Squires and Saul—Pacific Slope Cretaceous
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pterosaur Distribution in Time and Space: an Atlas 61
Zitteliana An International Journal of Palaeontology and Geobiology Series B/Reihe B Abhandlungen der Bayerischen Staatssammlung für Pa lä on to lo gie und Geologie B28 DAVID W. E. HONE & ERIC BUFFETAUT (Eds) Flugsaurier: pterosaur papers in honour of Peter Wellnhofer CONTENTS/INHALT Dedication 3 PETER WELLNHOFER A short history of pterosaur research 7 KEVIN PADIAN Were pterosaur ancestors bipedal or quadrupedal?: Morphometric, functional, and phylogenetic considerations 21 DAVID W. E. HONE & MICHAEL J. BENTON Contrasting supertree and total-evidence methods: the origin of the pterosaurs 35 PAUL M. BARRETT, RICHARD J. BUTLER, NICHOLAS P. EDWARDS & ANDREW R. MILNER Pterosaur distribution in time and space: an atlas 61 LORNA STEEL The palaeohistology of pterosaur bone: an overview 109 S. CHRISTOPHER BENNETT Morphological evolution of the wing of pterosaurs: myology and function 127 MARK P. WITTON A new approach to determining pterosaur body mass and its implications for pterosaur fl ight 143 MICHAEL B. HABIB Comparative evidence for quadrupedal launch in pterosaurs 159 ROSS A. ELGIN, CARLOS A. GRAU, COLIN PALMER, DAVID W. E. HONE, DOUGLAS GREENWELL & MICHAEL J. BENTON Aerodynamic characters of the cranial crest in Pteranodon 167 DAVID M. MARTILL & MARK P. WITTON Catastrophic failure in a pterosaur skull from the Cretaceous Santana Formation of Brazil 175 MARTIN LOCKLEY, JERALD D. HARRIS & LAURA MITCHELL A global overview of pterosaur ichnology: tracksite distribution in space and time 185 DAVID M. UNWIN & D. CHARLES DEEMING Pterosaur eggshell structure and its implications for pterosaur reproductive biology 199 DAVID M. MARTILL, MARK P. WITTON & ANDREW GALE Possible azhdarchoid pterosaur remains from the Coniacian (Late Cretaceous) of England 209 TAISSA RODRIGUES & ALEXANDER W. -
Oldest Cretaceous Sequence, Giralia Anticline, Carnarvon Basin, Western Australia: Late Hauterivian-Barremian
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Earth and Atmospheric Sciences, Department Papers in the Earth and Atmospheric Sciences of 1995 Oldest Cretaceous sequence, Giralia Anticline, Carnarvon Basin, Western Australia: late Hauterivian-Barremian S. McLoughlin University of Western Australia, Nedlands, WA D. W. Haig University of Western Australia, Nedlands, WA J. Backhouse Geological Survey of Western Australia Mary Anne Holmes University of Nebraska-Lincoln, [email protected] G. Ellis Switzerland See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/geosciencefacpub Part of the Earth Sciences Commons McLoughlin, S.; Haig, D. W.; Backhouse, J.; Holmes, Mary Anne; Ellis, G.; Long, J. A.; and McNamara, K. J., "Oldest Cretaceous sequence, Giralia Anticline, Carnarvon Basin, Western Australia: late Hauterivian- Barremian" (1995). Papers in the Earth and Atmospheric Sciences. 81. https://digitalcommons.unl.edu/geosciencefacpub/81 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in the Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors S. McLoughlin, D. W. Haig, J. Backhouse, Mary Anne Holmes, G. Ellis, J. A. Long, and K. J. McNamara This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ geosciencefacpub/81 AGSO Journal of Australian Geology & Geophysics, 15(4), 445-468 © Commonwealth of Australia 1995 Oldest Cretaceous sequence, Giralia Anticline, Carnarvon Basin, Western Australia: late Hauterivian-Barremian S. Mcl.oughlin'>, D. W. Haigl, J. Backhouse-, M. -
From the Lower Cretaceous of Lightning Ridge, New South Wales, Australia
Isolated teeth of Anhangueria (Pterosauria: Pterodactyloidea) from the Lower Cretaceous of Lightning Ridge, New South Wales, Australia Tom Brougham1, Elizabeth T. Smith2 and Phil R. Bell1 1 School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia 2 Australian Opal Centre, Lightning Ridge, New South Wales, Australia ABSTRACT The fossil record of Australian pterosaurs is sparse, consisting of only a small number of isolated and fragmentary remains from the Cretaceous of Queensland, Western Australia and Victoria. Here, we describe two isolated pterosaur teeth from the Lower Cretaceous (middle Albian) Griman Creek Formation at Lightning Ridge (New South Wales) and identify them as indeterminate members of the pterodactyloid clade Anhangueria. This represents the first formal description of pterosaur material from New South Wales. The presence of one or more anhanguerian pterosaurs at Lightning Ridge