Class Numbers and Units of Number Fields E with Elementary Abelian K(2)O(E)

Total Page:16

File Type:pdf, Size:1020Kb

Class Numbers and Units of Number Fields E with Elementary Abelian K(2)O(E) Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1988 Class Numbers and Units of Number Fields E With Elementary Abelian K(2)O(E). Ruth Ilse Berger Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Berger, Ruth Ilse, "Class Numbers and Units of Number Fields E With Elementary Abelian K(2)O(E)." (1988). LSU Historical Dissertations and Theses. 4483. https://digitalcommons.lsu.edu/gradschool_disstheses/4483 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS The most advanced technology has been used to photo­ graph and reproduce this manuscript from the microfilm master. UMI films the original text directly from the copy submitted. Thus, some dissertation copies are in typewriter face, while others may be from a computer printer. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyrighted material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re­ produced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each oversize page is available as one exposure on a standard 35 mm slide or as a 17" x 23" black and white photographic print for an additional charge. Photographs included in the original manuscript have been reproduced xerographically in this copy. 35 mm slides or 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. ■Accessing Uthe World’s Information M since 1938 I 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA Order Number 8819923 Class numbers and units of number fields E with elementary ab elia n K 2 (Oj?;) Berger, Ruth Ilse, Ph.D. The Louisiana State University and Agricultural and Mechanical Col., 1988 UMI 300 N. Zeeb Rd. Ann Arbor, MI 48106 Class numbers and units of number fields E with elementary abelian K iiO s) A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Mathematics by Ruth Ilse Berger Vordiplom, Universitat des Saarlandes, 1981 M.S., Louisiana State University, 1985 May 1988 Acknowledgments I would like to thank my advisor Dr. J. Hurrelbrink for sug­ gesting the problem and for supervising my progress on it. I would especially like to thank Dr. P.E. Conner who suggested many of the results and who helped me find access to their proofs. I am very grateful to Dr. J.W. Hoffman who was always available to discuss problems and who spent a lot of time on reading the first version and pointing out several mistakes. Table of Contents A b s t r a c t ..................................... iv Introduction ............................................................................................................................... v Chapter 1: Approaching the problem .............................................................................1 1. Collection of facts about A ^ O f ) ......................................................................................2 2. Quadratic number fields ......................................................................................................7 3. Biquadratic dicyclic number fields ....................................................................................9 4. Biquadratic cyclic number fields .................................................................................... 11 Chapter 2: Number fields with property (*) ................................................................ 18 5. Setting up the tools ..............................................................................................................19 6. The exact hexagon ... ..........................................................................................................26 7. Characterizing number fields with property (*) ............................................................29 8. The existence of number fields with property (*) ........................................................34 Chapter 3: The complete picture .................................................................................... 40 9. Detailed properties ............................................................................................................... 40 10. Completions and generalized ideal class groups ......................................................44 11. Families of number fields with property (*) ..............................................................53 12. The m ain th e o re m ..............................................................................................................60 Chapter 4: Examples ........................................................................................................... 69 13. A pplication to F = Q ........................... 70 14. Biquadratic dicyclic number fields with property (*) ............................................73 15. The fields Q(v^\/2?) with q = 5 mod 8 ........................................................................74 16. Quadratic extensions of Q(\/l0) with property (*) .................................................78 Bibliography 83 Class numbers and units of number fields E with elementary abelian K ^ O e ). by Ruth I. Berger A b stract This is a contribution to the research that is going on in Algebraic Number Theory, relating classical questions on class numbers and units of a number field F to the structure of (O f ) > the Milnor K-group K 2 of the ring of integers. We are interested in number fields F where the 2-primary subgroup of O f ) is elementary abelian of rank r1(F), the number of real embeddings of F. In [C-jHi ] it is proven that the 2-primary subgroup of /^ ( O f ) °f the above type if and only if the number field has the following properties: a) the number field has exactly one dyadic prime, b) its S-dass number is odd and c.) it contains S-units with independent signs. Here, the set S consists of all dyadic and all infinite primes of the number field. The purpose of this paper is to examine the existence of number fields of the above type and to examine their properties with respect to the parity of their class number and