Endomorphism Rings of Abelian Groups Algebras and Applications

Total Page:16

File Type:pdf, Size:1020Kb

Endomorphism Rings of Abelian Groups Algebras and Applications Endomorphism Rings of Abelian Groups Algebras and Applications Volume 2 Editors: F. Van Oystaeyen University ofAntwe1p, UIA, Wilrijk, Belgium A. Verschoren University ofAntwe1p, RUCA, Antwe1p, Belgium Advisory Board: M. Artin Massachusetts Institute of Technology Cambridge, MA, USA A. Bondal Moscow State University, Moscow, Russia I. Reiten Norwegian University of Science and Technology Trondheim, Norway The theory of rings, algebras and their representations has evolved into a well-defined subdiscipline of general algebra, combining its proper methodology with that of other disciplines and thus leading to a wide variety of applications ranging from algebraic geometry and number theory to theoretical physics and robotics. Due to this, many recent results in these domains were dispersed in the literature, making it very hard for researchers to keep track of recent developments. In order to remedy this, Algebras and Applications aims to publish carefully refereed monographs containing up-to-date information about progress in the field of algebras and their representations, their classical impact on geometry and algebraic topology and applications in related domains, such as physics or discrete mathematics. Particular emphasis will thus be put on the state-of-the-art topics including rings of differential operators, Lie algebras and super-algebras, groups rings and algebras, C* algebras, Hopf algebras and quantum groups, as well as their applications. Endomorphism Rings of Abelian Groups by Piotr A. Krylov Tomsk State University, Tomsk, Russia Alexander V. Mikhalev Moscow State University, Moscow, Russia and Askar A. Tuganbaev Moscow Power Engineering Institute (Technological University), Moscow, Russia SPRINGER-SCIENCE+BUSINESS MEDIA, B.V. A c.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 978-90-481-6349-6 ISBN 978-94-017-0345-1 (eBook) DOI 10.1007/978-94-017-0345-1 Printed on acid-free paper All Rights Reserved © 2003 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 2003 Softcover reprint of the hardcover 1st edition 2003 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. CONTENTS Preface Vll Symbols Xl Chapter I. General Results on Endomorphism Rings 1 1. Rings, Modules, and Categories 1 2. Abelian Groups 11 3. Examples and Some Properties of Endomorphism Rings 21 4. Torsion-Free Rings of Finite Rank 29 5. Quasi-Endomorphism Rings of Torsion-Free Groups 32 6. E-Modules and E-Rings 42 7. Torsion-Free Groups Coinciding with Their Pseudo-Socles 49 8. Irreducible Torsion-Free Groups 55 Chapter II. Groups as Modules over Their Endomorphism Rings 65 9. Endo-Artinian and Endo-Noetherian Groups 66 10. Endo-Flat Primary Groups 68 11. Endo-Finite Torsion-Free Groups of Finite Rank 73 12. Endo-Projective and Endo-Generator Torsion-Free Groups of Finite Rank 80 13. Endo-Flat Torsion-Free Groups of Finite Rank 89 Chapter III. Ring Properties of Endomorphism Rings 99 14. The Finite Topology 99 15. Endomorphism Rings with the Minimum Condition 103 16. Hom(A, B) as a Noetherian Module over End(B) 106 17. Mixed Groups with Noetherian Endomorphism Rings 112 18. Regular Endomorphism Rings 116 19. Commutative and Local Endomorphism Rings 121 Chapter IV. The Jacobson Radical of the Endomorphism Ring 135 20. The Case of p-groups 136 21. The Radical of the Endomorphism Ring of a Torsion-Free Group of Finite Rank 146 vi 22. The Radical of the Endomorphism Ring of Algebraically Compact and Completely Decomposable Torsion-Free Groups 162 23. The Nilpotence of the Radicals N(End(G)) and J(End(G)) 172 Chapter V. Isomorphism and Realization Theorems 181 24. The Baer-Kaplansky Theorem 183 25. Continuous and Discrete Isomorphisms of Endomorphism Rings 186 26. Endomorphism Rings of Groups with Large Divisible Subgroups 198 27. Endomorphism Rings of Mixed Groups of Torsion-Free Rank 1 206 28. The Corner Theorem on Split Realization 216 29. Realizations for Endomorphism Rings of Torsion-Free Groups 228 30. The Realization Problem for Endomorphism Rings of Mixed Groups 241 Chapter VI. Hereditary Endomorphism Rings 253 31. Self-Small Groups 254 