correlates with the presence of `ornithocheirid' and Anhanguera-like pterosaurs from the contemporaneous Toolebuc Formation of central Queensland and the global distribution attained by ornithocheiroids during the Early Cretaceous. The morphology of the teeth and their presence in the estuarine- and lacustrine-influenced Griman Creek Formation is likely indicative of similar life habits of the tooth bearer to other members of Anhangueria. Subjects Paleontology, Taxonomy Keywords Pterosauria, Cretaceous, Australia, Teeth Submitted 11 January 2017 Accepted 31 March 2017 Published 3 May 2017 INTRODUCTION Corresponding author Tom Brougham, Pterosaurs first appeared in the Late Triassic and diversified rapidly into the Jurassic. [email protected] At the peak of their diversity in the Cretaceous, pterosaurs where present on all Academic editor Andrew Farke continents, including Antarctica (Barrett et al., 2008; Upchurch et al., 2015). -
MAASTRICHTIAN SCAPHOPODA and GASTROPODA from the MIRIA FORMATION, CARNARVON BASIN, NORTHWESTERN AUSTRALIA Records O{The Western Australian Museum Supplement No
Records ofthe Western Australian Museum Supplement No. 48 :". Thomas A. Darragh andGeorge W. Kendrick MAASTRICHTIAN SCAPHOPODA AND GASTROPODA FROM THE MIRIA FORMATION, CARNARVON BASIN, NORTHWESTERN AUSTRALIA Records o{the Western Australian Museum Supplement No. 48 MAASTRICHTIAN SCAPHOPODA AND GASTROPODA from the Miria Formation, Carnarvon Basin, northwestern Australia Thomas A. Darragh and George W. Kendrick Western Australian Museum 1994 Cover: Nododelphinula dracontis, x3 © Western Australian Museum, June 1994 World List Abbreviation: Rec. West. Aust. Mus. Suppl. No. 48 ISBN 07309 5585 0 ISSN 0 313 122X Printed and published by the Western Australian Museum, Francis Street, Perth, Western Australia 6000. CONTENTS A~tr~t I Introduction........................................................................... I Preservation........................................................................... 2 Palaeoecology 4 Predation 8 Correlation and Stratigraphy 8 Palaeobiogeography 9 Systematic Palaeontology......................................... 10 Acknowledgements.. 68 References 68 Appendix 74 MAASTRICHTIAN SCAPHOPODA AND GASTROPODA FROM THE MIRIA FORMATION, CARNARVON BASIN, NORTHWESTERN AUSTRALIA Thomas A. Darragh* and George W. Kendriek** ABSTRACT One scaphopod and 35 gastropod species are recorded from the Late Maastrichtian Miria Formation of the Carnarvon Basin, northwestern Australia. Preservation of the fossils suggests that the assemblage, which is inferred to contain herbivores, possible detrital feeders, graz.ers, predatory and ectoparasitic carnivores, is only partly representative of the original fauna. The original mineralogy of the shells has, in part, determined which mollusks have been preserved, their state at recovery, and whether or not they can be identified. Primary calcite has remained but argonite has been lost and partially replaced by secondary calcite. Six species are known only from internal moulds, Five new species - Conotomaria millacis sp. nov., Conolomaria (7) cypsela sp. nov., Leptomaria perallcisa sp. -
Mesozoic Lithofacies Palaeogeography and Petroleum Prospectivity in North Carnarvon Basin, Australia
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Palaeogeography 2013, 2(1): 81-92 DOI: 10.3724/SP.J.1261.2013.00019 Palaeogeography and mineralPalaeogeography resources Mesozoic lithofacies palaeogeography and petroleum prospectivity in North Carnarvon Basin, Australia Tao Chongzhi1, 2, Bai Guoping1, 2, *, Liu Junlan1, 2, Deng Chao1, 2, Lu Xiaoxin3, Liu Houwu4, Wang Dapeng1, 2 1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China 2. Basin and Reservoir Research Center, China University of Petroleum (Beijing), Beijing 102249, China 3. SinoChem Petroleum Exploration & Production Co., Ltd., Beijing 100031, China 4. Wireline Logging Company of GWDC, Panjin, Liaoning 124010, China Abstract The North Carnarvon Basin, which lies in the North West Shelf of Australia, is highly rich in gas resources. As a typical passive marginal basin, it experienced the pre-rifting, early rifting, main rifting, late rifting, post‑rifting sagging and passive margin stages. The basin was mainly filled with thick Mesozoic-Cenozoic sediments, of which the Mesozoic hosts the principal source, reservoir and seal intervals. Mesozoic palaeogeography has an important control on the oil and gas distribution. Triassic gas-prone source rocks of deltaic origin deter‑ mine the high endowment of natural gases in the North Carnarvon Basin. The more restricted distribution of oil accumulations is controlled by oil source rocks in the Upper Jurassic Dingo Claystone. The Muderong Shale deposited in the Early Cretaceous marine transgression pro‑ vides the effective regional seal for the underlying oil and gas reservoirs. -