the containment of units with independent signs. We will mostly restrict our attention to number fields that are totally real. For any given totally real number field F that satisfies the above properties we will prove that there exist infinitely many real quadratic extensions that also have the above properties. The main theorem will be a classification of these quadratic extensions of F into families that all share the same properties with respect to the parity of their class number and the containment of units with independent signs. Introduction Let us first rewiew the objects that classical Number Theory deals with. The field of rational numbers Q contains the ring of integers TL. The integers contain two kinds of elements that stand out: the units and the prime elements. The units are defined as the integers u with the following property: there exists an integer x such that ux — 1. The elements of TL that satisfy this property are 1 and —1. The prime elements of TL are defined as the integers p with the following property: if a, b are integers such that ab = p then either a or b must equal p, up to unit factors ±1. The units and the prime elements are the “building blocks” for all integers. Up to factors of ±1, every integer can be expressed uniquely as a product of powers of prime numbers. Instead of considering the field (Q, one can look more generally at a num ber field. These fields are defined as the finite algebraic extensions of Q. This means that a finite number of roots of polynomials with coefficients in <Q are adjoined to Q. A number field F shares many of the properties of Q. F also contains what are called integers. They are defined as the integral closure of the rational integers, i.e., the roots of monic polynomials whose coefficients are in TL. The integers of a number field F are denoted by Of - Among the integers there are elements called units. As before, they are defined as the integers u with the property that there exists an integer x such that ux = 1. Note th at x must then be a unit, too. The units form a multiplicative group. It is denoted by Op. In general, there are no integers that behave like the prime elements(numbers) of TL] there are no “smallest factors” of which all integers can be uniquely ex­ pressed as a product. Therefore the idea of integers and prime elements needs to be generalized to objects that reflect this property of being minimal factors. This is done by introducing the concept of ideals. They are subsets of the ring of integers that are obtained by taking a set of integers, called the generators of the ideal, and taking all possible finite sums of products of these elements with integers. If the generators are taken
Recommended publications
  • Input for Carnival of Math: Number 115, October 2014
    Input for Carnival of Math: Number 115, October 2014 I visited Singapore in 1996 and the people were very kind to me. So I though this might be a little payback for their kindness. Good Luck. David Brooks The “Mathematical Association of America” (http://maanumberaday.blogspot.com/2009/11/115.html ) notes that: 115 = 5 x 23. 115 = 23 x (2 + 3). 115 has a unique representation as a sum of three squares: 3 2 + 5 2 + 9 2 = 115. 115 is the smallest three-digit integer, abc , such that ( abc )/( a*b*c) is prime : 115/5 = 23. STS-115 was a space shuttle mission to the International Space Station flown by the space shuttle Atlantis on Sept. 9, 2006. The “Online Encyclopedia of Integer Sequences” (http://www.oeis.org) notes that 115 is a tridecagonal (or 13-gonal) number. Also, 115 is the number of rooted trees with 8 vertices (or nodes). If you do a search for 115 on the OEIS website you will find out that there are 7,041 integer sequences that contain the number 115. The website “Positive Integers” (http://www.positiveintegers.org/115) notes that 115 is a palindromic and repdigit number when written in base 22 (5522). The website “Number Gossip” (http://www.numbergossip.com) notes that: 115 is the smallest three-digit integer, abc, such that (abc)/(a*b*c) is prime. It also notes that 115 is a composite, deficient, lucky, odd odious and square-free number. The website “Numbers Aplenty” (http://www.numbersaplenty.com/115) notes that: It has 4 divisors, whose sum is σ = 144.
    [Show full text]
  • Mathematical Circus & 'Martin Gardner
    MARTIN GARDNE MATHEMATICAL ;MATH EMATICAL ASSOCIATION J OF AMERICA MATHEMATICAL CIRCUS & 'MARTIN GARDNER THE MATHEMATICAL ASSOCIATION OF AMERICA Washington, DC 1992 MATHEMATICAL More Puzzles, Games, Paradoxes, and Other Mathematical Entertainments from Scientific American with a Preface by Donald Knuth, A Postscript, from the Author, and a new Bibliography by Mr. Gardner, Thoughts from Readers, and 105 Drawings and Published in the United States of America by The Mathematical Association of America Copyright O 1968,1969,1970,1971,1979,1981,1992by Martin Gardner. All riglhts reserved under International and Pan-American Copyright Conventions. An MAA Spectrum book This book was updated and revised from the 1981 edition published by Vantage Books, New York. Most of this book originally appeared in slightly different form in Scientific American. Library of Congress Catalog Card Number 92-060996 ISBN 0-88385-506-2 Manufactured in the United States of America For Donald E. Knuth, extraordinary mathematician, computer scientist, writer, musician, humorist, recreational math buff, and much more SPECTRUM SERIES Published by THE MATHEMATICAL ASSOCIATION OF AMERICA Committee on Publications ANDREW STERRETT, JR.,Chairman Spectrum Editorial Board ROGER HORN, Chairman SABRA ANDERSON BART BRADEN UNDERWOOD DUDLEY HUGH M. EDGAR JEANNE LADUKE LESTER H. LANGE MARY PARKER MPP.a (@ SPECTRUM Also by Martin Gardner from The Mathematical Association of America 1529 Eighteenth Street, N.W. Washington, D. C. 20036 (202) 387- 5200 Riddles of the Sphinx and Other Mathematical Puzzle Tales Mathematical Carnival Mathematical Magic Show Contents Preface xi .. Introduction Xlll 1. Optical Illusions 3 Answers on page 14 2. Matches 16 Answers on page 27 3.
