Universitext

Total Page:16

File Type:pdf, Size:1020Kb

Universitext Universitext For further volumes: http://www.springer.com/series/223 Joseph J. Rotman An Introduction to Homological Algebra Second Edition 123 Joseph J. Rotman Department of Mathematics University of Illinois at Urbana-Champaign Urbana IL 61801 USA [email protected] Editorial board: Sheldon Axler, San Francisco State University Vincenzo Capasso, Universita` degli Studi di Milano Carles Casacuberta, Universitat de Barcelona Angus MacIntyre, Queen Mary, University of London Kenneth Ribet, University of California, Berkeley Claude Sabbah, CNRS, Ecole´ Polytechnique Endre Suli,¨ University of Oxford Wojbor Woyczynski, Case Western Reserve University ISBN: 978-0-387-24527-0 e-ISBN: 978-0-387-68324-9 DOI 10.1007/978-0-387-68324-9 Library of Congress Control Number: 2008936123 Mathematics Subject Classification (2000): 18-01 c Springer Science+Business Media, LLC 2009 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper springer.com To the memory of my mother Rose Wolf Rotman Contents Preface to the Second Edition ................... x How to Read This Book .......................xiii Chapter 1 Introduction 1.1 Simplicial Homology . ..................... 1 1.2 Categories and Functors ..................... 7 1.3 Singular Homology . ..................... 29 Chapter 2 Hom and Tensor 2.1 Modules . ............................ 37 2.2 Tensor Products . ..................... 69 2.2.1 Adjoint Isomorphisms . ..................... 91 Chapter 3 Special Modules 3.1 Projective Modules . ..................... 98 3.2 Injective Modules . .....................115 3.3 Flat Modules . .....................131 3.3.1Purity..............................146 Chapter 4 Specific Rings 4.1 Semisimple Rings . .....................154 4.2 von Neumann Regular Rings . ..............159 4.3 Hereditary and Dedekind Rings . ..............160 vii viii Contents 4.4 Semihereditary and Prufer¨ Rings . ..............169 4.5 Quasi-Frobenius Rings .....................173 4.6 Semiperfect Rings . .....................179 4.7 Localization . .....................188 4.8 Polynomial Rings . .....................203 Chapter 5 Setting the Stage 5.1 Categorical Constructions . ..............213 5.2 Limits..............................229 5.3 Adjoint Functor Theorem for Modules . ..........256 5.4 Sheaves.............................273 5.4.1 Manifolds ............................288 5.4.2 Sheaf Constructions . .....................294 5.5 Abelian Categories . .....................303 5.5.1Complexes............................317 Chapter 6 Homology 6.1 Homology Functors . .....................323 6.2 Derived Functors . .....................340 6.2.1 Left Derived Functors . .....................343 6.2.2 Axioms . ............................357 6.2.3 Covariant Right Derived Functors . ..............364 6.2.4 Contravariant Right Derived Functors . ..........369 6.3 Sheaf Cohomology . .....................377 6.3.1 Cechˇ Cohomology . .....................384 6.3.2 Riemann–Roch Theorem . ..............392 Chapter 7 Tor and Ext 7.1 Tor................................404 7.1.1 Domains . ............................412 7.1.2 Localization . .....................415 7.2 Ext................................418 7.2.1BaerSum............................428 7.3 Cotorsion Groups . .....................438 7.4 Universal Coefficients . .....................448 Chapter 8 Homology and Rings 8.1 Dimensions of Rings . .....................453 8.2 Hilbert’s Syzygy Theorem . ..............467 8.3 Stably Free Modules . .....................476 8.4 Commutative Noetherian Local Rings . ..........484 Contents ix Chapter 9 Homology and Groups 9.1 Group Extensions . .....................495 9.1.1 Semidirect Products . .....................500 9.1.2 General Extensions and Cohomology ..............504 9.1.3 Stabilizing Automorphisms . ..............514 9.2 Group Cohomology . .....................519 9.3 Bar Resolutions . .....................525 9.4 Group Homology . .....................535 9.4.1 Schur Multiplier . .....................541 9.5 Change of Groups . .....................559 9.5.1 Restriction and Inflation .....................564 9.6 Transfer . ............................572 9.7 Tate Groups . .....................580 9.8 Outer Automorphisms of p-Groups . ..............587 9.9 Cohomological Dimension . ..............591 9.10 Division Rings and Brauer Groups . ..............595 Chapter 10 Spectral Sequences 10.1 Bicomplexes . .....................609 10.2 Filtrations and Exact Couples . ..............616 10.3 Convergence . .....................624 10.4 Homology of the Total Complex . ..............628 10.5 Cartan–Eilenberg Resolutions . ..............647 10.6 Grothendieck Spectral Sequences . ..............656 10.7 Groups . ............................660 10.8 Rings . ............................666 10.9Sheaves.............................675 10.10 Kunneth¨ Theorems . .....................678 References ...............................689 Special Notation ............................695 Index ...................................697 Preface to the Second Edition Homological Algebra has grown in the nearly three decades since the first edi- tion of this book appeared in 1979. Two books discussing more recent results are Weibel, An Introduction to Homological Algebra, 1994, and Gelfand– Manin, Methods of Homological Algebra, 2003. In their Foreword, Gelfand and Manin divide the history of Homological Algebra into three periods: the first period ended in the early 1960s, culminating in applications of Homo- logical Algebra to regular local rings. The second period, greatly influenced by the work of A. Grothendieck and J.