Purity and Algebraic Compactness for Modules
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pub . Mat . UAB Vol . 27 N- 1 on the ENDOMORPHISM RING of A
Pub . Mat . UAB Vol . 27 n- 1 ON THE ENDOMORPHISM RING OF A FREE MODULE Pere Menal Throughout, let R be an (associative) ring (with 1) . Let F be the free right R-module, over an infinite set C, with endomorphism ring H . In this note we first study those rings R such that H is left coh- erent .By comparison with Lenzing's characterization of those rings R such that H is right coherent [8, Satz 41, we obtain a large class of rings H which are right but not left coherent . Also we are concerned with the rings R such that H is either right (left) IF-ring or else right (left) self-FP-injective . In particular we pro- ve that H is right self-FP-injective if and only if R is quasi-Frobenius (QF) (this is an slight generalization of results of Faith and .Walker [31 which assure that R must be QF whenever H is right self-i .njective) moreover, this occurs if and only if H is a left IF-ring . On the other hand we shall see that if' R is .pseudo-Frobenius (PF), that is R is an . injective cogenera- tortin Mod-R, then H is left self-FP-injective . Hence any PF-ring, R, that is not QF is such that H is left but not right self FP-injective . A left R-module M is said to be FP-injective if every R-homomorphism N -. M, where N is a -finitély generated submodule of a free module F, may be extended to F . -
MA3203 Ring Theory Spring 2019 Norwegian University of Science and Technology Exercise Set 3 Department of Mathematical Sciences
MA3203 Ring theory Spring 2019 Norwegian University of Science and Technology Exercise set 3 Department of Mathematical Sciences 1 Decompose the following representation into indecomposable representations: 1 1 1 1 1 1 1 1 2 2 2 k k k . α γ 2 Let Q be the quiver 1 2 3 and Λ = kQ. β δ a) Find the representations corresponding to the modules Λei, for i = 1; 2; 3. Let R be a ring and M an R-module. The endomorphism ring is defined as EndR(M) := ff : M ! M j f R-homomorphismg. b) Show that EndR(M) is indeed a ring. c) Show that an R-module M is decomposable if and only if its endomorphism ring EndR(M) contains a non-trivial idempotent, that is, an element f 6= 0; 1 such that f 2 = f. ∼ Hint: If M = M1 ⊕ M2 is decomposable, consider the projection morphism M ! M1. Conversely, any idempotent can be thought of as a projection mor- phism. d) Using c), show that the representation corresponding to Λe1 is indecomposable. ∼ Hint: Prove that EndΛ(Λe1) = k by showing that every Λ-homomorphism Λe1 ! Λe1 depends on a parameter l 2 k and that every l 2 k gives such a homomorphism. 3 Let A be a k-algebra, e 2 A be an idempotent and M be an A-module. a) Show that eAe is a k-algebra and that e is the identity element. For two A-modules N1, N2, we denote by HomA(N1;N2) the space of A-module morphism from N1 to N2. -
Idempotent Lifting and Ring Extensions
IDEMPOTENT LIFTING AND RING EXTENSIONS ALEXANDER J. DIESL, SAMUEL J. DITTMER, AND PACE P. NIELSEN Abstract. We answer multiple open questions concerning lifting of idempotents that appear in the literature. Most of the results are obtained by constructing explicit counter-examples. For instance, we provide a ring R for which idempotents lift modulo the Jacobson radical J(R), but idempotents do not lift modulo J(M2(R)). Thus, the property \idempotents lift modulo the Jacobson radical" is not a Morita invariant. We also prove that if I and J are ideals of R for which idempotents lift (even strongly), then it can be the case that idempotents do not lift over I + J. On the positive side, if I and J are enabling ideals in R, then I + J is also an enabling ideal. We show that if I E R is (weakly) enabling in R, then I[t] is not necessarily (weakly) enabling in R[t] while I t is (weakly) enabling in R t . The latter result is a special case of a more general theorem about completions.J K Finally, we give examplesJ K showing that conjugate idempotents are not necessarily related by a string of perspectivities. 1. Introduction In ring theory it is useful to be able to lift properties of a factor ring of R back to R itself. This is often accomplished by restricting to a nice class of rings. Indeed, certain common classes of rings are defined precisely in terms of such lifting properties. For instance, semiperfect rings are those rings R for which R=J(R) is semisimple and idempotents lift modulo the Jacobson radical. -
Pure Injective Modules Relative to Torsion Theories