(Pterosauria: Pterodactyloidea) from the Lower Cretaceous of Lightning Ridge, New South Wales, Australia
Isolated teeth of Anhangueria (Pterosauria: Pterodactyloidea) from the Lower Cretaceous of Lightning Ridge, New South Wales, Australia Tom Brougham1, Elizabeth T. Smith2 and Phil R. Bell1 1 School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia 2 Australian Opal Centre, Lightning Ridge, New South Wales, Australia ABSTRACT The fossil record of Australian pterosaurs is sparse, consisting of only a small number of isolated and fragmentary remains from the Cretaceous of Queensland, Western Australia and Victoria. Here, we describe two isolated pterosaur teeth from the Lower Cretaceous (middle Albian) Griman Creek Formation at Lightning Ridge (New South Wales) and identify them as indeterminate members of the pterodactyloid clade Anhangueria. This represents the first formal description of pterosaur material from New South Wales. The presence of one or more anhanguerian pterosaurs at Lightning Ridge correlates with the presence of `ornithocheirid' and Anhanguera-like pterosaurs from the contemporaneous Toolebuc Formation of central Queensland and the global distribution attained by ornithocheiroids during the Early Cretaceous. The morphology of the teeth and their presence in the estuarine- and lacustrine-influenced Griman Creek Formation is likely indicative of similar life habits of the tooth bearer to other members of Anhangueria. Subjects Paleontology, Taxonomy Keywords Pterosauria, Cretaceous, Australia, Teeth Submitted 11 January 2017 Accepted 31 March 2017 Published 3 May 2017 INTRODUCTION Corresponding author Tom Brougham, Pterosaurs first appeared in the Late Triassic and diversified rapidly into the Jurassic. [email protected] At the peak of their diversity in the Cretaceous, pterosaurs where present on all Academic editor Andrew Farke continents, including Antarctica (Barrett et al., 2008; Upchurch et al., 2015). -
Late Cretaceous Brachiopods of the Perth and Carnarvon Basins, Western Australia
Records of the Wcstern Austra/ulIl IvIusculII 19: 413-442 (1999) Late Cretaceous brachiopods of the Perth and Carnarvon Basins, Western Australia Robert Samuel Craig School of Applied Geology, Curtin University of Technology GPO Box U1987, Perth, Western Australia 6845, Australia clo Western Australian Museum, Perth, Western Australia 6000, Australia robert.cra [email protected] u Abstract - Late Cretaceous deposits outcrop in the Perth and Carnarvon Basms in Western Australia. Brachiopods occur in the Gingin Chalk in the Perth Basin and in the Toolonga Calcilutite, Korojon Calcarenite and Miria Formation in the Carnarvon Basin. Fifteen species of brachiopods are described or revised from the Santonian to Campanian Gingin Chalk, seven species from the Santonian to Campanian Toolonga Calcilutite, two species from the Campanian to Maastrichtian Korojon Calcarenite and five species from the Late Maastrichtian Miria Formation. Ten new species are described: EolzwlItlzyns mlnaenSlS sp. nov., E. ((Ii/deI sp. nov., ProteglI/orlzynclzia bevanonmI sp. nov., Tegll/orllljnclzia Izrode/bertI sp. nov., Tcrcbratulina kendricki sp. nov., Liotlzyrella brimmcllae sp. nov., L. arclzbo/dI sp. novo GcmmarclI/a doddsae sp. nov., Zenobiatlzyris mlltabi/ls sp. novo and Z. plicatilis sp. novo This is the earliest record of Liotlzyrella, and the first record from Australia. A new family, Zenobiathyridae, is proposed. The presence of a number of genera common to Late Cretaceous and "early Tertiary" of the deposits Antarctic Peninsula suggests that there was a continuous shelf between Western Australia and Antarctica during this period. It is proposed that these brachiopods form part of a high latitude southern circum-Indo-Atlantic faunal province which existed during the Late Cretaceous to the early Cenozoic. -
From Western Queensland, Australia
