CLASSES of FUNGI - Phycomycetes : O Found in Aquatic Habitat, on Decaying Wood in Moist and Damp Places

Total Page:16

File Type:pdf, Size:1020Kb

CLASSES of FUNGI - Phycomycetes : O Found in Aquatic Habitat, on Decaying Wood in Moist and Damp Places Fungi Fungi can be single celled or very complex multicellular organisms. They are found in any habitat but most live on the land, mainly in soil or on plant material rather than in sea or fresh water. The three major groups of fungi are: multicellular filamentous moulds; macroscopic filamentous fungi and single celled microscopic yeasts. Moulds are made up of very fine threads (hyphae). Macroscopic filamentous fungi also grow by producing a mycelium below ground. Reproduction by vegetative means takes place by fragmentation, fission and budding. Reproduce asexually by spores like conidia sporangiospores or zoospores. Sexual reproduction is by oospores, ascospores and basidiospores. Yeasts are small, lemon-shaped single cells that are about the same size as red blood cells. They multiply by budding i.e., a daughter cell off from the original parent cell. CLASSES OF FUNGI - Phycomycetes : o Found in aquatic habitat, on decaying wood in moist and damp places. o Some of them are obligate parasite on plants. o Mycelium is aseptate and coenocytic. o Asexual reproduction by zoospores (motile) or by aplanospores (nonmotile). o Spores are produced endogenously in sporangium. o Zygospore produced by fusion of gametes. E.g., Rhizopus, Albugo. Ascomycetes : o Commonly known as sac fungi. o Unicellular (yeasts) or multicellular (e.g. Penicillium). o Saprophytic, decomposers, parasitic or coprophilous. o Mycelium branched and septate. o Asexual spores are called conidia produced exogenously on the conidiophores. Conidia on germination produce mycelium. o Sexual spores are called ascospores produced endogenously in ascus produced inside fruiting body calledAscocarp. E.g., Aspergillus, Neurospora. Basidiomycetes : o Common known forms called mushrooms, bracket fungi or puffballs. o Mycelium septate and branched. o Asexual spores generally are not found. o Vegetative reproduction by fragmentation. o Sexual reproduction by fusion of vegetative or somatic cells of different strains to form basidium produced in basidiocarp. o Basidium produces four basidiospores after meiosis. E.g., Agaricus, Ustilago. Deuteromycetes : o Called as Fungi Imperfecti as sexual form (perfect stage) is not known for them. o Once sexual form is discovered the member is moved to Ascomycetes or Basidiomycetes. o Mycelium is septate and branched. o Are saprophytic, parasitic or decomposers. E.g., Alternaria, Colletotrichum. Algae Algae can exist as single cells or joined together in chains like Spirogyra or made up of many cells. Most algae live in fresh or sea water, where they can be planktonic or attached to the bottom. Some algae grow on rocks, soil or vegetation as long as there is enough moisture. A few algae form partnerships with fungi to form lichens. All algae contain a pigment called chlorophyll a. Diatoms is an algae found floating in the phytoplankton. Selaginella Selaginella is the sole genus of vascular plants in the family Selaginellaceae. Selaginella are creeping or plants with simple, scale-like leaves on branching stems from which roots also arise. The plants are heterosporous and have structures called ligules, scale- like outgrowths near the base of the upper surface of each microphyll and sporophyll. Under dry conditions, some species of Selaginella roll into brown balls, a phenomenon known as poikilohydry. Gymnosperms Gymnosperms are a group of seed-producing plants. The term "gymnosperm" means naked seeds, after the unenclosed condition of their seeds. Gymnosperm seeds develop either on the surface of scales or leaves, often modified to form cones, or at the end of short stalks as in Ginkgo. Mucor Mucor is a microbial genus commonly found in soil, digestive systems, plant surfaces, and rotten vegetable matter. Colonies of this fungal genus are typically coloured white to beige or grey and are fast- growing. Mucor spores can be simple or branched and form apical, globular sporangia that are supported and elevated by a column-shaped columella. Mucor species show asexual and sexual reproduction. Rhizopus Rhizopus is a genus of common saprophytic fungi on plants and specialized parasites on animals. They are found on a wide variety of organic substrates - jellies, syrups, leather, bread, peanuts and tobacco. Rhizopus species grow as filamentous, branching hyphae that generally