    [Show full text]
  • Sheet 8 Solutions Are Due on 08.06.18
    Dr. Severin Bunk Algebra und Zahlentheorie Fachbereich Mathematik Algebraic Topology Universit¨atHamburg Summer 2018 Sheet 8 Solutions are due on 08.06.18. Problem 8.1 (a) Show that for each abelian group D, the tensor product ( ) D is right-exact. That is, α β − ⊗ show that for every short exact sequence 0 A B C 0 of abelian groups, there → → → → is an exact sequence of abelian groups α id β idD A D ⊗ D B D ⊗ C D 0 . ⊗ ⊗ ⊗ β (b) Prove that if 0 A α B C 0 is split exact, then for any abelian group D the → → → → induced sequence α id β idD 0 A D ⊗ D B D ⊗ C D 0 . ⊗ ⊗ ⊗ is exact. (c) Is the abelian group (Q, +) free? Show that ( ) Q is exact. − ⊗ Hint: Observe that for any abelian group A and field k, the tensor product A k is a ⊗ k-vector space. For the second part, start by working out the kernel of the map qA : A A Q, a a 1. → ⊗ 7→ ⊗ (d) The rank of an abelian group A can be defined as rk(A) := dim (A Q) . Q ⊗ n Show that if A is finitely generated, i.e. A = Z Zq1 Zqm , then rk(A) = n. Moreover, α β ∼ ⊕ ⊕· · ·⊕ show that if 0 A B C 0 is any short exact sequence of finitely generated abelian → → → → groups, then rk(B) = rk(A) + rk(C) . 1 Problem 8.2 Let X be a a finite CW complex. The Euler characteristic of X is defined as n χ(X) := ( 1) rk Hn(X, Z) Z .
    [Show full text]
  • The Entropy Conundrum: a Solution Proposal
    OPEN ACCESS www.sciforum.net/conference/ecea-1 Conference Proceedings Paper – Entropy The Entropy Conundrum: A Solution Proposal Rodolfo A. Fiorini 1,* 1 Politecnico di Milano, Department of Electronics, Information and Bioengineering, Milano, Italy; E- Mail: [email protected] * E-Mail: [email protected]; Tel.: +039-02-2399-3350; Fax: +039-02-2399-3360. Received: 11 September 2014 / Accepted: 11 October 2014 / Published: 3 November 2014 Abstract: In 2004, physicist Mark Newman, along with biologist Michael Lachmann and computer scientist Cristopher Moore, showed that if electromagnetic radiation is used as a transmission medium, the most information-efficient format for a given 1-D signal is indistinguishable from blackbody radiation. Since many natural processes maximize the Gibbs- Boltzmann entropy, they should give rise to spectra indistinguishable from optimally efficient transmission. In 2008, computer scientist C.S. Calude and physicist K. Svozil proved that "Quantum Randomness" is not Turing computable. In 2013, academic scientist R.A. Fiorini confirmed Newman, Lachmann and Moore's result, creating analogous example for 2-D signal (image), as an application of CICT in pattern recognition and image analysis. Paradoxically if you don’t know the code used for the message you can’t tell the difference between an information-rich message and a random jumble of letters. This is an entropy conundrum to solve. Even the most sophisticated instrumentation system is completely unable to reliably discriminate so called "random noise" from any combinatorially optimized encoded message, which CICT called "deterministic noise". Entropy fundamental concept crosses so many scientific and research areas, but, unfortunately, even across so many different disciplines, scientists have not yet worked out a definitive solution to the fundamental problem of the logical relationship between human experience and knowledge extraction.