32. Categories of Groups and Modules over Endomorphism Rings 263 33. Faithful Groups 280 34. Faithful Endo-Flat Groups 291 35. Groups with Right Hereditary Endomorphism Rings 312 36. Groups of Generalized Rank 1 331 37. Torsion-Free Groups with Hereditary Endomorphism Rings 344 38. Maximal Orders as Endomorphism Rings 350 39. p-Semisimple Groups 361 Chapter VII. Fully Transitive Groups -371 40. Homogeneous Fully Transitive Groups 372 41. Groups whose Quasi-Endomorphism Rings are Division Rings 381 42. Fully Transitive Groups Coinciding with Their Pseudo-Socles 386 43. Fully Transitive Groups with Restrictions on Element Types 391 44. Torsion-Free Groups of p-Ranks :::; 1 400 References 413 Index 440 PREFACE Every Abelian group can be related to an associative ring with an identity element, the ring of all its endomorphisms. Recently the theory of endomor­ phism rings of Abelian groups has become a rapidly developing area of algebra. On the one hand, it can be considered as a part of the theory of Abelian groups; on the other hand, the theory can be considered as a branch of the theory of endomorphism rings of modules and the representation theory of rings. There are several reasons for studying endomorphism rings of Abelian groups: first, it makes it possible to acquire additional information about Abelian groups themselves, to introduce new concepts and methods, and to find new interesting classes of groups; second, it stimulates further develop­ ment of the theory of modules and their endomorphism rings. The theory of endomorphism rings can also be useful for studies of the structure of additive groups of rings, E-modules, and homological properties of Abelian groups. The books of Baer [52] and Kaplansky [245] have played an important role in the early development of the theory of endomorphism rings of Abelian groups and modules. Endomorphism rings of Abelian groups are much stu­ died in monographs of Fuchs [170], [172], and [173]. Endomorphism rings are also studied in the works of Kurosh [287], Arnold [31], and Benabdallah [63]. Various results about endomorphism rings of modules can be found in the books of Anderson and Fuller [27], Facchini [148], Auslander, Reiten, and Small/l[45], Harada [211], Lambek [289], Faith [150], [151], Kasch [248], and Tuganbaev [439], [444]. Achievements in this field are reported in reviews of Mishina [334], [335], [337], [338], [339], Mikhalev [329], Mikhalev and Mishi­ na [332]' Markov, Mikhalev, Skornyakov, and Tuganbaev [315]. The automor­ phism groups of Abelian groups (that is, the groups of invertible elements of endomorphism rings) are studied in the book of Bekker and Kozhukhov [61]. The present book is entirely devoted to endomorphism rings of Abelian groups. The authors have deliberately imposed such restrictions, being sure that the subject of endomorphism rings of Abelian groups is an object on its own, and also that the theory of endomorphism rings of Abelian groups is an excellent introduction to the general theory of endomorphism rings of modules. Nev­ ertheless, sometimes we mention neighbouring results about endomorphism rings of modules. The authors hope that their book will stimulate further development of the theory of endomorphism rings. We have tried to discuss all major parts of this area of algebra thoroughly enough to estimate its value, the variety of methods, the beauty of results, and the measure of difficulty of open problems. Contributions to the theory of endomorphism rings of Abelian groups in the early stage were made by Baer, Corner, Fuchs, Kaplansky, Kulikov, Kurosh, viii Pierce, Reid, Richman, Szele, and Walker. Further development ofthe field has been achieved in works of Albrecht, Arnold, Dugas, Faticoni, Gobel, Goeters, Goldsmith, Hausen, Lady, Liebert, May, Murley, Mutzbauer, Rangaswamy, Schultz, Shelah, Vinsonhaler, Warfield, Wickless, and others. Endomorphism rings of Abelian groups often surprise us. It is hard to decide which methods do prevail here: those of group theory or those of ring theory? Various modules over associative rings are considered. Category methods and topological considerations playa great role in this theory. The main challenge of this theory is to discover connections between properties of