One Identity Privilege Manager for Unix Administration Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chrooting All Services in Linux
LinuxFocus article number 225 http://linuxfocus.org Chrooting All Services in Linux by Mark Nielsen (homepage) About the author: Abstract: Mark works as an independent consultant Chrooted system services improve security by limiting damage that donating time to causes like someone who broke into the system can possibly do. GNUJobs.com, writing _________________ _________________ _________________ articles, writing free software, and working as a volunteer at eastmont.net. Introduction What is chroot? Chroot basically redefines the universe for a program. More accurately, it redefines the "ROOT" directory or "/" for a program or login session. Basically, everything outside of the directory you use chroot on doesn't exist as far a program or shell is concerned. Why is this useful? If someone breaks into your computer, they won't be able to see all the files on your system. Not being able to see your files limits the commands they can do and also doesn't give them the ability to exploit other files that are insecure. The only drawback is, I believe it doesn't stop them from looking at network connections and other stuff. Thus, you want to do a few more things which we won't get into in this article too much: Secure your networking ports. Have all services run as a service under a non-root account. In addition, have all services chrooted. Forward syslogs to another computer. Analyze logs files Analyze people trying to detect random ports on your computer Limit cpu and memory resources for a service. Activate account quotas. The reason why I consider chroot (with a non-root service) to be a line of defense is, if someone breaks in under a non-root account, and there are no files which they can use to break into root, then they can only limit damage to the area they break in. -
The Linux Kernel Module Programming Guide
The Linux Kernel Module Programming Guide Peter Jay Salzman Michael Burian Ori Pomerantz Copyright © 2001 Peter Jay Salzman 2007−05−18 ver 2.6.4 The Linux Kernel Module Programming Guide is a free book; you may reproduce and/or modify it under the terms of the Open Software License, version 1.1. You can obtain a copy of this license at http://opensource.org/licenses/osl.php. This book is distributed in the hope it will be useful, but without any warranty, without even the implied warranty of merchantability or fitness for a particular purpose. The author encourages wide distribution of this book for personal or commercial use, provided the above copyright notice remains intact and the method adheres to the provisions of the Open Software License. In summary, you may copy and distribute this book free of charge or for a profit. No explicit permission is required from the author for reproduction of this book in any medium, physical or electronic. Derivative works and translations of this document must be placed under the Open Software License, and the original copyright notice must remain intact. If you have contributed new material to this book, you must make the material and source code available for your revisions. Please make revisions and updates available directly to the document maintainer, Peter Jay Salzman <[email protected]>. This will allow for the merging of updates and provide consistent revisions to the Linux community. If you publish or distribute this book commercially, donations, royalties, and/or printed copies are greatly appreciated by the author and the Linux Documentation Project (LDP). -
LM1881 Video Sync Separator Datasheet
Product Sample & Technical Tools & Support & Folder Buy Documents Software Community LM1881 SNLS384G –FEBRUARY 1995–REVISED JUNE 2015 LM1881 Video Sync Separator 1 Features 3 Description The LM1881 Video sync separator extracts timing 1• AC Coupled Composite Input Signal information including composite and vertical sync, • >10-kΩ Input Resistance burst or back porch timing, and odd and even field • <10-mA Power Supply Drain Current information from standard negative going sync NTSC, • Composite Sync and Vertical Outputs PAL (1) and SECAM video signals with amplitude from • Odd and Even Field Output 0.5-V to 2-V p-p. The integrated circuit is also capable of providing sync separation for non- • Burst Gate or Back Porch Output standard, faster horizontal rate video signals. The • Horizontal Scan Rates to 150 kHz vertical output is produced on the rising edge of the • Edge Triggered Vertical Output first serration in the vertical sync period. A default vertical output is produced after a time delay if the • Default Triggered Vertical Output for Non- rising edge mentioned above does not occur within Standard Video Signal (Video Games-Home the externally set delay period, such as might be the Computers) case for a non-standard video signal. 2 Applications Device Information(1) • Video Cameras and Recorders PART NUMBER PACKAGE BODY SIZE (NOM) SOIC (8) 4.90 mm × 3.91 mm • Broadcasting Systems LM1881 • Set-Top Boxes PDIP (8) 9.81 mm × 6.35 mm • Home Entertainment (1) For all available packages, see the orderable addendum at the end of the data sheet. • Computing and Gaming Applications (1) PAL in this datasheet refers to European broadcast TV standard “Phase Alternating Line”, and not to Programmable Array Logic. -