International Journal of Algebra, Vol. 8, 2014, no. 4, 187 - 194 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2014.429 Pure Injective Modules Relative to Torsion Theories Mehdi Sadik Abbas and Mohanad Farhan Hamid Department of Mathematics, University of Mustansiriya, Baghdad, Iraq Copyright c 2014 Mehdi Sadik Abbas and Mohanad Farhan Hamid. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Let τ be a hereditary torsion theory on the category Mod-R of right R-modules. A right R-module M is called pure τ-injective if it is injec- tive with respect to every pure exact sequence having a τ-torsion cok- ernel. Every module has a pure τ-injective envelope. A module M is called purely quasi τ-injective if it is fully invariant in its pure τ-injective envelope. A module M is called quasi pure τ-injective if maps from τ- dense pure submodules of M into M are extendable to endomorphisms of M. The class of pure τ-injective modules is properly contained in the class of purely quasi τ-injective modules which is in turn properly contained in the class of quasi pure τ-injectives. A torsion theoretic version of each of the concepts of regular and pure semisimple rings is characterized using the above generalizations of pure injectivity. Mathematics Subject Classification: 16D50 Keywords: (quasi) pure injective module, purely quasi injective module, torsion theory 1 Introduction We will denote by R an associative ring with a nonzero identity and by τ = (T ; F) a hereditary torsion theory on the category Mod-R of right R-modules. -
Cyclic Pure Submodules
International Journal of Algebra, Vol. 3, 2009, no. 3, 125 - 135 Cyclic Pure Submodules V. A. Hiremath1 Department of Mathematics, Karnatak University Dharwad-580003, India va hiremath@rediffmail.com Seema S. Gramopadhye2 Department of Mathematics, Karnatak University Dharwad-580003, India e-mail:[email protected] Abstract P.M.Cohn [3] has introduced the notion of purity for R-modules. With respect to purity, flat, absolutely pure and regular modules are studied. In this paper we introduce and study the corresponding no- tions of c-flat, absolutely c-pure and c-regular modules for cyclic pu- rity. We prove that absolutely c-pure R-modules are precisely injective modules. Also we study the relationship between c-flat and torsion-free modules over commutative integral domains and non-commutative non- integral domains. Also, we study the conditions under which c-regular R-modules are semi-simple. Mathematics Subject Classifications: 16D40, 16D50 Keywords: Pure submodules, flat module and regular ring Introduction In this paper, by a ring R we mean an associative ring with unity and by an R-module we mean a unitary right R-module. Z(M) denotes the singular submodule of the R-module M. 1Corresponding author 2The author is supported by University Research Scholarship. 126 V. A. Hiremath and S. S. Gramopadhye A ring R is said to be principal projective, if every principal right ideal is projective. We denote this ring by p.p. The notion of purity has an important role in module theory and in model theory. In model theory, the notion of pure exact sequence is more useful than split exact sequences. -
Ring (Mathematics) 1 Ring (Mathematics)
Ring (mathematics) 1 Ring (mathematics) In mathematics, a ring is an algebraic structure consisting of a set together with two binary operations usually called addition and multiplication, where the set is an abelian group under addition (called the additive group of the ring) and a monoid under multiplication such that multiplication distributes over addition.a[›] In other words the ring axioms require that addition is commutative, addition and multiplication are associative, multiplication distributes over addition, each element in the set has an additive inverse, and there exists an additive identity. One of the most common examples of a ring is the set of integers endowed with its natural operations of addition and multiplication. Certain variations of the definition of a ring are sometimes employed, and these are outlined later in the article. Polynomials, represented here by curves, form a ring under addition The branch of mathematics that studies rings is known and multiplication. as ring theory. Ring theorists study properties common to both familiar mathematical structures such as integers and polynomials, and to the many less well-known mathematical structures that also satisfy the axioms of ring theory. The ubiquity of rings makes them a central organizing principle of contemporary mathematics.[1] Ring theory may be used to understand fundamental physical laws, such as those underlying special relativity and symmetry phenomena in molecular chemistry. The concept of a ring first arose from attempts to prove Fermat's last theorem, starting with Richard Dedekind in the 1880s. After contributions from other fields, mainly number theory, the ring notion was generalized and firmly established during the 1920s by Emmy Noether and Wolfgang Krull.[2] Modern ring theory—a very active mathematical discipline—studies rings in their own right. -