lack cross-walls. They reproduce by forming asexual and sexual spores. Spirogyra Spirogyra is a genus of filamentous charophyte green algae of the order Zygnematales. Spirogyra is unbranched with cells connected end to end in long male reproductive system filaments. This genus of green algae undergoes a haploid-dominant life cycle. Spirogyra is very common in relatively clean eutrophic water, developing slimy filamentous green masses. Spirogyra can reproduce both sexually and asexually. Ulothrix Ulothrix is a genus of filamentous green algae, generally found in fresh and marine water. Its cells are normally as broad as they are long, and they thrive in the low temperatures of spring and winter. The plant body consists of unbranched, uniseriate filaments. The cells of the filaments are arranged end to end. Reproduction in Ulothrix takes place by means of vegetative, asexual and sexual methods. The common vegetative methods of reproduction are fragmentation and akinete formation. Albugo Albugo is a genus of Oomycetes which are not true fungi Albugo is one of three genera currently described in the family Albuginaceae. This organism causes white rust or white blister diseases in above-ground plant tissues. White rust pathogens create chlorotic (yellowed) lesions and sometimes galls on the upper leaf surface. Lichens Lichens grow in a wide range of morphologies. The shape of lichen is usually determined by the organization of filaments of the fungus. The non-reproductive tissues, or vegetative body parts, is called the thallus. Thallus growth forms typically correspond to a few basic internal structure types. Common names for lichens often come from a growth form or color that is typical of a lichen genus. Funaria Funaria is known as common moss or green moss or cord moss. The main plant body of Funaria is gametophyte and is of two forms. (1) Juvenile form (creeping protonema). (2) Adult form (leafy gametophore). Funaria reproduces both by vegetative and sexual methods. There are two generations in life cycle of Funaria, i.e., gametophytic generation (n), which is independent; and complex and sporophytic generation (2n), which is partially dependent upon gametophytic generation. These two generations follow each other in regular sequence. This is called heteromorphic or heterologous alternation of generations. Riccia The main plant body of Riccia is gametophytic (n). It is small, green, flat and fleshy. The thallus is dorsiventral and dichotomously branched. The thalli are present in the form of patches called rosettes. Scales are found on the margins, while rhizoids are present in the mid-rib region of thallus. Rhizoids are unicellular and unbranched and are of two types - smooth and tuberculate. Riccia reproduces by .both vegetative and sexual method. There are 2 generations in life cycle of Riccia. The main plant body is garnetophytic (n). The gametophytic phase starts with formation of spores and ends with fertilization. The second phase is sporophytic phase (2n). Bryophyte Bryophyte is a traditional name used to refer to all embryophytes that do not have true vascular tissue and are therefore called non-vascular plants. Bryophytes produce enclosed reproductive structures but they produce neither flowers nor seeds, reproducing via spores. The differential characteristics of the gametophytes of the three groups of bryophytes are: Liverworts Mosses Hornorts Structure Thalloid or foliose Foliose Thalloid Symmetry Dorsiventral or radial Radial Dorsiventral Rhizoids Unicellular Pluricellular Unicellular Chloroplasts Many Many One Protonema Reduced Present Absent Gametangia Superficial Superficial Immersed The differential characteristics of the sporophytes of the three groups of bryophytes are: Liverworts Mosses Hornworts Small, without Large, with Large, with Structure chlorophyll chlorophyll chlorophyll Growth Defined Defined Continuous Seta Present Present Absent Capsule form Simple Differentiated Elongated Maturation Simultaneous Simultaneous Graduate Dispersion of Elater Peristome teeth Pseudo-elaters spores Columella Absent Present Present Longitudinal or Dehiscence Transversal Longitudinal irregular Stomata Absent Present Present Pteridium, pteris and dryopteris Pteridium Pteridium is a species of fern occurring in temperate and subtropical regions in both hemispheres. It is a herbaceous perennial plant, deciduous in winter. The large, roughly triangular fronds are produced singly, arising upwards from an underground rhizome. The spores have also been implicated as carcinogens. Pteris Pteris is a genus of ferns in the Pteridoideae. They are native to tropical and subtropical regions of the world. Many of them have linear frond segments, and some have sub-palmate division. Like other members of the Pteridaceae, the frond margin is reflexed over the marginal sori. Pteridophytes Pteridophytes are vascular plants that reproduce and disperse via spores. Because they produce neither flowers nor seeds, they are referred to as cryptogams. Just like with seed plants and mosses, the life cycle of pteridophytes involves alternation of generations. This means that a diploid generation is followed by a haploid. Pteridophytes generations are independent and free-living,
