Models of Quantum Computation and Quantum Programming Languages
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Quantum Computing: Principles and Applications
Journal of International Technology and Information Management Volume 29 Issue 2 Article 3 2020 Quantum Computing: Principles and Applications Yoshito Kanamori University of Alaska Anchorage, [email protected] Seong-Moo Yoo University of Alabama in Huntsville, [email protected] Follow this and additional works at: https://scholarworks.lib.csusb.edu/jitim Part of the Communication Technology and New Media Commons, Computer and Systems Architecture Commons, Information Security Commons, Management Information Systems Commons, Science and Technology Studies Commons, Technology and Innovation Commons, and the Theory and Algorithms Commons Recommended Citation Kanamori, Yoshito and Yoo, Seong-Moo (2020) "Quantum Computing: Principles and Applications," Journal of International Technology and Information Management: Vol. 29 : Iss. 2 , Article 3. Available at: https://scholarworks.lib.csusb.edu/jitim/vol29/iss2/3 This Article is brought to you for free and open access by CSUSB ScholarWorks. It has been accepted for inclusion in Journal of International Technology and Information Management by an authorized editor of CSUSB ScholarWorks. For more information, please contact [email protected]. Journal of International Technology and Information Management Volume 29, Number 2 2020 Quantum Computing: Principles and Applications Yoshito Kanamori (University of Alaska Anchorage) Seong-Moo Yoo (University of Alabama in Huntsville) ABSTRACT The development of quantum computers over the past few years is one of the most significant advancements in the history of quantum computing. D-Wave quantum computer has been available for more than eight years. IBM has made its quantum computer accessible via its cloud service. Also, Microsoft, Google, Intel, and NASA have been heavily investing in the development of quantum computers and their applications. -
Arxiv:2103.11307V1 [Quant-Ph] 21 Mar 2021
QuClassi: A Hybrid Deep Neural Network Architecture based on Quantum State Fidelity Samuel A. Stein1,4, Betis Baheri2, Daniel Chen3, Ying Mao1, Qiang Guan2, Ang Li4, Shuai Xu3, and Caiwen Ding5 1 Computer and Information Science Department, Fordham University, {sstein17, ymao41}@fordham.edu 2 Department of Computer Science, Kent State University, {bbaheri, qguan}@kent.edu 3 Computer and Data Sciences Department,Case Western Reserve University, {txc461, sxx214}@case.edu 4 Pacific Northwest National Laboratory (PNNL), Email: {samuel.stein, ang.li}@pnnl.gov 5 University of Connecticut, Email: [email protected] Abstract increasing size of data sets raises the discussion on the future of DL and its limitations [42]. In the past decade, remarkable progress has been achieved in In parallel with the breakthrough of DL in the past years, deep learning related systems and applications. In the post remarkable progress has been achieved in the field of quan- Moore’s Law era, however, the limit of semiconductor fab- tum computing. In 2019, Google demonstrated Quantum rication technology along with the increasing data size have Supremacy using a 53-qubit quantum computer, where it spent slowed down the development of learning algorithms. In par- 200 seconds to complete a random sampling task that would allel, the fast development of quantum computing has pushed cost 10,000 years on the largest classical computer [5]. Dur- it to the new ear. Google illustrates quantum supremacy by ing this time, quantum computing has become increasingly completing a specific task (random sampling problem), in 200 available to the public. IBM Q Experience, launched in 2016, seconds, which is impracticable for the largest classical com- offers quantum developers to experience the state-of-the-art puters. -
Off-The-Shelf Components for Quantum Programming and Testing