a given Abelian group A and properties of its endomorphism ring End(A). This task is very extensive. We can impose various restrictions over the ring End(A) and try to obtain information about the group A itself. The internal structure of endo­ morphism rings is studied, starting with its nil-radical and Jacobson radical. One of the main problems is reconstruction of the group from its endomor­ phism ring. In other words, the problem is to what degree the endomorphisms determine the underlying group. The results connected with this problem, we call the isomorphism theorems. Another fundamental problem with endomor­ phism rings is to find criteria for an abstract ring to be the endomorphism ring of some Abelian group. The corresponding theorems are realization theorems. Any Abelian group A can be naturally considered as a module over its endomorphism ring End( A). So we obtain one more important object of study, the associated module End(A)A. Much attention is devoted to the groups with manyendomorphisms. These problems make up the main content of the book. Thus we can assume that the most part of the book is devoted to the relations between objects mentioned above: an Abelian group A, its endomorphism ring End(A), and the module End(A)A. As a result of the efforts of numerous mathematicians, we can now show these relations, not seen at first sight, in all their variety.
Recommended publications
  • Pub . Mat . UAB Vol . 27 N- 1 on the ENDOMORPHISM RING of A
    Pub . Mat . UAB Vol . 27 n- 1 ON THE ENDOMORPHISM RING OF A FREE MODULE Pere Menal Throughout, let R be an (associative) ring (with 1) . Let F be the free right R-module, over an infinite set C, with endomorphism ring H . In this note we first study those rings R such that H is left coh- erent .By comparison with Lenzing's characterization of those rings R such that H is right coherent [8, Satz 41, we obtain a large class of rings H which are right but not left coherent . Also we are concerned with the rings R such that H is either right (left) IF-ring or else right (left) self-FP-injective . In particular we pro- ve that H is right self-FP-injective if and only if R is quasi-Frobenius (QF) (this is an slight generalization of results of Faith and .Walker [31 which assure that R must be QF whenever H is right self-i .njective) moreover, this occurs if and only if H is a left IF-ring . On the other hand we shall see that if' R is .pseudo-Frobenius (PF), that is R is an . injective cogenera- tortin Mod-R, then H is left self-FP-injective . Hence any PF-ring, R, that is not QF is such that H is left but not right self FP-injective . A left R-module M is said to be FP-injective if every R-homomorphism N -. M, where N is a -finitély generated submodule of a free module F, may be extended to F .
    [Show full text]
  • MA3203 Ring Theory Spring 2019 Norwegian University of Science and Technology Exercise Set 3 Department of Mathematical Sciences
    MA3203 Ring theory Spring 2019 Norwegian University of Science and Technology Exercise set 3 Department of Mathematical Sciences 1 Decompose the following representation into indecomposable representations: 1 1 1 1 1 1 1 1 2 2 2 k k k . α γ 2 Let Q be the quiver 1 2 3 and Λ = kQ. β δ a) Find the representations corresponding to the modules Λei, for i = 1; 2; 3. Let R be a ring and M an R-module. The endomorphism ring is defined as EndR(M) := ff : M ! M j f R-homomorphismg. b) Show that EndR(M) is indeed a ring. c) Show that an R-module M is decomposable if and only if its endomorphism ring EndR(M) contains a non-trivial idempotent, that is, an element f 6= 0; 1 such that f 2 = f. ∼ Hint: If M = M1 ⊕ M2 is decomposable, consider the projection morphism M ! M1. Conversely, any idempotent can be thought of as a projection mor- phism. d) Using c), show that the representation corresponding to Λe1 is indecomposable. ∼ Hint: Prove that EndΛ(Λe1) = k by showing that every Λ-homomorphism Λe1 ! Λe1 depends on a parameter l 2 k and that every l 2 k gives such a homomorphism. 3 Let A be a k-algebra, e 2 A be an idempotent and M be an A-module. a) Show that eAe is a k-algebra and that e is the identity element. For two A-modules N1, N2, we denote by HomA(N1;N2) the space of A-module morphism from N1 to N2.