Recommended publications
  • S41467-021-25308-W.Pdf
    ARTICLE https://doi.org/10.1038/s41467-021-25308-w OPEN Phylogenomics of a new fungal phylum reveals multiple waves of reductive evolution across Holomycota ✉ ✉ Luis Javier Galindo 1 , Purificación López-García 1, Guifré Torruella1, Sergey Karpov2,3 & David Moreira 1 Compared to multicellular fungi and unicellular yeasts, unicellular fungi with free-living fla- gellated stages (zoospores) remain poorly known and their phylogenetic position is often 1234567890():,; unresolved. Recently, rRNA gene phylogenetic analyses of two atypical parasitic fungi with amoeboid zoospores and long kinetosomes, the sanchytrids Amoeboradix gromovi and San- chytrium tribonematis, showed that they formed a monophyletic group without close affinity with known fungal clades. Here, we sequence single-cell genomes for both species to assess their phylogenetic position and evolution. Phylogenomic analyses using different protein datasets and a comprehensive taxon sampling result in an almost fully-resolved fungal tree, with Chytridiomycota as sister to all other fungi, and sanchytrids forming a well-supported, fast-evolving clade sister to Blastocladiomycota. Comparative genomic analyses across fungi and their allies (Holomycota) reveal an atypically reduced metabolic repertoire for sanchy- trids. We infer three main independent flagellum losses from the distribution of over 60 flagellum-specific proteins across Holomycota. Based on sanchytrids’ phylogenetic position and unique traits, we propose the designation of a novel phylum, Sanchytriomycota. In addition, our results indicate that most of the hyphal morphogenesis gene repertoire of multicellular fungi had already evolved in early holomycotan lineages. 1 Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France. 2 Zoological Institute, Russian Academy of Sciences, St. ✉ Petersburg, Russia. 3 St.
    [Show full text]
  • Biological Classification Chapter 2
    16 BIOLOGY CHAPTER 2 BIOLOGICAL CLASSIFICATION 2.1 Kingdom Monera Since the dawn of civilisation, there have been many attempts to classify living organisms. It was done instinctively not using criteria that were 2.2 Kingdom Protista scientific but borne out of a need to use organisms for our own use – for 2.3 Kingdom Fungi food, shelter and clothing. Aristotle was the earliest to attempt a more 2.4 Kingdom Plantae scientific basis for classification. He used simple morphological characters to classify plants into trees, shrubs and herbs. He also divided animals 2.5 Kingdom into two groups, those which had red blood and those that did not. Animalia In Linnaeus' time a Two Kingdom system of classification with 2.6 Viruses, Viroids Plantae and Animalia kingdoms was developed that included all plants and Lichens and animals respectively. This system was used till very recently. This system did not distinguish between the eukaryotes and prokaryotes, unicellular and multicellular organisms and photosynthetic (green algae) and non-photosynthetic (fungi) organisms. Classification of organisms into plants and animals was easily done and was easy to understand, inspite, a large number of organisms did not fall into either category. Hence the two kingdom classification used for a long time was found inadequate. A need was also felt for including, besides gross morphology, other characteristics like cell structure, nature of wall, mode of nutrition, habitat, methods of reproduction, evolutionary relationships, etc. Classification systems for the living organisms have hence, undergone several changes over time. Though plant and animal kingdoms have been a constant under all different systems, the understanding of what groups/organisms be included under these kingdoms have been changing; the number and nature of other kingdoms have also been understood differently by different scientists over time.