Off-the-shelf Components for Quantum Programming and Testing Cláudio Gomesa, Daniel Fortunatoc, João Paulo Fernandesa and Rui Abreub aCISUC — Departamento de Engenharia Informática da Universidade de Coimbra, Portugal bFaculty of Engineering of the University of Porto, Portugal cInstituto Superior Técnico, University of Lisbon, Portugal Abstract In this position paper, we argue that readily available components are much needed as central contribu- tions towards not only enlarging the community of quantum computer programmers, but also in order to increase their efficiency and effectiveness. We describe the work we intend to do towards providing such components, namely by developing and making available libraries of quantum algorithms and data structures, and libraries for testing quantum programs. We finally argue that Quantum Computer Programming is such an effervescent area that synchronization efforts and combined strategies within the community are demanded to shorten the time frame until quantum advantage is observed and can be explored in practice. Keywords Quantum Computing, Software Engineering, Reusable Components 1. Introduction There is a large body of compelling evidence that Computation as we have known and used for decades is under challenge. As new models for computation emerge, its limits are being pushed beyond what pragmatically had been seen in practice. In this line, Quantum Computing (QC) has received renewed worldwide attention. Having its foundations been thoroughly studied, mainly from the point of view of its physical implementation, their potential has, even if preliminarily, is currently being witnessed. A quantum computer can potentially solve various problems that a classical computer cannot solve efficiently; this is known as Quantum Supremacy. -
Student User Experience with the IBM Qiskit Quantum Computing Interface
Proceedings of Student-Faculty Research Day, CSIS, Pace University, May 4th, 2018 Student User Experience with the IBM QISKit Quantum Computing Interface Stephan Barabasi, James Barrera, Prashant Bhalani, Preeti Dalvi, Ryan Kimiecik, Avery Leider, John Mondrosch, Karl Peterson, Nimish Sawant, and Charles C. Tappert Seidenberg School of CSIS, Pace University, Pleasantville, New York Abstract - The field of quantum computing is rapidly Schrödinger [11]. Quantum mechanics states that the position expanding. As manufacturers and researchers grapple with the of a particle cannot be predicted with precision as it can be in limitations of classical silicon central processing units (CPUs), Newtonian mechanics. The only thing an observer could quantum computing sheds these limitations and promises a know about the position of a particle is the probability that it boom in computational power and efficiency. The quantum age will be at a certain position at a given time [11]. By the 1980’s will require many skilled engineers, mathematicians, physicists, developers, and technicians with an understanding of quantum several researchers including Feynman, Yuri Manin, and Paul principles and theory. There is currently a shortage of Benioff had begun researching computers that operate using professionals with a deep knowledge of computing and physics this concept. able to meet the demands of companies developing and The quantum bit or qubit is the basic unit of quantum researching quantum technology. This study provides a brief information. Classical computers operate on bits using history of quantum computing, an in-depth review of recent complex configurations of simple logic gates. A bit of literature and technologies, an overview of IBM’s QISKit for information has two states, on or off, and is represented with implementing quantum computing programs, and two a 0 or a 1. -
Graphical and Programming Support for Simulations of Quantum Computations
AGH University of Science and Technology in Kraków Faculty of Computer Science, Electronics and Telecommunications Institute of Computer Science Master of Science Thesis Graphical and programming support for simulations of quantum computations Joanna Patrzyk Supervisor: dr inż. Katarzyna Rycerz Kraków 2014 OŚWIADCZENIE AUTORA PRACY Oświadczam, świadoma odpowiedzialności karnej za poświadczenie nieprawdy, że niniejszą pracę dyplomową wykonałam osobiście i samodzielnie, i nie korzystałam ze źródeł innych niż wymienione w pracy. ................................... PODPIS Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Wydział Informatyki, Elektroniki i Telekomunikacji Katedra Informatyki Praca Magisterska Graficzne i programowe wsparcie dla symulacji obliczeń kwantowych Joanna Patrzyk Opiekun: dr inż. Katarzyna Rycerz Kraków 2014 Acknowledgements I would like to express my sincere gratitude to my supervisor, Dr Katarzyna Rycerz, for the continuous support of my M.Sc. study, for her patience, motivation, enthusiasm, and immense knowledge. Her guidance