    [Show full text]
  • Idempotent Lifting and Ring Extensions
    IDEMPOTENT LIFTING AND RING EXTENSIONS ALEXANDER J. DIESL, SAMUEL J. DITTMER, AND PACE P. NIELSEN Abstract. We answer multiple open questions concerning lifting of idempotents that appear in the literature. Most of the results are obtained by constructing explicit counter-examples. For instance, we provide a ring R for which idempotents lift modulo the Jacobson radical J(R), but idempotents do not lift modulo J(M2(R)). Thus, the property \idempotents lift modulo the Jacobson radical" is not a Morita invariant. We also prove that if I and J are ideals of R for which idempotents lift (even strongly), then it can be the case that idempotents do not lift over I + J. On the positive side, if I and J are enabling ideals in R, then I + J is also an enabling ideal. We show that if I E R is (weakly) enabling in R, then I[t] is not necessarily (weakly) enabling in R[t] while I t is (weakly) enabling in R t . The latter result is a special case of a more general theorem about completions.J K Finally, we give examplesJ K showing that conjugate idempotents are not necessarily related by a string of perspectivities. 1. Introduction In ring theory it is useful to be able to lift properties of a factor ring of R back to R itself. This is often accomplished by restricting to a nice class of rings. Indeed, certain common classes of rings are defined precisely in terms of such lifting properties. For instance, semiperfect rings are those rings R for which R=J(R) is semisimple and idempotents lift modulo the Jacobson radical.
    [Show full text]
  • Sheet 8 Solutions Are Due on 08.06.18
    Dr. Severin Bunk Algebra und Zahlentheorie Fachbereich Mathematik Algebraic Topology Universit¨atHamburg Summer 2018 Sheet 8 Solutions are due on 08.06.18. Problem 8.1 (a) Show that for each abelian group D, the tensor product ( ) D is right-exact. That is, α β − ⊗ show that for every short exact sequence 0 A B C 0 of abelian groups, there → → → → is an exact sequence of abelian groups α id β idD A D ⊗ D B D ⊗ C D 0 . ⊗ ⊗ ⊗ β (b) Prove that if 0 A α B C 0 is split exact, then for any abelian group D the → → → → induced sequence α id β idD 0 A D ⊗ D B D ⊗ C D 0 . ⊗ ⊗ ⊗ is exact. (c) Is the abelian group (Q, +) free? Show that ( ) Q is exact. − ⊗ Hint: Observe that for any abelian group A and field k, the tensor product A k is a ⊗ k-vector space. For the second part, start by working out the kernel of the map qA : A A Q, a a 1. → ⊗ 7→ ⊗ (d) The rank of an abelian group A can be defined as rk(A) := dim (A Q) . Q ⊗ n Show that if A is finitely generated, i.e. A = Z Zq1 Zqm , then rk(A) = n. Moreover, α β ∼ ⊕ ⊕· · ·⊕ show that if 0 A B C 0 is any short exact sequence of finitely generated abelian → → → → groups, then rk(B) = rk(A) + rk(C) . 1 Problem 8.2 Let X be a a finite CW complex. The Euler characteristic of X is defined as n χ(X) := ( 1) rk Hn(X, Z) Z .