Making Linux Protection Mechanisms Egalitarian with Userfs
Making Linux Protection Mechanisms Egalitarian with UserFS Taesoo Kim and Nickolai Zeldovich MIT CSAIL ABSTRACT firewall rules, forcing applications to invent their own UserFS provides egalitarian OS protection mechanisms protection techniques like system call interposition [15], in Linux. UserFS allows any user—not just the system binary rewriting [30] or analysis [13, 45], or interposing administrator—to allocate Unix user IDs, to use chroot, on system accesses in a language runtime like Javascript. and to set up firewall rules in order to confine untrusted This paper presents the design of UserFS, a kernel code. One key idea in UserFS is representing user IDs as framework that allows any application to use traditional files in a /proc-like file system, thus allowing applica- OS protection mechanisms on a Unix system, and a proto- tions to manage user IDs like any other files, by setting type implementation of UserFS for Linux. UserFS makes permissions and passing file descriptors over Unix do- protection mechanisms egalitarian, so that any user—not main sockets. UserFS addresses several challenges in just the system administrator—can allocate new user IDs, making user IDs egalitarian, including accountability, re- set up firewall rules, and isolate processes using chroot. source allocation, persistence, and UID reuse. We have By using the operating system’s own protection mecha- ported several applications to take advantage of UserFS; nisms, applications can avoid race conditions and ambi- by changing just tens to hundreds of lines of code, we guities associated with system call interposition [14, 43], prevented attackers from exploiting application-level vul- can confine existing code without having to recompile or nerabilities, such as code injection or missing ACL checks rewrite it in a new language, and can enforce a coherent in a PHP-based wiki application. -
Sandboxing 2 Change Root: Chroot()
Sandboxing 2 Change Root: chroot() Oldest Unix isolation mechanism Make a process believe that some subtree is the entire file system File outside of this subtree simply don’t exist Sounds good, but. Sandboxing 2 2 / 47 Chroot Sandboxing 2 3 / 47 Limitations of Chroot Only root can invoke it. (Why?) Setting up minimum necessary environment can be painful The program to execute generally needs to live within the subtree, where it’s exposed Still vulnerable to root compromise Doesn’t protect network identity Sandboxing 2 4 / 47 Root versus Chroot Suppose an ordinary user could use chroot() Create a link to the sudo command Create /etc and /etc/passwd with a known root password Create links to any files you want to read or write Besides, root can escape from chroot() Sandboxing 2 5 / 47 Escaping Chroot What is the current directory? If it’s not under the chroot() tree, try chdir("../../..") Better escape: create device files On Unix, all (non-network) devices have filenames Even physical memory has a filename Create a physical memory device, open it, and change the kernel data structures to remove the restriction Create a disk device, and mount a file system on it. Then chroot() to the real root (On Unix systems, disks other than the root file system are “mounted” as a subtree somewhere) Sandboxing 2 6 / 47 Trying Chroot # mkdir /usr/sandbox /usr/sandbox/bin # cp /bin/sh /usr/sandbox/bin/sh # chroot /usr/sandbox /bin/sh chroot: /bin/sh: Exec format error # mkdir /usr/sandbox/libexec # cp /libexec/ld.elf_so /usr/sandbox/libexec # chroot /usr/sandbox -
Version 7.8-Systemd
Linux From Scratch Version 7.8-systemd Created by Gerard Beekmans Edited by Douglas R. Reno Linux From Scratch: Version 7.8-systemd by Created by Gerard Beekmans and Edited by Douglas R. Reno Copyright © 1999-2015 Gerard Beekmans Copyright © 1999-2015, Gerard Beekmans All rights reserved. This book is licensed under a Creative Commons License. Computer instructions may be extracted from the book under the MIT License. Linux® is a registered trademark of Linus Torvalds. Linux From Scratch - Version 7.8-systemd Table of Contents Preface .......................................................................................................................................................................... vii i. Foreword ............................................................................................................................................................. vii ii. Audience ............................................................................................................................................................ vii iii. LFS Target Architectures ................................................................................................................................ viii iv. LFS and Standards ............................................................................................................................................ ix v. Rationale for Packages in the Book .................................................................................................................... x vi. Prerequisites -