helped me a lot during my research and writing of this thesis. I would also like to thank Dr Marian Bubak, for his suggestions and valuable advices, and for provision of the materials used in this study. I would also thank Dr Włodzimierz Funika and Dr Maciej Malawski for their support and constructive remarks concerning the QuIDE simulator. My special thank goes to Bartłomiej Patrzyk for the encouragement, suggestions, ideas and a great support during this study. Abstract The field of Quantum Computing is recently rapidly developing. However before it transits from the theory into practical solutions, there is a need for simulating the quantum computations, in order to analyze them and investigate their possible applications. Today, there are many software tools which simulate quantum computers. -
QUANTUM COMPUTER and QUANTUM ALGORITHM for TRAVELLING SALESMAN PROBLEM Utpal Roy, Sanchita Pal Chawdhury, Susmita Nayek
ISSN: 0974-3308, VOL. 2, NO. 1, JUNE 2009 © SRIMCA 54 QUANTUM COMPUTER AND QUANTUM ALGORITHM FOR TRAVELLING SALESMAN PROBLEM Utpal Roy, Sanchita Pal Chawdhury, Susmita Nayek ABSTRACT Depending upon the extraordinary power of Quantum Computing Algorithms various branches like Quantum Cryptography, Quantum Information Technology, Quantum Teleportation have emerged [1-4]. It is thought that this power of Quantum Computing Algorithms can also be successfully applied to many combinatorial optimization problems. In this article, a class of combinatorial optimization problem is chosen as case study under Quantum Computing. These problems are widely believed to be unsolvable in polynomial time. Mostly it provides suboptimal solutions in finite time using best known classical algorithms. Travelling Salesman Problem (TSP) is one such problem to be studied here. A great deal of effort has already been devoted towards devising efficient algorithms that can solve the problem [5-18]. Moreover, the methods of finding solutions for the TSP with Artificial Neural Network and Genetic Algorithms [5-8] do not provide the exact solution to the problems for all the cases, excepting a few. A successful attempt has been made to have a deterministic solution for TSP by applying the power of Quantum Computing Algorithm. Keywords: Quantum Computing, Travelling Salesman Problem, Quantum algorithms. 1. INTRODUCTION A quantum computer is a device that can arbitrarily manipulate the quantum state of a part or itself. The field of quantum computation is largely a body of theoretical promises for some impressively fast algorithms which could be executed on quantum computers. The field of quantum computing has advanced remarkably in the past few years since Shor [1] presented his quantum mechanical algorithm for efficient prime factorization of very large numbers, potentially providing an exponential speedup over the fastness on known classical algorithm. -
Download the 3Rd Edition of the Book of Abstracts
Book of Abstracts 3rd BSC International Doctoral Symposium Editors Nia Alexandrov María José García Miraz Graphic and Cover Design: Cristian Opi Muro Laura Bermúdez Guerrero This is an open access book registered at UPC Commons (http://upcommons.upc.edu) under a Creative Commons license to protect its contents and increase its visibility. This book is available at http://www.bsc.es/doctoral-symposium-2016 published by: Barcelona Supercomputing Center supported by: The “Severo Ochoa Centres of Excellence" programme 3rd Edition, September 2016 Introduction ACKNOWLEDGEMENTS The BSC Education & Training team gratefully acknowledges all the PhD candidates, Postdoc researchers, experts and especially the Keynote Speaker Francisco J. Doblas-Reyes and the tutorial lecturers Vassil Alexandrov and Javier Espinosa, for contributing to this Book of Abstracts and participating in the 3rd BSC International Doctoral Symposium 2016. We also wish to expressly thank the volunteers that supported the organisation of the event: Carles Riera and Felipe Nathan De Oliveira. BSC Education & Training team [email protected] 5 Introduction 6 Introduction CONTENTS EDITORIAL COMMENT ................................................................................................ 11 WELCOME ADDRESS .................................................................................................. 13 PROGRAM .................................................................................................................... 15 KEYNOTE SPEAKER ................................................................................................... -