    [Show full text]
  • Ring (Mathematics) 1 Ring (Mathematics)
    Ring (mathematics) 1 Ring (mathematics) In mathematics, a ring is an algebraic structure consisting of a set together with two binary operations usually called addition and multiplication, where the set is an abelian group under addition (called the additive group of the ring) and a monoid under multiplication such that multiplication distributes over addition.a[›] In other words the ring axioms require that addition is commutative, addition and multiplication are associative, multiplication distributes over addition, each element in the set has an additive inverse, and there exists an additive identity. One of the most common examples of a ring is the set of integers endowed with its natural operations of addition and multiplication. Certain variations of the definition of a ring are sometimes employed, and these are outlined later in the article. Polynomials, represented here by curves, form a ring under addition The branch of mathematics that studies rings is known and multiplication. as ring theory. Ring theorists study properties common to both familiar mathematical structures such as integers and polynomials, and to the many less well-known mathematical structures that also satisfy the axioms of ring theory. The ubiquity of rings makes them a central organizing principle of contemporary mathematics.[1] Ring theory may be used to understand fundamental physical laws, such as those underlying special relativity and symmetry phenomena in molecular chemistry. The concept of a ring first arose from attempts to prove Fermat's last theorem, starting with Richard Dedekind in the 1880s. After contributions from other fields, mainly number theory, the ring notion was generalized and firmly established during the 1920s by Emmy Noether and Wolfgang Krull.[2] Modern ring theory—a very active mathematical discipline—studies rings in their own right.
    [Show full text]
  • JETIR Research Journal
    © 2018 JETIR July 2018, Volume 5, Issue 7 www.jetir.org (ISSN-2349-5162) A STUDY ON FREE ABELIAN GROUPS AND ITS PROPERTIES Meera Rose Joseph1 1Assistant Professor, Nirmala College, Muvattupuzha Abstract: An Abelian group, also called a commutative group is a group in which the result of applying the group operation to two group elements does not depend on their order. In this paper we discuss about Free abelian groups and its properties, where Free abelian groups are special cases of Free modules as abelian groups are nothing but modules over the ring. we are taking into account how a Free abelian group is related to Free group and Torsion free abelian group. Also we consider one of the important application of Free abelian groups that is “The proof of Fundamental Theorem of Finitely Generated Abelian Groups” Keywords: Free abelian group, Free modules, Free group, Torsion free abelian group 1. Introduction A group is an ordered pair (G,*), where G is a nonempty set and * is a binary operation on G such that the following properties hold: (1) For all a, b, c ∊ G, a * (b * c) = (a * b) * c. (associative law) (2) There exists e ∊ G such that, for any a ∊ G , a*e = a = e*a. (Existence of an identity) (3) For each a ∊ G, there exits b ∊ G, there exists b ∊ G such that a * b = e = b * a. (existence of an inverse). An Abelian group is a group with the property that a * b = b * a. Again a Free Abelian group is an Abelian group with a basis where a basis is a subset of the elements such that every group element can be found by adding or subtracting a finite number of basis elements and such that every element, its expression as a linear combination of basis elements is unique.
    [Show full text]
  • Computing the Endomorphism Ring of an Ordinary Elliptic Curve Over a Finite Field
    COMPUTING THE ENDOMORPHISM RING OF AN ORDINARY ELLIPTIC CURVE OVER A FINITE FIELD GAETAN BISSON AND ANDREW V. SUTHERLAND Abstract. We present two algorithms to compute the endomorphism ring of an ordinary elliptic curve E defined over a finite field Fq. Under suitable heuristic assumptions, both have subexponential complexity. We bound the complexity of the first algorithm in terms of log q, while our bound for the second algorithm depends primarily on log jDE j, where DE is the discriminant of the order isomorphic to End(E). As a byproduct, our method yields a short certificate that may be used to verify that the endomorphism ring is as claimed. 1. Introduction Let E be an ordinary elliptic curve defined over a finite field Fq, and let π denote the Frobenius endomorphism of E. We may view π as an element of norm q in the p integer ring of some imaginary quadratic field K = Q DK : p t + v D (1) π = K with 4q = t2 − v2D : 2 K The trace of π may be computed as t = q + 1 − #E. Applying Schoof's algorithm to count the points on E=Fq, this can be done in polynomial time [29]. The funda- 2 mental discriminant DK and the integer v are then obtained by factoring 4q − t , which can be accomplished probabilistically in subexponential time [25]. The endomorphism ring of E is isomorphic to an order O(E) of K. Once v and DK are known, there are only finitely many possibilities for O(E), since (2) Z [π] ⊆ O(E) ⊆ OK : 2 Here Z [π] denotes the order generated by π, with discriminant Dπ = v DK , and OK is the maximal order of K (its ring of integers), with discriminant DK .