-P. Serre, continued through the 1980s; it involves abelian categories and sheaf cohomology. The third period, in- volving derived categories and triangulated categories, is still ongoing. Both of these newer books discuss all three periods (see also Kashiwara–Schapira, Categories and Sheaves). The original version of this book discussed the first period only; this new edition remains at the same introductory level, but it now introduces the second period as well. This change makes sense peda- gogically, for there has been a change in the mathematics population since 1979; today, virtually all mathematics graduate students have learned some- thing about functors and categories, and so I can now take the categorical viewpoint more seriously. When I was a graduate student, Homological Algebra was an unpopular subject. The general attitude was that it was a grotesque formalism, boring to learn, and not very useful once one had learned it. Perhaps an algebraic topologist was forced to know this stuff, but surely no one else should waste time on it. The few true believers were viewed as workers at the fringe of mathematics who kept tinkering with their elaborate machine, smoothing out rough patches here and there. x Preface to the Second Edition xi This attitude changed dramatically when J.-P. Serre characterized regular local rings using Homological Algebra (they are the commutative noetherian local rings of “finite global dimension”), for this enabled him to prove that any localization of a regular local ring is itself regular (until then, only spe- cial cases of this were known). At the same time, M. Auslander and D. A. Buchsbaum also characterized regular local rings, and they went on to com- plete work of M. Nagata by using global dimension to prove that every regular local ring is a unique factorization domain. As Grothendieck and Serre revolu- tionized Algebraic Geometry by introducing schemes and sheaves, resistance to Homological Algebra waned. Today, it is just another standard tool in a mathematician’s kit. For more details, we recommend C. A. Weibel’s chapter, “History of Homological Algebra,” in the book of James, History of Topology. Homological Algebra presents a great pedagogical challenge for authors and for readers. At first glance, its flood of elementary definitions (which often originate in other disciplines) and its space-filling diagrams appear for- bidding. To counter this first impression, S. Lang set the following exercise on page 105 of his book, Algebra: Take any book on homological algebra and prove all the theorems without looking at the proofs given in that book. Taken literally, the statement of the exercise is absurd. But its spirit is ab- solutely accurate; the subject only appears difficult. However, having rec- ognized the elementary character of much of the early material, one is often tempted to “wave one’s hands”: to pretend that minutiae always behave well. It should come as no surprise that danger lurks in this attitude. For this rea- son, I include many details in the beginning, at the risk of boring some readers by so doing (of course, such readers are free to turn the page). My intent is twofold: to allow readers to see that complete proofs can, in fact, be written
Recommended publications
  • Injective Modules: Preparatory Material for the Snowbird Summer School on Commutative Algebra
    INJECTIVE MODULES: PREPARATORY MATERIAL FOR THE SNOWBIRD SUMMER SCHOOL ON COMMUTATIVE ALGEBRA These notes are intended to give the reader an idea what injective modules are, where they show up, and, to a small extent, what one can do with them. Let R be a commutative Noetherian ring with an identity element. An R- module E is injective if HomR( ;E) is an exact functor. The main messages of these notes are − Every R-module M has an injective hull or injective envelope, de- • noted by ER(M), which is an injective module containing M, and has the property that any injective module containing M contains an isomorphic copy of ER(M). A nonzero injective module is indecomposable if it is not the direct • sum of nonzero injective modules. Every injective R-module is a direct sum of indecomposable injective R-modules. Indecomposable injective R-modules are in bijective correspondence • with the prime ideals of R; in fact every indecomposable injective R-module is isomorphic to an injective hull ER(R=p), for some prime ideal p of R. The number of isomorphic copies of ER(R=p) occurring in any direct • sum decomposition of a given injective module into indecomposable injectives is independent of the decomposition. Let (R; m) be a complete local ring and E = ER(R=m) be the injec- • tive hull of the residue field of R. The functor ( )_ = HomR( ;E) has the following properties, known as Matlis duality− : − (1) If M is an R-module which is Noetherian or Artinian, then M __ ∼= M.