The Oldest Rivalry in Computing Forget Apple Vs
Follow us on Twitter for more great Slate stories! Follow @slate BITWISE DECODING THE TECH WORLD. MAY 9 2014 9:57 AM The Oldest Rivalry in Computing Forget Apple vs. Google. Emacs and Vi have been battling for text-editor supremacy among programmers for 40 years. By David Auerbach An early Emacs manual cover from 1981. Courtesy of GNU Emacs n a world where both software and hardware frequently become obsolete right I on release, two rival programs can stake a claim to being among the longest-lived applications of all time. Both programs are about to enter their fifth decades. Both programs are text editors, for inputting and editing code, data files, raw HTML Web pages, and anything else. And they are mortal enemies. Their names are Emacs and Vi (styled by programmers as “vi”). These editors are legendary and ancient, no exaggeration. Both date back to at least 1976, making them older than the vast majority of people currently using them. Both programs are text editors, which means they are not WYSIWYG (what you see is what you get)—unlike, say, word processors like Microsoft Word, they do not format your words onscreen. Programming is very different from word processing, and the basic goal of Emacs and Vi—fast editing of source code (and any other text files)—has yet to become obsolete. Both have been in ongoing development for almost 40 years. These two wizened programs are as close to equally matched enemies as any two programs have ever been. If you know a programmer who uses one of them, there’s a good chance that she hates the other. -
80842-Su | Cc/Led/27W/E26-E39/Mv/50K Corn Cob Sunlite
Item: 80842-SU CC/LED/27W/E26-E39/MV/50K CORN COB SUNLITE General Characteristics Bulb Corn Lamp Type Corn Cob Lamp Life Hours 50000 Hours Material Aluminium & Plastic LED Type LG5630 Base Medium (E26) Lumens Per Watt (LPW) 135.00 Life (based on 3hr/day) 45.7 Years Estimated Energy Cost $3.25 per Year Safety Rating UL Listed Ingress Protection IP64 Sunlite CC/LED/27W/E26-E39/MV/50K LED 27W (100W MHL/HPSW Electrical Characteristics Equivalent) Corn Bulb, Medium (E26), Watts 27 5000K Super White Volts 100-277 Equivalent Watts 100 LED Chip Manufacturer LG5630 Sunlite's super efficient LED corn lamps were created to Number of LEDs 84 replace the equivalent but power hungry metal halide and Power Factor 0.9 high-pressure sodium lamps. Capable of withstanding water sprays from any direction in thanks to its IP64 rating, these Temperature -40° To 140° bulbs will keep outdoor paths, back yards and many more locations illuminated for a significantly longer period of time Light Characteristics when compared to a high-pressure sodium lamp or a metal Brightness 3645 Lumens halide while also lowering your electrical usage. Color Accuracy (CRI) 85 Light Appearance Super White Color Temperature 5000K • This modern corn cob lamp produces an efficient 5000K Beam Angle 360° super white beam of 360° light at a powerful 3645 lumens • On average, this multi-volt LED corn cob lamp lasts up to Product Dimensions an astonishing 50,000 hours and features 84 energy MOL (in) 7.4 saving diodes Diameter (in) 3.65 • Ideal for all post lights, Street lights, security Lighting, high Package Dimensions (in) (W) 3.70 (H) 11.90 (D) 3.80 bay lights while also designed for indoor as well as Product Data outdoor usage. -
The Linux Command Line
The Linux Command Line Fifth Internet Edition William Shotts A LinuxCommand.org Book Copyright ©2008-2019, William E. Shotts, Jr. This work is licensed under the Creative Commons Attribution-Noncommercial-No De- rivative Works 3.0 United States License. To view a copy of this license, visit the link above or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042. A version of this book is also available in printed form, published by No Starch Press. Copies may be purchased wherever fine books are sold. No Starch Press also offers elec- tronic formats for popular e-readers. They can be reached at: https://www.nostarch.com. Linux® is the registered trademark of Linus Torvalds. All other trademarks belong to their respective owners. This book is part of the LinuxCommand.org project, a site for Linux education and advo- cacy devoted to helping users of legacy operating systems migrate into the future. You may contact the LinuxCommand.org project at http://linuxcommand.org. Release History Version Date Description 19.01A January 28, 2019 Fifth Internet Edition (Corrected TOC) 19.01 January 17, 2019 Fifth Internet Edition. 17.10 October 19, 2017 Fourth Internet Edition. 16.07 July 28, 2016 Third Internet Edition. 13.07 July 6, 2013 Second Internet Edition. 09.12 December 14, 2009 First Internet Edition. Table of Contents Introduction....................................................................................................xvi Why Use the Command Line?......................................................................................xvi -