    [Show full text]
  • On Automorphism Groups and Endomorphism Rings Of
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 210, 1975 ON AUTOMORPHISMGROUPS AND ENDOMORPHISMRINGS OF ABELIANp-GROUPS(i) BY JUTTA HAUSEN ABSTRACT. Let A be a noncyclic abelian p-group where p > 5, and let p A be the maximal divisible subgroup of A. It is shown that A/p A is bounded and nonzero if and only if the automorphism group of A contains a minimal noncentral normal subgroup. This leads to the following connection be- tween the ideal structure of certain rings and the normal structure of their groups of units: if the noncommutative ring R is isomorphic to the full ring of endomorphisms of an abelian p-group, p > 5, then R contains minimal two- sided ideals if and only if the group of units of R contains minimal noncentral normal subgroups. 1. Throughout the following, A is a p-primary abelian group with endomor- phism ring End A and automorphism group Aut A. The maximal divisible sub- group of A is denoted by p°°A. W. Liebert has proved the following result. (1.1) Theorem (Liebert [7, p. 94] ). If either A¡p°°A is unbounded or A = p°°A then End A contains no minimal two-sided ideals. IfA/p°°A is bounded and nonzero then End A contains a unique minimal two-sided ideal. The purpose of this note is to show that, for p 5s 5, the same class of abelian p-groups has a similar characterization in terms of automorphism groups. The following theorem will be established. Note that Aut A is commutative if and only if ^4 has rank at most one (for p # 2; [3, p.
    [Show full text]
  • Endomorphism Rings of Protective Modules
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 155, Number 1, March 1971 ENDOMORPHISM RINGS OF PROTECTIVE MODULES BY ROGER WARE Abstract. The object of this paper is to study the relationship between certain projective modules and their endomorphism rings. Specifically, the basic problem is to describe the projective modules whose endomorphism rings are (von Neumann) regular, local semiperfect, or left perfect. Call a projective module regular if every cyclic submodule is a direct summand. Thus a ring is a regular module if it is a regular ring. It is shown that many other equivalent "regularity" conditions characterize regular modules. (For example, every homomorphic image is fiat.) Every projective module over a regular ring is regular and a number of examples of regular modules over nonregular rings are given. A structure theorem is obtained: every regular module is isomorphic to a direct sum of principal left ideals. It is shown that the endomorphism ring of a finitely generated regular module is a regular ring. Conversely, over a commutative ring a projective module having a regular endomorphism ring is a regular module. Examples are produced to show that these results are the best possible in the sense that the hypotheses of finite generation and commutativity are needed. An applica- tion of these investigations is that a ring R is semisimple with minimum condition if and only if the ring of infinite row matrices over R is a regular ring. Next projective modules having local, semiperfect and left perfect endomorphism rings are studied. It is shown that a projective module has a local endomorphism ring if and only if it is a cyclic module with a unique maximal ideal.
    [Show full text]
  • Endomorphism Rings of Almost Full Formal Groups
    New York Journal of Mathematics New York J. Math. 12 (2006) 219–233. Endomorphism rings of almost full formal groups David J. Schmitz Abstract. Let oK be the integral closure of Zp in a finite field extension K of Qp, and let F be a one-dimensional full formal group defined over oK .We study certain finite subgroups C of F and prove a conjecture of Jonathan Lubin concerning the absolute endomorphism ring of the quotient F/C when F has height 2. We also investigate ways in which this result can be generalized to p-adic formal groups of higher height. Contents Introduction 219 1. p-adic formal groups and isogenies 220 2. Points of finite order of a full formal group 224 3. Deflated subgroups 227 4. Generalizations of Conjecture 1 228 5. Free Tate modules of rank 1 230 6. Special results for height 2 formal groups 232 References 233 Introduction In September, 2000, Jonathan Lubin conveyed to me the following two conjec- tures of his describing the quotients of full and almost full height 2 p-adic formal groups by certain finite subgroups: Conjecture 1. Let F be a full p-adic formal group of height 2, and let C be a cyclic subgroup of F having order pn. Assume that End(F ), the absolute endomorphism o ring of F , is isomorphic to the ring of integers K in a quadratic p-adic number field K; assume further that if K/Qp is totally ramified, then C does not contain o ∼ Z n o ker [π]F , where π is a uniformizer of K .