    [Show full text]
  • Dimension Theory and Systems of Parameters
    Dimension theory and systems of parameters Krull's principal ideal theorem Our next objective is to study dimension theory in Noetherian rings. There was initially amazement that the results that follow hold in an arbitrary Noetherian ring. Theorem (Krull's principal ideal theorem). Let R be a Noetherian ring, x 2 R, and P a minimal prime of xR. Then the height of P ≤ 1. Before giving the proof, we want to state a consequence that appears much more general. The following result is also frequently referred to as Krull's principal ideal theorem, even though no principal ideals are present. But the heart of the proof is the case n = 1, which is the principal ideal theorem. This result is sometimes called Krull's height theorem. It follows by induction from the principal ideal theorem, although the induction is not quite straightforward, and the converse also needs a result on prime avoidance. Theorem (Krull's principal ideal theorem, strong version, alias Krull's height theorem). Let R be a Noetherian ring and P a minimal prime ideal of an ideal generated by n elements. Then the height of P is at most n. Conversely, if P has height n then it is a minimal prime of an ideal generated by n elements. That is, the height of a prime P is the same as the least number of generators of an ideal I ⊆ P of which P is a minimal prime. In particular, the height of every prime ideal P is at most the number of generators of P , and is therefore finite.
    [Show full text]
  • Pure Injective Modules Relative to Torsion Theories
    International Journal of Algebra, Vol. 8, 2014, no. 4, 187 - 194 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2014.429 Pure Injective Modules Relative to Torsion Theories Mehdi Sadik Abbas and Mohanad Farhan Hamid Department of Mathematics, University of Mustansiriya, Baghdad, Iraq Copyright c 2014 Mehdi Sadik Abbas and Mohanad Farhan Hamid. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Let τ be a hereditary torsion theory on the category Mod-R of right R-modules. A right R-module M is called pure τ-injective if it is injec- tive with respect to every pure exact sequence having a τ-torsion cok- ernel. Every module has a pure τ-injective envelope. A module M is called purely quasi τ-injective if it is fully invariant in its pure τ-injective envelope. A module M is called quasi pure τ-injective if maps from τ- dense pure submodules of M into M are extendable to endomorphisms of M. The class of pure τ-injective modules is properly contained in the class of purely quasi τ-injective modules which is in turn properly contained in the class of quasi pure τ-injectives. A torsion theoretic version of each of the concepts of regular and pure semisimple rings is characterized using the above generalizations of pure injectivity. Mathematics Subject Classification: 16D50 Keywords: (quasi) pure injective module, purely quasi injective module, torsion theory 1 Introduction We will denote by R an associative ring with a nonzero identity and by τ = (T ; F) a hereditary torsion theory on the category Mod-R of right R-modules.
    [Show full text]
  • Nilpotent Elements Control the Structure of a Module
    Nilpotent elements control the structure of a module David Ssevviiri Department of Mathematics Makerere University, P.O BOX 7062, Kampala Uganda E-mail: [email protected], [email protected] Abstract A relationship between nilpotency and primeness in a module is investigated. Reduced modules are expressed as sums of prime modules. It is shown that presence of nilpotent module elements inhibits a module from possessing good structural properties. A general form is given of an example used in literature to distinguish: 1) completely prime modules from prime modules, 2) classical prime modules from classical completely prime modules, and 3) a module which satisfies the complete radical formula from one which is neither 2-primal nor satisfies the radical formula. Keywords: Semisimple module; Reduced module; Nil module; K¨othe conjecture; Com- pletely prime module; Prime module; and Reduced ring. MSC 2010 Mathematics Subject Classification: 16D70, 16D60, 16S90 1 Introduction Primeness and nilpotency are closely related and well studied notions for rings. We give instances that highlight this relationship. In a commutative ring, the set of all nilpotent elements coincides with the intersection of all its prime ideals - henceforth called the prime radical. A popular class of rings, called 2-primal rings (first defined in [8] and later studied in [23, 26, 27, 28] among others), is defined by requiring that in a not necessarily commutative ring, the set of all nilpotent elements coincides with the prime radical. In an arbitrary ring, Levitzki showed that the set of all strongly nilpotent elements coincides arXiv:1812.04320v1 [math.RA] 11 Dec 2018 with the intersection of all prime ideals, [29, Theorem 2.6].