    [Show full text]
  • JETIR Research Journal
    © 2018 JETIR July 2018, Volume 5, Issue 7 www.jetir.org (ISSN-2349-5162) A STUDY ON FREE ABELIAN GROUPS AND ITS PROPERTIES Meera Rose Joseph1 1Assistant Professor, Nirmala College, Muvattupuzha Abstract: An Abelian group, also called a commutative group is a group in which the result of applying the group operation to two group elements does not depend on their order. In this paper we discuss about Free abelian groups and its properties, where Free abelian groups are special cases of Free modules as abelian groups are nothing but modules over the ring. we are taking into account how a Free abelian group is related to Free group and Torsion free abelian group. Also we consider one of the important application of Free abelian groups that is “The proof of Fundamental Theorem of Finitely Generated Abelian Groups” Keywords: Free abelian group, Free modules, Free group, Torsion free abelian group 1. Introduction A group is an ordered pair (G,*), where G is a nonempty set and * is a binary operation on G such that the following properties hold: (1) For all a, b, c ∊ G, a * (b * c) = (a * b) * c. (associative law) (2) There exists e ∊ G such that, for any a ∊ G , a*e = a = e*a. (Existence of an identity) (3) For each a ∊ G, there exits b ∊ G, there exists b ∊ G such that a * b = e = b * a. (existence of an inverse). An Abelian group is a group with the property that a * b = b * a. Again a Free Abelian group is an Abelian group with a basis where a basis is a subset of the elements such that every group element can be found by adding or subtracting a finite number of basis elements and such that every element, its expression as a linear combination of basis elements is unique.
    [Show full text]
  • The Entropy Conundrum: a Solution Proposal
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Archivio istituzionale della ricerca - Politecnico di Milano OPEN ACCESS www.sciforum.net/conference/ecea-1 Conference Proceedings Paper – Entropy The Entropy Conundrum: A Solution Proposal Rodolfo A. Fiorini 1,* 1 Politecnico di Milano, Department of Electronics, Information and Bioengineering, Milano, Italy; E- Mail: [email protected] * E-Mail: [email protected]; Tel.: +039-02-2399-3350; Fax: +039-02-2399-3360. Received: 11 September 2014 / Accepted: 11 October 2014 / Published: 3 November 2014 Abstract: In 2004, physicist Mark Newman, along with biologist Michael Lachmann and computer scientist Cristopher Moore, showed that if electromagnetic radiation is used as a transmission medium, the most information-efficient format for a given 1-D signal is indistinguishable from blackbody radiation. Since many natural processes maximize the Gibbs- Boltzmann entropy, they should give rise to spectra indistinguishable from optimally efficient transmission. In 2008, computer scientist C.S. Calude and physicist K. Svozil proved that "Quantum Randomness" is not Turing computable. In 2013, academic scientist R.A. Fiorini confirmed Newman, Lachmann and Moore's result, creating analogous example for 2-D signal (image), as an application of CICT in pattern recognition and image analysis. Paradoxically if you don’t know the code used for the message you can’t tell the difference between an information-rich message and a random jumble of letters. This is an entropy conundrum to solve. Even the most sophisticated instrumentation system is completely unable to reliably discriminate so called "random noise" from any combinatorially optimized encoded message, which CICT called "deterministic noise".
    [Show full text]
  • The Smallest Inert Prime in a Cyclic Number Field of Prime Degree
    Math: Res: Lett: 18 (2011), no: 00, 10001{10017 c International Press 2011 THE SMALLEST INERT PRIME IN A CYCLIC NUMBER FIELD OF PRIME DEGREE Paul Pollack Abstract. Fix an odd prime `. For each cyclic extension K=Q of degree `, let nK denote the least rational prime which is inert in K, and let rK be the least rational prime which splits completely in K. We show that nK possesses a finite mean value, where the average is taken over all such K ordered by conductor. As an example (` = 3), the average least inert prime in a cyclic cubic field is approximately 2:870. We conjecture that rK also has a finite mean value, and we prove this assuming the Generalized Riemann Hypothesis. For the case ` = 3, we give an unconditional proof that the average of rK exists and is about 6:862. 1. Introduction For each odd prime p, let n2(p) denote the least quadratic nonresidue modulo p. In 1961, Erd}os[9] showed that n2(p) possesses a finite mean value. More precisely, with pk denoting the kth prime in the usual increasing order, Erd}osproved that 1 1 X X pk n (p) ! ; as x ! 1: π(x) 2 2k 2<p≤x k=1 The infinite series on the right-hand side converges rapidly to about 3:675. Erd}os's result was generalized by Elliott: For each prime p ≡ 1 (mod k), let nk(p) denote the least kth power nonresidue modulo p; for p 6≡ 1 (mod k), set nk(p) = 0. Answering a question of Erd}os,Elliott showed [6] that nk(p) possesses a finite mean value for every k.