“main” — 2011/2/10 — 17:57 — page 301 — #1 Anais da Academia Brasileira de Ciências (2011) 83(1): 301-308 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc Short note on a pteranodontoid pterosaur (Pterodactyloidea) from western Queensland, Australia , , , , ALEXANDER W.A. KELLNER1 2 3, TAISSA RODRIGUES1 2 and FABIANA R. COSTA1 4 1Setor de Paleovertebrados, Museu Nacional/UFRJ, Quinta da Boa Vista s/n São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brasil 2Fellow CNPq 3Fellow FAPERJ 4Fellow CAPES Manuscript received on December 9, 2010; accepted for publication on January 5, 2011 ABSTRACT Flying reptiles from Australia are very rare, represented mostly by isolated bones coming from the Early Creta- ceous (Albian) Toolebuc Formation, which crops out in western Queensland. Among the first pterosaur specimens discovered from this deposit is a mandibular symphysis that some authors thought to have a particular affinity to species found in the Cambridge Greensand (Cenomanian) of England. It was further referred as a member of or closely related to one of the genera Ornithocheirus, Lonchodectes or Anhanguera. Here we redescribe this specimen, showing that it cannot be referred to the aforementioned genera, but represents a new species of pteranodontoid (sensu Kellner 2003), here named Aussiedraco molnari gen. et sp. nov. It is the second named pterosaur from Australia and confirms that the Toolebuc deposits are so far the most important for our understanding of the flying reptile fauna of this country. Key words: Pteranodontoidea, Pterosauria, Toolebuc Formation, Cretaceous, Australia. INTRODUCTION a species closely related to Ornithocheirus Seeley, 1869 (Molnar and Thulborn 1980). -
West Kimberley Place Report
WEST KIMBERLEY PLACE REPORT DESCRIPTION AND HISTORY ONE PLACE, MANY STORIES Located in the far northwest of Australia’s tropical north, the west Kimberley is one place with many stories. National Heritage listing of the west Kimberley recognises the natural, historic and Indigenous stories of the region that are of outstanding heritage value to the nation. These and other fascinating stories about the west Kimberley are woven together in the following description of the region and its history, including a remarkable account of Aboriginal occupation and custodianship over the course of more than 40,000 years. Over that time Kimberley Aboriginal people have faced many challenges and changes, and their story is one of resistance, adaptation and survival, particularly in the past 150 years since European settlement of the region. The listing also recognizes the important history of non-Indigenous exploration and settlement of the Kimberley. Many non-Indigenous people have forged their own close ties to the region and have learned to live in and understand this extraordinary place. The stories of these newer arrivals and the region's distinctive pastoral and pearling heritage are integral to both the history and present character of the Kimberley. The west Kimberley is a remarkable part of Australia. Along with its people, and ancient and surviving Indigenous cultural traditions, it has a glorious coastline, spectacular gorges and waterfalls, pristine rivers and vine thickets, and is home to varied and unique plants and animals. The listing recognises these outstanding ecological, geological and aesthetic features as also having significance to the Australian people. In bringing together the Indigenous, historic, aesthetic, and natural values in a complementary manner, the National Heritage listing of the Kimberley represents an exciting prospect for all Australians to work together and realize the demonstrated potential of the region to further our understanding of Australia’s cultural history. -
University of Cincinnati
UNIVERSITY OF CINCINNATI Date:___________________ I, _________________________________________________________, hereby submit this work as part of the requirements for the degree of: in: It is entitled: This work and its defense approved by: Chair: _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ Bivalve Epibiont Armor: The Evolution of an Antipredatory Strategy A thesis submitted to the Division of Research and Advanced Studies of the University of Cincinnati in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in the Department of Geological Sciences of the College of Arts and Sciences 2003 by Donna Carlson Jones B.S., State University of New York, College at Fredonia, 1995 M.S., University of Rochester, 1998 Committee Chair: Arnold I. Miller Abstract Conventionally, spines on bivalves and other organisms are thought to serve an antipredatory function; however, this has been tested minimally for epifaunal bivalves, and completed research is contradictory. It is possible that spines do not serve an antipredatory function directly, but provide a substrate for epibionts, those