    [Show full text]
  • Subgroups of Finitely Presented Metabelian Groups of Finite Rank
    J. Austral. Math. Soc. 22 (Series A) (1976), 501-508. SUBGROUPS OF FINITELY PRESENTED METABELIAN GROUPS OF FINITE RANK JAMES BOLER (Received 6 January 1975; revised 9 April 1976) Abstract Let G be a finitely generated metabehan group whose derived group G' has finite rank. It is shown that G can be embedded in a finitely presented metabelian group H with H' of finite rank. Introduction Baumslag (1973) has shown that each finitely generated metabelian group can be embedded in a finitely presented metabelian group. Our objective here is to prove THEOREM 4.1. Let G be a finitely generated metabelian group whose derived group G' has finite rank. Then there exists a finitely presented metabelian group H with H' of finite rank, and an embedding of G into H. The proof of Theorem 4.1 makes use of the well-known connection between finitely generated metabelian groups and modules over finitely generated commutative rings. This relationship is mentioned in Section 1, along with some basic facts about the notion of rank. In Section 2 a residual property of certain modules is established. This property is used in Section 3 and Section 4 to prove Theorem 4.1. 1. Preliminaries We denote the ring of integers by Z and the field of rational numbers by Q. If x and y are elements of a group, we use the standard notation xy = y~lxy;[x, y] = x~'y~'xy. 501 Downloaded from https://www.cambridge.org/core. IP address: 170.106.33.42, on 26 Sep 2021 at 01:04:11, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
    [Show full text]
  • Endomorphism Rings of Finite Global Dimension
    Syracuse University SURFACE Mathematics - Faculty Scholarship Mathematics 5-16-2005 Endomorphism Rings of Finite Global Dimension Graham J. Leuschke Syracuse University Follow this and additional works at: https://surface.syr.edu/mat Part of the Mathematics Commons Recommended Citation Leuschke, Graham J., "Endomorphism Rings of Finite Global Dimension" (2005). Mathematics - Faculty Scholarship. 34. https://surface.syr.edu/mat/34 This Article is brought to you for free and open access by the Mathematics at SURFACE. It has been accepted for inclusion in Mathematics - Faculty Scholarship by an authorized administrator of SURFACE. For more information, please contact [email protected]. ENDOMORPHISM RINGS OF FINITE GLOBAL DIMENSION GRAHAM J. LEUSCHKE Abstract. For a commutative local ring R, consider (noncommutative) R-algebras Λ of the form Λ = EndR(M) where M is a reflexive R-module with nonzero free direct summand. Such algebras Λ of finite global dimension can be viewed as potential substitutes for, or analogues of, a resolution of singularities of Spec R. For example, Van den Bergh has shown that a three-dimensional Gorenstein normal C-algebra with isolated terminal singularities has a crepant resolution of singularities if and only if it has such an algebra Λ with finite global dimension and which is maximal Cohen– Macaulay over R (a “noncommutative crepant resolution of singularities”). We produce algebras Λ = EndR(M) having finite global dimension in two contexts: when R is a reduced one-dimensional complete local ring, or when R is a Cohen–Macaulay local ring of finite Cohen–Macaulay type. If in the latter case R is Gorenstein, then the construction gives a noncommutative crepant resolution of singularities in the sense of Van den Bergh.
    [Show full text]