    [Show full text]
  • Subgroups of Finitely Presented Metabelian Groups of Finite Rank
    J. Austral. Math. Soc. 22 (Series A) (1976), 501-508. SUBGROUPS OF FINITELY PRESENTED METABELIAN GROUPS OF FINITE RANK JAMES BOLER (Received 6 January 1975; revised 9 April 1976) Abstract Let G be a finitely generated metabehan group whose derived group G' has finite rank. It is shown that G can be embedded in a finitely presented metabelian group H with H' of finite rank. Introduction Baumslag (1973) has shown that each finitely generated metabelian group can be embedded in a finitely presented metabelian group. Our objective here is to prove THEOREM 4.1. Let G be a finitely generated metabelian group whose derived group G' has finite rank. Then there exists a finitely presented metabelian group H with H' of finite rank, and an embedding of G into H. The proof of Theorem 4.1 makes use of the well-known connection between finitely generated metabelian groups and modules over finitely generated commutative rings. This relationship is mentioned in Section 1, along with some basic facts about the notion of rank. In Section 2 a residual property of certain modules is established. This property is used in Section 3 and Section 4 to prove Theorem 4.1. 1. Preliminaries We denote the ring of integers by Z and the field of rational numbers by Q. If x and y are elements of a group, we use the standard notation xy = y~lxy;[x, y] = x~'y~'xy. 501 Downloaded from https://www.cambridge.org/core. IP address: 170.106.33.42, on 26 Sep 2021 at 01:04:11, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
    [Show full text]
  • The Secret Code of God
    The Secret Code of God Abul Hassan Copy Rights and 19 19 – The Secret Code of God By: Abul Hassan 1st Edition: 2010 No Part of this book may be reproduced in any form or by any means electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher or author. However any one can download the electronic version of this book, i.e. free eBook from any website on the internet without our permission for the purposes of reading and research or from our website – www.ali-pi.com. Abul Hassan www.ali-pi.com [email protected] [email protected] Price: US$ 19.00/CAN$ 19.00 19 – The Secret Code of God Page 2 Contents and 19 Topics Page 1. Copy Rights and 19 2 2. Abul Hassan’s Desk and 19 5 3. Dedication and 19 7 4. Coding and 19 8 5. Religions of the world and 19 10 6. Bahai’s and 19 11 7. Hinduism and 19 12 8. Symbolism and 19 12 9. Judaism and 19 13 10. Other faiths and 19 16 11. Christianity and 19 17 12. Islam and 19 25 13. Security Code and 19 29 14. Holy Quran and 19 30 15. 99 Names of Allah and 19 73 16. Arabic Alphabets and 19 87 17. Everything and 19 90 18. Mathematics and 19 94 19. Mathematical Properties of 19 97 20. Prime Numbers and 19 102 21. Perfect Numbers and 19 111 22. Powerful Numbers and 19 115 23. Enneadecagon and 19 116 24.
    [Show full text]
  • UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Norm-Euclidean Galois fields Permalink https://escholarship.org/uc/item/359664zv Author McGown, Kevin Joseph Publication Date 2010 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Norm-Euclidean Galois Fields A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Mathematics by Kevin Joseph McGown Committee in charge: Professor Harold Stark, Chair Professor Wee Teck Gan Professor Ronald Graham Professor Russell Impagliazzo Professor Cristian Popescu 2010 Copyright Kevin Joseph McGown, 2010 All rights reserved. The dissertation of Kevin Joseph McGown is ap- proved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2010 iii DEDICATION To my wife iv TABLE OF CONTENTS Signature Page . iii Dedication . iv Table of Contents . v List of Tables . vii Acknowledgements . viii Vita . ix Abstract of the Dissertation . x 1 Introduction . 1 1.1 First Notions . 1 1.2 History . 2 1.3 Open Problems . 4 1.4 Main Results . 5 2 Preliminaries . 11 2.1 Algebraic Number Fields . 11 2.2 Dirichlet Characters . 13 2.3 Residue Symbols in Number Fields . 15 2.4 Class Field Theory . 15 2.5 Zeta Functions and L-Functions . 17 2.6 Number Fields with Class Number One . 19 2.7 Heilbronn's Criterion . 21 3 Norm-Euclidean Galois Fields . 22 3.1 Conditions for the Failure of the Euclidean Property . 22 3.2 An Algorithm and Some Computations .