Computing the Endomorphism Ring of an Ordinary Elliptic Curve Over a Finite Field
COMPUTING THE ENDOMORPHISM RING OF AN ORDINARY ELLIPTIC CURVE OVER A FINITE FIELD GAETAN BISSON AND ANDREW V. SUTHERLAND Abstract. We present two algorithms to compute the endomorphism ring of an ordinary elliptic curve E defined over a finite field Fq. Under suitable heuristic assumptions, both have subexponential complexity. We bound the complexity of the first algorithm in terms of log q, while our bound for the second algorithm depends primarily on log jDE j, where DE is the discriminant of the order isomorphic to End(E). As a byproduct, our method yields a short certificate that may be used to verify that the endomorphism ring is as claimed. 1. Introduction Let E be an ordinary elliptic curve defined over a finite field Fq, and let π denote the Frobenius endomorphism of E. We may view π as an element of norm q in the p integer ring of some imaginary quadratic field K = Q DK : p t + v D (1) π = K with 4q = t2 − v2D : 2 K The trace of π may be computed as t = q + 1 − #E. Applying Schoof's algorithm to count the points on E=Fq, this can be done in polynomial time [29]. The funda- 2 mental discriminant DK and the integer v are then obtained by factoring 4q − t , which can be accomplished probabilistically in subexponential time [25]. The endomorphism ring of E is isomorphic to an order O(E) of K. Once v and DK are known, there are only finitely many possibilities for O(E), since (2) Z [π] ⊆ O(E) ⊆ OK : 2 Here Z [π] denotes the order generated by π, with discriminant Dπ = v DK , and OK is the maximal order of K (its ring of integers), with discriminant DK . -
Pure Baer Injective Modules
Internat. J. Math. & Math. Sci. 529 VOL. 20 NO. 3 (1997) 529-538 PURE BAER INJECTIVE MODULES NADA M. AL THANI Department of Mathematics Faculty of Science Qatar University Doha, QATAR (Received April 19,1995 and in revised form April 16, 1996) ABSTRACT. In this paper we generalize the notion of pure injectivity of modules by introducing what we call a pure Baer injective module. Some properties and some characterization of such modules are established. We also introduce two notions closely related to pure Baer injectivity; namely, the notions of a E-pure Baer injective module and that of SSBI-ring. A ring R is an SSBI-ring if and only if every smisimple R-module is pure Baer injective. To investigate such algebraic structures we had to define what we call p-essential extension modules, pure relative complement submodules, left pure hereditary tings and some other related notions. The basic properties of these concepts and their interrelationships are explored, and are further related to the notions of pure split modules. KEY WORDS AND PHRASES: Pure and E-pure Baer injective modules, pure hereditary ring, pure- split module, P-essential extension submodule, pure relative complement submodule, SSBI-ring. 1991 AMS SUBJECT CLASSnZICATION CODES: 13C. 0. INTRODUCTION In this introduction we establish terminology and recall a summary of some basic definitions and results in the literature necessary for subsequent sections of the paper. Throughout R will denote a ring with identity. Unless otherwise stated, all modules will be unitary left R-modules, and all homomorphisms will be R-homomorphisms. A short exact sequence 0---, N---} M---} K--} 0 of left R-modules is said to be pure if" L (R) RN L (R) RM is a monomorphism for every right R-module L. -
Decomposition of Graded Modules Cary Webb1
PROCEEDINGS of the AMERICAN MATHEMATICAL SOCIETY Volume 94, Number 4, August 1985 DECOMPOSITION OF GRADED MODULES CARY WEBB1 ABSTRACT. In this paper, the primary objective is to obtain decomposition theorems for graded modules over the polynomial ring k[x], where k denotes a field. There is some overlap with recent work of Hoppner and Lenzing. The results obtained include identification of the free, projective, and injective modules. It is proved that a module that is either reduced and locally finite or bounded below is a direct sum of cyclic submodules. Pure submodules are direct summands if they are bounded below. In such case, the pure submodule is itself a direct sum of cyclic submodules. It is also noted that Cohen and Gluck's Stacked Bases Theorem remains true if the modules are graded. I. Introduction. The purpose of this study is to obtain decomposition theo- rems for graded /c[i]-modules, where k denotes a field. Such a module is a direct sum, in the upgraded sense, of fc-vector spaces V¿ indexed over the positive and negative integers. The operation x on V¿ is an (arbitrary) linear transformation Xi'.Vi —» Vi+i. (Thus x actually represents a countable family of distinct linear transformations.) The V¿'s are called the homogeneous components of V. Our most important kind of results are those which decompose a graded k[x\- module into a direct sum of cyclic submodules and also those results which show how a submodule can be a direct summand. Important too but more easily derived are the identities of injective objects and the fact that all projective objects are free. -