Powerview Command Reference
PowerView Command Reference TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents ...................................................................................................................... PowerView User Interface ............................................................................................................ PowerView Command Reference .............................................................................................1 History ...................................................................................................................................... 12 ABORT ...................................................................................................................................... 13 ABORT Abort driver program 13 AREA ........................................................................................................................................ 14 AREA Message windows 14 AREA.CLEAR Clear area 15 AREA.CLOSE Close output file 15 AREA.Create Create or modify message area 16 AREA.Delete Delete message area 17 AREA.List Display a detailed list off all message areas 18 AREA.OPEN Open output file 20 AREA.PIPE Redirect area to stdout 21 AREA.RESet Reset areas 21 AREA.SAVE Save AREA window contents to file 21 AREA.Select Select area 22 AREA.STDERR Redirect area to stderr 23 AREA.STDOUT Redirect area to stdout 23 AREA.view Display message area in AREA window 24 AutoSTOre .............................................................................................................................. -
Unix Security Overview: 1
CIS/CSE 643: Computer Security (Syracuse University) Unix Security Overview: 1 Unix Security Overview 1 User and Group • Users – root: super user (uid = 0) – daemon: handle networks. – nobody: owns no files, used as a default user for unprivileged operations. ∗ Web browser can run with this mode. – User needs to log in with a password. The encrypted password is stored in /etc/shadow. – User information is stored in /etc/passwd, the place that was used to store passwords (not anymore). The following is an example of an entry in this file. john:x:30000:40000:John Doe:/home/john:/usr/local/bin/tcsh • Groups – Sometimes, it is more convenient if we can assign permissions to a group of users, i.e. we would like to assign permission based on groups. – A user has a primary group (listed in /etc/passwd), and this is the one associated to the files the user created. – Any user can be a member of multiple groups. – Group member information is stored in /etc/group % groups uid (display the groups that uid belongs to) – For systems that use NIS (Network Information Service), originally called Yellow Page (YP), we can get the group information using the command ypcat. % ypcat group (can display all the groups and their members) 2 File Permissions • File Permissions – The meaning of the permission bits in Unix. ∗ Owner (u), Group (g), and Others (o). ∗ Readable (r), Writable (w), and Executable (x). ∗ Example: -rwxrwxrwx (777) • Permissions on Directories: – r: the directory can be listed. – w: can create/delete a file or a directory within the directory. -
Learning the Vi Editor
Learning the vi Editor en.wikibooks.org December 29, 2013 On the 28th of April 2012 the contents of the English as well as German Wikibooks and Wikipedia projects were licensed under Creative Commons Attribution-ShareAlike 3.0 Unported license. A URI to this license is given in the list of figures on page 103. If this document is a derived work from the contents of one of these projects and the content was still licensed by the project under this license at the time of derivation this document has to be licensed under the same, a similar or a compatible license, as stated in section 4b of the license. The list of contributors is included in chapter Contributors on page 101. The licenses GPL, LGPL and GFDL are included in chapter Licenses on page 107, since this book and/or parts of it may or may not be licensed under one or more of these licenses, and thus require inclusion of these licenses. The licenses of the figures are given in the list of figures on page 103. This PDF was generated by the LATEX typesetting software. The LATEX source code is included as an attachment (source.7z.txt) in this PDF file. To extract the source from the PDF file, you can use the pdfdetach tool including in the poppler suite, or the http://www. pdflabs.com/tools/pdftk-the-pdf-toolkit/ utility. Some PDF viewers may also let you save the attachment to a file. After extracting it from the PDF file you have to rename it to source.7z.