Introduction to Quantum Programming
Introduction to Quantum Programming Jaros law Miszczak IITiS PAN April 27, 2018 QIPLSIGML|Machine Learning meets Quantum Computation Introduction to Quantum Programming 1/40 Our goals Quantum programming Manipulation of quantum gates Programming QRAM High-level programming What next? Q? Introduction to Quantum Programming 2/40 I Introduce various approaches to quantum programming. I Write some code. Our goals I Understand the difference between quantum and classical programming. Introduction to Quantum Programming 3/40 I Write some code. Our goals I Understand the difference between quantum and classical programming. I Introduce various approaches to quantum programming. Introduction to Quantum Programming 3/40 Our goals I Understand the difference between quantum and classical programming. I Introduce various approaches to quantum programming. I Write some code. Introduction to Quantum Programming 3/40 Our goals I Understand the difference between quantum and classical programming. I Introduce various approaches to quantum programming. I Write some code. ( Talk is cheap. Show me the quantum code.) ≡ Introduction to Quantum Programming 3/40 Quantum programming Introduction to Quantum Programming 4/40 Quantum programming What is quantum programming? Quantum programming is a process that leads from an original formulation of a computing problem to executable quantum computer programs. Introduction to Quantum Programming 5/40 I The process of preparing programs for a quantum computer is especially attractive because it not only can be economically and scientifically rewarding, it can also be an aesthetic experience much like composing poetry or music. I Only the modern quantum computer has made quantum programming both challenging and relevant. Quantum programming What is quantum programming? I The only way to learn a new quantum programming language is by writing programs in it. -
High Energy Physics Quantum Information Science Awards Abstracts
High Energy Physics Quantum Information Science Awards Abstracts Towards Directional Detection of WIMP Dark Matter using Spectroscopy of Quantum Defects in Diamond Ronald Walsworth, David Phillips, and Alexander Sushkov Challenges and Opportunities in Noise‐Aware Implementations of Quantum Field Theories on Near‐Term Quantum Computing Hardware Raphael Pooser, Patrick Dreher, and Lex Kemper Quantum Sensors for Wide Band Axion Dark Matter Detection Peter S Barry, Andrew Sonnenschein, Clarence Chang, Jiansong Gao, Steve Kuhlmann, Noah Kurinsky, and Joel Ullom The Dark Matter Radio‐: A Quantum‐Enhanced Dark Matter Search Kent Irwin and Peter Graham Quantum Sensors for Light-field Dark Matter Searches Kent Irwin, Peter Graham, Alexander Sushkov, Dmitry Budke, and Derek Kimball The Geometry and Flow of Quantum Information: From Quantum Gravity to Quantum Technology Raphael Bousso1, Ehud Altman1, Ning Bao1, Patrick Hayden, Christopher Monroe, Yasunori Nomura1, Xiao‐Liang Qi, Monika Schleier‐Smith, Brian Swingle3, Norman Yao1, and Michael Zaletel Algebraic Approach Towards Quantum Information in Quantum Field Theory and Holography Daniel Harlow, Aram Harrow and Hong Liu Interplay of Quantum Information, Thermodynamics, and Gravity in the Early Universe Nishant Agarwal, Adolfo del Campo, Archana Kamal, and Sarah Shandera Quantum Computing for Neutrino‐nucleus Dynamics Joseph Carlson, Rajan Gupta, Andy C.N. Li, Gabriel Perdue, and Alessandro Roggero Quantum‐Enhanced Metrology with Trapped Ions for Fundamental Physics Salman Habib, Kaifeng Cui1, -
Introduction to Quantum Computing and Its Applications to Cyber Security