    [Show full text]
  • Cyclic Pure Submodules
    International Journal of Algebra, Vol. 3, 2009, no. 3, 125 - 135 Cyclic Pure Submodules V. A. Hiremath1 Department of Mathematics, Karnatak University Dharwad-580003, India va hiremath@rediffmail.com Seema S. Gramopadhye2 Department of Mathematics, Karnatak University Dharwad-580003, India e-mail:[email protected] Abstract P.M.Cohn [3] has introduced the notion of purity for R-modules. With respect to purity, flat, absolutely pure and regular modules are studied. In this paper we introduce and study the corresponding no- tions of c-flat, absolutely c-pure and c-regular modules for cyclic pu- rity. We prove that absolutely c-pure R-modules are precisely injective modules. Also we study the relationship between c-flat and torsion-free modules over commutative integral domains and non-commutative non- integral domains. Also, we study the conditions under which c-regular R-modules are semi-simple. Mathematics Subject Classifications: 16D40, 16D50 Keywords: Pure submodules, flat module and regular ring Introduction In this paper, by a ring R we mean an associative ring with unity and by an R-module we mean a unitary right R-module. Z(M) denotes the singular submodule of the R-module M. 1Corresponding author 2The author is supported by University Research Scholarship. 126 V. A. Hiremath and S. S. Gramopadhye A ring R is said to be principal projective, if every principal right ideal is projective. We denote this ring by p.p. The notion of purity has an important role in module theory and in model theory. In model theory, the notion of pure exact sequence is more useful than split exact sequences.
    [Show full text]
  • D-Extending Modules
    Hacettepe Journal of Hacet. J. Math. Stat. Volume 49 (3) (2020), 914 – 920 Mathematics & Statistics DOI : 10.15672/hujms.460241 Research Article D-extending modules Yılmaz Durğun Department of Mathematics, Çukurova University, Adana, Turkey Abstract A submodule N of a module M is called d-closed if M/N has a zero socle. D-closed submodules are similar concept to s-closed submodules, which are defined through non- singular modules by Goodearl. In this article we deal with modules with the property that all d-closed submodules are direct summands (respectively, closed, pure). The structure of a ring over which d-closed submodules of every module are direct summand (respectively, closed, pure) is studied. Mathematics Subject Classification (2010). 16D10, 16D40 Keywords. D-extending modules, d-closed submodules, semiartinian modules 1. Introduction Throughout we shall assume that all rings are associative with identity and all modules are unitary right modules. Let R be a ring and let M be an R-module. A (proper) submodule N of M will be denoted by (N M) N ≤ M. By E(M), Rad(M) and Soc(M) we shall denote the injective hull, the Jacobson radical, and the socle of M as usual. For undefined notions used in the text, we refer the reader to [2,11]. A submodule N of a module M is essential (or large) in M, denoted N ¢M, if for every 0 ≠ K ≤ M, we have N ∩ K ≠ 0; and N is said to be closed in M if N has no proper essential extension in M. We also say in this case that N is a closed submodule.
    [Show full text]
  • Local Cohomology and Base Change
    LOCAL COHOMOLOGY AND BASE CHANGE KAREN E. SMITH f Abstract. Let X −→ S be a morphism of Noetherian schemes, with S reduced. For any closed subscheme Z of X finite over S, let j denote the open immersion X \ Z ֒→ X. Then for any coherent sheaf F on X \ Z and any index r ≥ 1, the r sheaf f∗(R j∗F) is generically free on S and commutes with base change. We prove this by proving a related statement about local cohomology: Let R be Noetherian algebra over a Noetherian domain A, and let I ⊂ R be an ideal such that R/I is finitely generated as an A-module. Let M be a finitely generated R-module. Then r there exists a non-zero g ∈ A such that the local cohomology modules HI (M)⊗A Ag are free over Ag and for any ring map A → L factoring through Ag, we have r ∼ r HI (M) ⊗A L = HI⊗AL(M ⊗A L) for all r. 1. Introduction In his work on maps between local Picard groups, Koll´ar was led to investigate the behavior of certain cohomological functors under base change [Kol]. The following theorem directly answers a question he had posed: f Theorem 1.1. Let X → S be a morphism of Noetherian schemes, with S reduced. Suppose that Z ⊂ X is closed subscheme finite over S, and let j denote the open embedding of its complement U. Then for any coherent sheaf F on U, the sheaves r f∗(R j∗F) are generically free and commute with base change for all r ≥ 1.