On Automorphism Groups and Endomorphism Rings Of
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 210, 1975 ON AUTOMORPHISMGROUPS AND ENDOMORPHISMRINGS OF ABELIANp-GROUPS(i) BY JUTTA HAUSEN ABSTRACT. Let A be a noncyclic abelian p-group where p > 5, and let p A be the maximal divisible subgroup of A. It is shown that A/p A is bounded and nonzero if and only if the automorphism group of A contains a minimal noncentral normal subgroup. This leads to the following connection be- tween the ideal structure of certain rings and the normal structure of their groups of units: if the noncommutative ring R is isomorphic to the full ring of endomorphisms of an abelian p-group, p > 5, then R contains minimal two- sided ideals if and only if the group of units of R contains minimal noncentral normal subgroups. 1. Throughout the following, A is a p-primary abelian group with endomor- phism ring End A and automorphism group Aut A. The maximal divisible sub- group of A is denoted by p°°A. W. Liebert has proved the following result. (1.1) Theorem (Liebert [7, p. 94] ). If either A¡p°°A is unbounded or A = p°°A then End A contains no minimal two-sided ideals. IfA/p°°A is bounded and nonzero then End A contains a unique minimal two-sided ideal. The purpose of this note is to show that, for p 5s 5, the same class of abelian p-groups has a similar characterization in terms of automorphism groups. The following theorem will be established. Note that Aut A is commutative if and only if ^4 has rank at most one (for p # 2; [3, p. -
Endomorphism Rings of Protective Modules
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 155, Number 1, March 1971 ENDOMORPHISM RINGS OF PROTECTIVE MODULES BY ROGER WARE Abstract. The object of this paper is to study the relationship between certain projective modules and their endomorphism rings. Specifically, the basic problem is to describe the projective modules whose endomorphism rings are (von Neumann) regular, local semiperfect, or left perfect. Call a projective module regular if every cyclic submodule is a direct summand. Thus a ring is a regular module if it is a regular ring. It is shown that many other equivalent "regularity" conditions characterize regular modules. (For example, every homomorphic image is fiat.) Every projective module over a regular ring is regular and a number of examples of regular modules over nonregular rings are given. A structure theorem is obtained: every regular module is isomorphic to a direct sum of principal left ideals. It is shown that the endomorphism ring of a finitely generated regular module is a regular ring. Conversely, over a commutative ring a projective module having a regular endomorphism ring is a regular module. Examples are produced to show that these results are the best possible in the sense that the hypotheses of finite generation and commutativity are needed. An applica- tion of these investigations is that a ring R is semisimple with minimum condition if and only if the ring of infinite row matrices over R is a regular ring. Next projective modules having local, semiperfect and left perfect endomorphism rings are studied. It is shown that a projective module has a local endomorphism ring if and only if it is a cyclic module with a unique maximal ideal. -
Universitext
Universitext For further volumes: http://www.springer.com/series/223 Joseph J. Rotman An Introduction to Homological Algebra Second Edition 123 Joseph J. Rotman Department of Mathematics University of Illinois at Urbana-Champaign Urbana IL 61801 USA [email protected] Editorial board: Sheldon Axler, San Francisco State University Vincenzo Capasso, Universita` degli Studi di Milano Carles Casacuberta, Universitat de Barcelona Angus MacIntyre, Queen Mary, University of London Kenneth Ribet, University of California, Berkeley Claude Sabbah, CNRS, Ecole´ Polytechnique Endre Suli,¨ University of Oxford Wojbor Woyczynski, Case Western Reserve University ISBN: 978-0-387-24527-0 e-ISBN: 978-0-387-68324-9 DOI 10.1007/978-0-387-68324-9 Library of Congress Control Number: 2008936123 Mathematics Subject Classification (2000): 18-01 c Springer Science+Business Media, LLC 2009 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper springer.com To the memory of my mother Rose Wolf Rotman Contents Preface to the Second Edition ..................