Introduction to Quantum Computing and its Applications to Cyber Security Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 [email protected] These slides and audio/video recordings of this class lecture are at: http://www.cse.wustl.edu/~jain/cse570-19/ Washington University in St. Louis http://www.cse.wustl.edu/~jain/ ©2019 Raj Jain 19-1 Overview 1. What is a Quantum and Quantum Bit? 2. Matrix Algebra Review 3. Quantum Gates: Not, And, or, Nand 4. Applications of Quantum Computing 5. Quantum Hardware and Programming Washington University in St. Louis http://www.cse.wustl.edu/~jain/ ©2019 Raj Jain 19-2 What is a Quantum? Quantization: Analog to digital conversion Quantum = Smallest discrete unit Quantum Wave Theory: Light is a wave. It has a frequency, phase, amplitude Quantum Mechanics: Light behaves like discrete packets of energy that can be absorbed and released Wave Photon = One quantum of light energy Photon Photons can move an electron from one energy level to next higher level Photons are released when an electron moves from one level to lower energy level Electrons Washington University in St. Louis http://www.cse.wustl.edu/~jain/ ©2019 Raj Jain 19-3 Probabilistic Behavior Young’s Double-Slit Experiment 1801 Photons The two waves exiting the slits interfere. Interference is constructive at some spots and destructive at others ⇒ Probabilistic Washington University in St. Louis http://www.cse.wustl.edu/~jain/ ©2019 Raj Jain 19-4 Quantum Bits 1. Computing bit is a binary scalar: 0 or 1 10 or 2. Quantum bit (Qubit) is a 2×1 vector: 01 3. -
Models of Quantum Computation and Quantum Programming Languages
Models of quantum computation and quantum programming languages Jaros law Adam MISZCZAK Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Ba ltycka 5, 44-100 Gliwice, Poland The goal of the presented paper is to provide an introduction to the basic computational mod- els used in quantum information theory. We review various models of quantum Turing machine, quantum circuits and quantum random access machine (QRAM) along with their classical counter- parts. We also provide an introduction to quantum programming languages, which are developed using the QRAM model. We review the syntax of several existing quantum programming languages and discuss their features and limitations. I. INTRODUCTION of existing models of quantum computation is biased towards the models interesting for the development of Computational process must be studied using the fixed quantum programming languages. Thus we neglect some model of computational device. This paper introduces models which are not directly related to this area (e.g. the basic models of computation used in quantum in- quantum automata or topological quantum computa- formation theory. We show how these models are defined tion). by extending classical models. We start by introducing some basic facts about clas- A. Quantum information theory sical and quantum Turing machines. These models help to understand how useful quantum computing can be. It can be also used to discuss the difference between Quantum information theory is a new, fascinating field quantum and classical computation. For the sake of com- of research which aims to use quantum mechanical de- pleteness we also give a brief introduction to the main res- scription of the system to perform computational tasks. -
Towards a Quantum Programming Language
The final version of this paper appeared in Math. Struct. in Comp. Science 14(4):527-586, 2004 Towards a Quantum Programming Language P E T E R S E L I N G E R y Department of Mathematics and Statistics University of Ottawa Ottawa, Ontario K1N 6N5, Canada Email: [email protected] Received 13 Nov 2002, revised 7 Jul 2003 We propose the design of a programming language for quantum computing. Traditionally, quantum algorithms are frequently expressed at the hardware level, for instance in terms of the quantum circuit model or quantum Turing machines. These approaches do not encourage structured programming or abstractions such as data types. In this paper, we describe the syntax and semantics of a simple quantum programming language with high-level features such as loops, recursive procedures, and structured data types. The language is functional in nature, statically typed, free of run-time errors, and it has an interesting denotational semantics in terms of complete partial orders of superoperators. 1. Introduction Quantum computation is traditionally studied at the hardware level: either in terms of gates and circuits, or in terms of quantum Turing machines. The former viewpoint emphasizes data flow and neglects control flow; indeed, control mechanisms are usually dealt with at the meta-level, as a set of instructions on how to construct a parameterized family of quantum circuits. On the other hand, quantum Turing machines can express both data flow and control flow, but in a sense that is sometimes considered too general to be a suitable foundation for implementations of future quantum computers.