    [Show full text]
  • Elements of Minimal Prime Ideals in General Rings
    Elements of minimal prime ideals in general rings W.D. Burgess, A. Lashgari and A. Mojiri Dedicated to S.K. Jain on his seventieth birthday Abstract. Let R be any ring; a 2 R is called a weak zero-divisor if there are r; s 2 R with ras = 0 and rs 6= 0. It is shown that, in any ring R, the elements of a minimal prime ideal are weak zero-divisors. Examples show that a minimal prime ideal may have elements which are neither left nor right zero-divisors. However, every R has a minimal prime ideal consisting of left zero-divisors and one of right zero-divisors. The union of the minimal prime ideals is studied in 2-primal rings and the union of the minimal strongly prime ideals (in the sense of Rowen) in NI-rings. Mathematics Subject Classification (2000). Primary: 16D25; Secondary: 16N40, 16U99. Keywords. minimal prime ideal, zero-divisors, 2-primal ring, NI-ring. Introduction. E. Armendariz asked, during a conference lecture, if, in any ring, the elements of a minimal prime ideal were zero-divisors of some sort. In what follows this question will be answered in the positive with an appropriate interpretation of \zero-divisor". Two very basic statements about minimal prime ideals hold in a commutative ring R: (I) If P is a minimal prime ideal then the elements of P are zero-divisors, and (II) the union of the minimal prime ideals is M = fa 2 R j 9 r 2 R with ar 2 N∗(R) but r2 = N∗(R)g, where N∗(R) is the prime radical.
    [Show full text]
  • Notes on FP-Projective Modules and FP-Injective Modules
    February 17, 2006 17:49 Proceedings Trim Size: 9in x 6in mao-ding NOTES ON FP -PROJECTIVE MODULES AND FP -INJECTIVE MODULES LIXIN MAO Department of Mathematics, Nanjing Institute of Technology Nanjing 210013, P.R. China Department of Mathematics, Nanjing University Nanjing 210093, P.R. China E-mail: [email protected] NANQING DING Department of Mathematics, Nanjing University Nanjing 210093, P.R. China E-mail: [email protected] In this paper, we study the FP -projective dimension under changes of rings, es- pecially under (almost) excellent extensions of rings. Some descriptions of FP - injective envelopes are also given. 1. Introduction Throughout this paper, all rings are associative with identity and all mod- ules are unitary. We write MR (RM) to indicate a right (left) R-module, and freely use the terminology and notations of [1, 4, 9]. 1 A right R-module M is called FP -injective [11] if ExtR(N; M) = 0 for all ¯nitely presented right R-modules N. The concepts of FP -projective dimensions of modules and rings were introduced and studied in [5]. For a right R-module M, the FP -projective dimension fpdR(M) of M is de¯ned to be the smallest integer n ¸ 0 such n+1 that ExtR (M; N) = 0 for any FP -injective right R-module N. If no such n exists, set fpdR(M) = 1. M is called FP -projective if fpdR(M) = 0. We note that the concept of FP -projective modules coincides with that of ¯nitely covered modules introduced by J. Trlifaj (see [12, De¯nition 3.3 and Theorem 3.4]).
