QuClassi: A Hybrid Deep Neural Network Architecture based on Quantum State Fidelity Samuel A. Stein1,4, Betis Baheri2, Daniel Chen3, Ying Mao1, Qiang Guan2, Ang Li4, Shuai Xu3, and Caiwen Ding5 1 Computer and Information Science Department, Fordham University, {sstein17, ymao41}@fordham.edu 2 Department of Computer Science, Kent State University, {bbaheri, qguan}@kent.edu 3 Computer and Data Sciences Department,Case Western Reserve University, {txc461, sxx214}@case.edu 4 Pacific Northwest National Laboratory (PNNL), Email: {samuel.stein, ang.li}@pnnl.gov 5 University of Connecticut, Email:
[email protected] Abstract increasing size of data sets raises the discussion on the future of DL and its limitations [42]. In the past decade, remarkable progress has been achieved in In parallel with the breakthrough of DL in the past years, deep learning related systems and applications. In the post remarkable progress has been achieved in the field of quan- Moore’s Law era, however, the limit of semiconductor fab- tum computing. In 2019, Google demonstrated Quantum rication technology along with the increasing data size have Supremacy using a 53-qubit quantum computer, where it spent slowed down the development of learning algorithms. In par- 200 seconds to complete a random sampling task that would allel, the fast development of quantum computing has pushed cost 10,000 years on the largest classical computer [5]. Dur- it to the new ear. Google illustrates quantum supremacy by ing this time, quantum computing has become increasingly completing a specific task (random sampling problem), in 200 available to the public. IBM Q Experience, launched in 2016, seconds, which is impracticable for the largest classical com- offers quantum developers to experience the state-of-the-art puters.