organisms that encrust the outer surface of the bivalve’s shell. Although potentially harmful, coverage by epibionts would benefit the bivalve by concealing it from potential predators. The first portion of this project examined the mechanical behavior of crushed spined and un- spined shells of one epifaunal bivalve (Spondylus regius) in order to ascertain if spines increase the amount of work or force required to fail a shell, elucidating a potential protective function of the spines. A second study demonstrated that epibiont acquisition on various morphologies (including spined, ribbed and smooth varieties) of epifaunal bivalve shells is differential with respect to epibiont species richness and percent coverage. -
Redalyc.Maastrichtian Shallow-Water Ammonites of Northeastern Mexico
Revista Mexicana de Ciencias Geológicas ISSN: 1026-8774 [email protected] Universidad Nacional Autónoma de México México Ifrim, Christina; Stinnesbeck, Wolfgang; Schafhauser, Armin Maastrichtian shallow-water ammonites of northeastern Mexico Revista Mexicana de Ciencias Geológicas, vol. 22, núm. 1, 2005, pp. 48-64 Universidad Nacional Autónoma de México Querétaro, México Available in: http://www.redalyc.org/articulo.oa?id=57222106 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative 48 IfrimRevista et al.Mexicana de Ciencias Geológicas, v. 22, núm. 1, 2005, p. 48-64 Maastrichtian shallow-water ammonites of northeastern Mexico Christina Ifrim, Wolfgang Stinnesbeck, and Armin Schafhauser Institut für Regionale Geologie, Universität Karlsruhe, D-76131 Karlsruhe, Germany. [email protected] ABSTRACT In northeastern Mexico, extensive deltaic and prodeltaic sediment complexes developed during Maastrichtian times, known as the Difunta Group and Escondido Formation in Coahuila and the Northwest of Nuevo León, and the Cárdenas Formation in San Luis Potosí. These sediments contain abundant and diverse invertebrate assemblages, among them the last ammonites in the area, prior to their extinction. Sphenodiscus (S. lobatus, S. pleurisepta) and Coahuilites sheltoni are the dominant elements of this paucispecific fauna and clearly favored shallow water coastal environments. Ammonites other than sphenodiscids are rare and restricted to occasional Baculites ovatus and a single Pachydiscus (Pachydiscus) neubergicus. This early (and possibly early late) Maastrichtian assemblage differs notably from the coeval ammonite fauna of the distal prodeltaic and open marine Méndez Formation in eastern Nuevo León. -
New Jurassic Theropod Dinosaur from Western Australia
Records of the Western Ailstral/llll MIISflllll 19: 121-129 (1998) A new Jurassic theropod dinosaur from Western Australia John A. Long 1 and Ralph E. Molnar 2 I Western Australian Museum, Francis Street, Perth, Western Australia 6000, Australia 2 Queensland Museum, PO Box 3300, South Brisbane, Queensland 4101, Australia Abstract -A Middle Jurassic (Bajocian) theropod dinosaur, Ozraptor sllbotaii, gen. et sp. nov., is described from the ColaIura Sandstone of Western Australia, based on the distal end of a left tibia. The astragalar facet indicates that the dorsal process of the astragalus was high and distinctly rectangular in outline, with an anterior surface that is almost straight along its dorsal margin. It differs from all other theropods in which the tibia or astragalus is known as these have either weakly developed, low dorsal processes or high triangular-shaped processes. The specimen is significant in being the first Jurassic theropod bone from Australia, and the first Western Australian dinosaur to be formally named, apart from an ichnotaxon. INTRODUCTION of a Late Cretaceous theropod pedal phalange from Australian dinosaurs are known mostly from the Molecap Greensand near Gingin, and Long and scant and rarely articulated remains of Early Cruickshank (1996) described a possible Early Cretaceous age in Victoria, New South Wales, Cretaceous theropod caudal vertebra from the South Australia and Queensland (Molnar 1991; Birdrong Sandstone, exposed near Kalbarri. Long 1993, 1998). The only Jurassic dinosaurs so However, an extensive assemblage of dinosaur far described are the partial skeleton of the footprint taxa are now known from the Early sauropod Rhoetosaurus brownei (Longman 1927) Cretaceous Broome Sandstone, including the from southem Queensland, and a report of a theropod ichnotaxon Megalosauropus broomensis probable sauropod caudal vertebra by Long (1992) Colbert and Merrilees 1967, at least two different from near Geraldton, Western Australia.