    [Show full text]
  • The Freyd-Mitchell Embedding Theorem States the Existence of a Ring R and an Exact Full Embedding a Ñ R-Mod, R-Mod Being the Category of Left Modules Over R
    The Freyd-Mitchell Embedding Theorem Arnold Tan Junhan Michaelmas 2018 Mini Projects: Homological Algebra arXiv:1901.08591v1 [math.CT] 23 Jan 2019 University of Oxford MFoCS Homological Algebra Contents 1 Abstract 1 2 Basics on abelian categories 1 3 Additives and representables 6 4 A special case of Freyd-Mitchell 10 5 Functor categories 12 6 Injective Envelopes 14 7 The Embedding Theorem 18 1 Abstract Given a small abelian category A, the Freyd-Mitchell embedding theorem states the existence of a ring R and an exact full embedding A Ñ R-Mod, R-Mod being the category of left modules over R. This theorem is useful as it allows one to prove general results about abelian categories within the context of R-modules. The goal of this report is to flesh out the proof of the embedding theorem. We shall follow closely the material and approach presented in Freyd (1964). This means we will encounter such concepts as projective generators, injective cogenerators, the Yoneda embedding, injective envelopes, Grothendieck categories, subcategories of mono objects and subcategories of absolutely pure objects. This approach is summarised as follows: • the functor category rA, Abs is abelian and has injective envelopes. • in fact, the same holds for the full subcategory LpAq of left-exact functors. • LpAqop has some nice properties: it is cocomplete and has a projective generator. • such a category embeds into R-Mod for some ring R. • in turn, A embeds into such a category. 2 Basics on abelian categories Fix some category C. Let us say that a monic A Ñ B is contained in another monic A1 Ñ B if there is a map A Ñ A1 making the diagram A B commute.
    [Show full text]
  • Essential Properties of Pro-Objects in Grothendieck Categories Cahiers De Topologie Et Géométrie Différentielle Catégoriques, Tome 20, No 1 (1979), P
    CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES TIMOTHY PORTER Essential properties of pro-objects in Grothendieck categories Cahiers de topologie et géométrie différentielle catégoriques, tome 20, no 1 (1979), p. 3-57 <http://www.numdam.org/item?id=CTGDC_1979__20_1_3_0> © Andrée C. Ehresmann et les auteurs, 1979, tous droits réservés. L’accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ CAHIERS DE TOPOLOGIE Vol. XX -1 ( 1979 ) ET GEOMETRIE DIFFERENTIELLE ESSENTIAL PROPERTIES OF PRO-OBJECTS IN GROTHENDIECK CATEGORIES by Timothy PORTER There is a class of problems in Algebra, algebraic Topology and category Theory which can be subsummed under the question : When does a «structure &#x3E;&#x3E; on a category C extend to a similar « structure» on the cor- responding procategory pro ( C ) ? Thus one has the work of Edwards and Hastings [7] and the author [27,28,29] on extending a «model category for homotopy theory » a la Quillen [35] from a category C , usually the category of simplicial sets or of chain complexes over some ring, to give a homotopy theory or homo- topical algebra in pro(C) . ( It is worth noting that the two approaches differ considerably, but they agree in the formation of the homotopy categ- ory / category of fractions Hopro(C) which, in this case, is distinct from the prohomotopy category&#x3E;&#x3E; proHo ( C ) .
    [Show full text]
  • Pure Baer Injective Modules
    Internat. J. Math. & Math. Sci. 529 VOL. 20 NO. 3 (1997) 529-538 PURE BAER INJECTIVE MODULES NADA M. AL THANI Department of Mathematics Faculty of Science Qatar University Doha, QATAR (Received April 19,1995 and in revised form April 16, 1996) ABSTRACT. In this paper we generalize the notion of pure injectivity of modules by introducing what we call a pure Baer injective module. Some properties and some characterization of such modules are established. We also introduce two notions closely related to pure Baer injectivity; namely, the notions of a E-pure Baer injective module and that of SSBI-ring. A ring R is an SSBI-ring if and only if every smisimple R-module is pure Baer injective. To investigate such algebraic structures we had to define what we call p-essential extension modules, pure relative complement submodules, left pure hereditary tings and some other related notions. The basic properties of these concepts and their interrelationships are explored, and are further related to the notions of pure split modules. KEY WORDS AND PHRASES: Pure and E-pure Baer injective modules, pure hereditary ring, pure- split module, P-essential extension submodule, pure relative complement submodule, SSBI-ring. 1991 AMS SUBJECT CLASSnZICATION CODES: 13C. 0. INTRODUCTION In this introduction we establish terminology and recall a summary of some basic definitions and results in the literature necessary for subsequent sections of the paper. Throughout R will denote a ring with identity. Unless otherwise stated, all modules will be unitary left R-modules, and all homomorphisms will be R-homomorphisms. A short exact sequence 0---, N---} M---} K--} 0 of left R-modules is said to be pure if" L (R) RN L (R) RM is a monomorphism for every right R-module L.
    [Show full text]