    [Show full text]
  • 1. in Whittaker's System of Classification, Prokaryotes Are Placed in the Kingdom (A) Protista (B) Monera (C) Plantae (D) Animal
    1. In Whittaker's system of classification, prokaryotes are placed 12. An organism having cytoplasm i.e. DNA and RNA but no in the kingdom cell wall is (a) Protista (b) Monera (a) Cyanobacterium (b) Mycoplasma (c) Plantae (d) Animalia (c) Bacterium (d) Virus 2. In the five kingdom system of classification, which single 13. Kingdom monera comprises the – kingdom out of the following can include blue-green algae, (a) Plants of economic importance nitrogen fixing bacteria and methanogenic archaebacteria ? (b) All the plants studied in botany (a) Monera (b) Fungi (c) Prokaryotic organisms (c) Plantae (d) Protista (d) Plants of Thallophyta group 3. Which of the following kingdom does not have nuclear 14. The cell wall of green plants is made up of membrane? (a) Pectin (b) Suberin (a) Protista (b) Fungi (c) Cellulose (d) Chitin (c) Monera (d) Plantae 15. Which of the following is not a blue-green algae ? 4. What type of mode of nutrition is found in the kingdom (a) Nostoc (b) Anabaena Animalia? (c) Lichen (d) Aulosiras (a) Autotrophic and heterotrophic 16. During rainy seasons, the ground becomes slippery due to (b) Chemosynthetic and photosynthetic dense growth of (c) Saprophytic and parasitic (a) Lichens (b) Bacteria (d) Holozoic and saprophytic (c) Green algae (d) Cyanobacteria 5. The separation of living beings into five kingdoms is based 17. Paramecium is a on – (a) Protozoan (b) Bacterium (a) Complexity of cell structure (c) Virus (d) Annelid (b) Complexity of organism's body 18. Protists are (c) Mode of obtaining nutrition (a) single-celled eukaryotes (b) multicellular eukaryotes (d) All of the above (c) single-celled prokaryotes (d) single-celled akaryote 6.
    [Show full text]
  • A Higher-Level Phylogenetic Classification of the Fungi
    mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information,
    [Show full text]
  • Clade (Kingdom Fungi, Phylum Chytridiomycota)
    TAXONOMIC STATUS OF GENERA IN THE “NOWAKOWSKIELLA” CLADE (KINGDOM FUNGI, PHYLUM CHYTRIDIOMYCOTA): PHYLOGENETIC ANALYSIS OF MOLECULAR CHARACTERS WITH A REVIEW OF DESCRIBED SPECIES by SHARON ELIZABETH MOZLEY (Under the Direction of David Porter) ABSTRACT Chytrid fungi represent the earliest group of fungi to have emerged within the Kingdom Fungi. Unfortunately despite the importance of chytrids to understanding fungal evolution, the systematics of the group is in disarray and in desperate need of revision. Funding by the NSF PEET program has provided an opportunity to revise the systematics of chytrid fungi with an initial focus on four specific clades in the order Chytridiales. The “Nowakowskiella” clade was chosen as a test group for comparing molecular methods of phylogenetic reconstruction with the more traditional morphological and developmental character system used for classification in determining generic limits for chytrid genera. Portions of the 18S and 28S nrDNA genes were sequenced for isolates identified to genus level based on morphology to seven genera in the “Nowakowskiella” clade: Allochytridium, Catenochytridium, Cladochytrium, Endochytrium, Nephrochytrium, Nowakowskiella, and Septochytrium. Bayesian, parsimony, and maximum likelihood methods of phylogenetic inference were used to produce trees based on one (18S or 28S alone) and two-gene datasets in order to see if there would be a difference depending on which optimality criterion was used and the number of genes included. In addition to the molecular analysis, taxonomic summaries of all seven genera covering all validly published species with a listing of synonyms and questionable species is provided to give a better idea of what has been described and the morphological and developmental characters used to circumscribe each genus.
    [Show full text]
  • Simmonsa,*, Timothy Y
    mycological research 113 (2009) 450–460 journal homepage: www.elsevier.com/locate/mycres Lobulomycetales, a new order in the Chytridiomycota D. Rabern SIMMONSa,*, Timothy Y. JAMESb, Allen F. MEYERc, Joyce E. LONGCOREa aSchool of Biology and Ecology, University of Maine, Orono, ME 04469, USA bDepartment of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA cDepartment of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA article info abstract Article history: The Chytridiales, one of the four orders in the Chytridiomycetes (Chytridiomycota), is polyphy- Received 13 February 2008 letic, but contains several well-supported clades. One of these clades is referred to as the Received in revised form Chytriomyces angularis clade, and the phylogenetic placement of this group within the Chy- 23 October 2008 tridiomycetes is uncertain. The morphology and zoospore ultrastructure of C. angularis have Accepted 13 November 2008 been studied using LM and were shown to differ from those of the type species of Chytrio- Published online 25 December 2008 myces, which is in the Chytridiaceae and is phylogenetically distinct from the C. angularis Corresponding Editor: clade. In this study, chytrids with morphologies or rDNA sequences similar to C. angularis, Gordon W. Beakes including two isolates of the morphologically similar C. poculatus, were isolated and their phylogenetic relationships determined using molecular sequence data. Results of Bayesian Keywords: and MP analyses of nuSSU and partial nuLSU rDNA sequences grouped the new isolates Chytridium polysiphoniae and the type isolate of C. angularis in a monophyletic clade within the Chytridiomycota Clydaea but distinct from the Chytridiaceae.