    [Show full text]
  • José Marıa Grau Departmento De Matemáticas, Universidad De
    #A37 INTEGERS 12 (2012) ON K-LEHMER NUMBERS Jos´e Mar´ıa Grau Departmento de Matem´aticas, Universidad de Oviedo, Oviedo, Spain [email protected] Antonio M. Oller-Marc´en Centro Universitario de la Defensa, Academia General Militar, Zaragoza, Spain [email protected] Received: 10/27/11, Revised: 2/21/12, Accepted: 5/22/12, Published: 6/25/12 Abstract Lehmer’s totient problem consists of determining the set of positive integers n such that ϕ(n) (n 1) where ϕ is Euler’s totient function. In this paper we introduce the concept of|k-Lehmer− number. A k-Lehmer number is a composite number such that ϕ(n) (n 1)k. The relation between k-Lehmer numbers and Carmichael numbers leads|to a−new characterization of Carmichael numbers and to some conjectures related to the distribution of Carmichael numbers which are also k-Lehmer numbers. 1. Introduction Lehmer’s totient problem asks about the existence of a composite number such that ϕ(n) (n 1), where ϕ is Euler’s totient function. Some authors refer to | − these numbers as Lehmer numbers. In 1932, Lehmer [14] showed that every Lehmer number n must be odd and square-free, and that the number of distinct prime factors of n, ω(n), must satisfy ω(n) > 6. This bound was subsequently extended to ω(n) > 10. The current best result, due to Cohen and Hagis [10], is that n must have at least 14 prime factors and the biggest lower bound obtained for such numbers is 1030 [18]. It is known that there are no Lehmer numbers in certain sets, such as the Fibonacci sequence [16], the sequence of repunits in base g for any g [2, 1000] [9] or the Cullen numbers [12].
    [Show full text]
  • Numbers 1 to 100
    Numbers 1 to 100 PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Tue, 30 Nov 2010 02:36:24 UTC Contents Articles −1 (number) 1 0 (number) 3 1 (number) 12 2 (number) 17 3 (number) 23 4 (number) 32 5 (number) 42 6 (number) 50 7 (number) 58 8 (number) 73 9 (number) 77 10 (number) 82 11 (number) 88 12 (number) 94 13 (number) 102 14 (number) 107 15 (number) 111 16 (number) 114 17 (number) 118 18 (number) 124 19 (number) 127 20 (number) 132 21 (number) 136 22 (number) 140 23 (number) 144 24 (number) 148 25 (number) 152 26 (number) 155 27 (number) 158 28 (number) 162 29 (number) 165 30 (number) 168 31 (number) 172 32 (number) 175 33 (number) 179 34 (number) 182 35 (number) 185 36 (number) 188 37 (number) 191 38 (number) 193 39 (number) 196 40 (number) 199 41 (number) 204 42 (number) 207 43 (number) 214 44 (number) 217 45 (number) 220 46 (number) 222 47 (number) 225 48 (number) 229 49 (number) 232 50 (number) 235 51 (number) 238 52 (number) 241 53 (number) 243 54 (number) 246 55 (number) 248 56 (number) 251 57 (number) 255 58 (number) 258 59 (number) 260 60 (number) 263 61 (number) 267 62 (number) 270 63 (number) 272 64 (number) 274 66 (number) 277 67 (number) 280 68 (number) 282 69 (number) 284 70 (number) 286 71 (number) 289 72 (number) 292 73 (number) 296 74 (number) 298 75 (number) 301 77 (number) 302 78 (number) 305 79 (number) 307 80 (number) 309 81 (number) 311 82 (number) 313 83 (number) 315 84 (number) 318 85 (number) 320 86 (number) 323 87 (number) 326 88 (number)
    [Show full text]