin Department of Natural Resources Bureau of Science Services Operator Certification Program P.O. Box 7921, Madison, WI 53707 http://dnr.wi.gov The Wisconsin Department of Natural Resources provides equal opportunity in its employment, programs, services, and functions under an Affirmative Action Plan. If you have any questions, please write to Equal Opportunity Office, Department of Interior, Washington, D.C. 20240. This publication is available in alternative format (large print, Braille, audio tape. etc.) upon request. Please call (608) 266-0531 for more information. Printed on 12/07/12 Advanced Trickling Filtration and RBC's Study Guide - September 1995 Edition Preface This operator's study guide represents the results of an ambitious program. Operators of wastewater facilities, regulators, educators and local officials, jointly prepared the objectives and exam questions for this subclass. How to use this study guide with references In preparation for the exams you should: 1. Read all of the key knowledges for each objective. 2. Use the resources listed at the end of the study guide for additional information. 3. Review all key knowledges until you fully understand them and know them by memory. It is advisable that the operator take classroom or online training in this process before attempting the certification exam. Choosing A Test Date Before you choose a test date, consider the training opportunities available in your area. A listing of training opportunities and exam dates is available on the internet at http://dnr.wi.gov, keyword search "operator certification".
    [Show full text]