    [Show full text]
  • Evolution and Phylogeny of Fungi
    Dr. Archana Dutta Study material for M.Sc Botany- First Semester ​ Assistant Professor(Guest Faculty) Dept. of Botany, MLT College, Saharsa [email protected] Mob No. - 9065558829 Evolution And Phylogeny Of Fungi Fungi have ancient origins, with evidence indicating they likely first appeared about one billion years ago, though the fossil record of fungi is scanty. Fungal hyphae evident within the tissues of the oldest plant fossils confirm that fungi are an extremely ancient group. Indeed, some of the oldest terrestrial plantlike fossils known, called Prototaxites, which were common in all parts of the world throughout the Devonian Period (419.2 million to 358.9 million years ago), are interpreted as large saprotrophic fungi (possibly even Basidiomycota). Fossils of Tortotubus protuberans, a filamentous fungus, date to the early Silurian Period (440 million years ago) and are thought to be the oldest known fossils of a terrestrial organism. However, in the absence of an extensive fossil record, biochemical characters have served as useful markers in mapping the probable evolutionary relationships of fungi. Fungal groups can be related by cell wall composition (i.e., presence of both chitin and alpha-1,3 and alpha-1,6-glucan), organization of tryptophan enzymes, and synthesis of lysine (i.e., by the aminoadipic acid pathway). Molecular phylogenetic analyses that became possible during the 1990s have greatly contributed to the understanding of fungal origins and evolution. At first, these analyses generated evolutionary trees by comparing a single gene sequence, usually the small subunit ribosomal RNA gene (SSU rRNA). Since then, information from several protein-coding genes has helped correct discrepancies, and phylogenetic trees of fungi are currently built using a wide variety of data largely, but not entirely, molecular in nature.
    [Show full text]
  • Some Chytridiomycota in Soil Recover from Drying and High Temperatures
    Mycol. Res. 108 (5): 583–589 (May 2004). f The British Mycological Society 583 DOI: 10.1017/S0953756204009736 Printed in the United Kingdom. Some Chytridiomycota in soil recover from drying and high temperatures 1 2 1 Frank H. GLEASON *, Peter M. LETCHER and Peter A. MCGEE 1 School of Biological Sciences A12, University of Sydney, 2006, Australia. 2 Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA. E-mail : [email protected] Received 21 November 2003; accepted 28 January 2004. Rhizophlyctis rosea was found in 44% of 59 soil samples from national parks, urban reserves and gardens, and agricultural lands of eastern New South Wales, Australia. As some of the soils are periodically dry and hot, we examined possible mechanisms that enable survival in stressful environments such as agricultural lands. Air-dried thalli of R. rosea in soil and pure cultures of R. rosea, two isolates of Allomyces anomalus, one isolate of Catenaria sp., one of Catenophlyctis sp. and one of Spizellomyces sp. recovered following incubation at 90 xC for two days. Powellomyces sp. recovered following incubation at 80 x. Sporangia of all seven fungi shrank during air-drying, and immediately returned to turgidity when rehydrated. Some sporangia of R. rosea released zoospores immediately upon rehydration. These data indicate that some Chytridiomycota have resistant structures that enable survival through periodic drying and high summer temperatures typical of soils used for cropping. Eleven Chytridiomycota isolated from soil did not survive either drying or heat. Neither habitat of the fungus nor morphological type correlated with the capacity to tolerate drying and heat.
    [Show full text]
  • (Chytridiomycota): Karlingiella (Gen
    Mycologia ISSN: 0027-5514 (Print) 1557-2536 (Online) Journal homepage: https://www.tandfonline.com/loi/umyc20 Novel taxa in Cladochytriales (Chytridiomycota): Karlingiella (gen. nov.) and Nowakowskiella crenulata (sp. nov.) Gustavo H. Jerônimo, Ana L. Jesus, D. Rabern Simmons, Timothy Y. James & Carmen L. A. Pires-Zottarelli To cite this article: Gustavo H. Jerônimo, Ana L. Jesus, D. Rabern Simmons, Timothy Y. James & Carmen L. A. Pires-Zottarelli (2019) Novel taxa in Cladochytriales (Chytridiomycota): Karlingiella (gen. nov.) and Nowakowskiellacrenulata (sp. nov.), Mycologia, 111:3, 506-516, DOI: 10.1080/00275514.2019.1588583 To link to this article: https://doi.org/10.1080/00275514.2019.1588583 Published online: 23 Apr 2019. Submit your article to this journal Article views: 52 View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=umyc20 MYCOLOGIA 2019, VOL. 111, NO. 3, 506–516 https://doi.org/10.1080/00275514.2019.1588583 Novel taxa in Cladochytriales (Chytridiomycota): Karlingiella (gen. nov.) and Nowakowskiella crenulata (sp. nov.) Gustavo H. Jerônimo a, Ana L. Jesusa, D. Rabern Simmons b, Timothy Y. James b, and Carmen L. A. Pires- Zottarellia aNúcleo de Pesquisa em Micologia, Instituto de Botânica, São Paulo, São Paulo 04301-902, Brazil; bDepartment of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109-1085 ABSTRACT ARTICLE HISTORY Six Nowakowskiella species from Brazil were identified and purified on corn meal agar (CMA) plus Received 5 November 2018 glucose and Peptonized Milk-Tryptone-Glucose (PmTG) media and placed into a phylogenetic Accepted 26 February 2019 framework for the genus.
    [Show full text]
  • Elsevier Editorial System(Tm) for Mycological Research
    Elsevier Editorial System(tm) for Mycological Research Manuscript Draft Manuscript Number: MYCRES-D-07-00031R2 Title: A Higher-Level Phylogenetic Classification of the Fungi Article Type: Original Research Keywords: AFTOL, Eumycota, Lichens, Molecular phylogenetics, Mycota, Nomenclature, Systematics Corresponding Author: David S. Hibbett, Corresponding Author's Institution: Clark University First Author: David S Hibbett, PhD Order of Authors: David S Hibbett, PhD; David S. Hibbett Manuscript Region of Origin: UNITED STATES Abstract: A comprehensive phylogenetic classification of the kingdom Fungi is proposed, with reference to recent molecular phylogenetic analyses, and with input from diverse members of the fungal taxonomic community. The classification includes 195 taxa, down to the level of order, of which 19 are described or validated here: Dikarya subkingdom nov.; Chytridiomycota, Neocallimastigomycota phyla nov.; Agaricomycetes, Dacrymycetes, Monoblepharidomycetes, Neocallimastigomycetes, Tremellomycetes class. nov.; Eurotiomycetidae, Lecanoromycetidae, Mycocaliciomycetidae subclass. nov.; Acarosporales, Corticiales, Baeomycetales, Candelariales, Gloeophyllales, Melanosporales, Trechisporales, Umbilicariales ords. nov. The clade containing Ascomycota and Basidiomycota is classified as subkingdom Dikarya, reflecting the putative synapomorphy of dikaryotic hyphae. The most dramatic shifts in the classification relative to previous works concern the groups that have traditionally been included in the Chytridiomycota and Zygomycota.
    [Show full text]
  • CHAPTER 25. Phylogeny and Evolution
    CHAPTER 25. Phylogeny and Evolution Not long after taxonomists recognized that among the saprolegniaceous fungi there were homologous groups possessing similar devices for insuring reproduction, they began industriously arranging these groups into hierarchical clusters to suggest relationships. Although the resulting phylogenetic schemes were fashioned around the relatively simple structure of the individual species, mycologists weighted differently the few available morphological similarities and differences. The family unit itself has not escaped attempts at phylogenetic speculation, and at the suprafamilial level, concepts of relationships have touched upon the origin of the fungi as a whole and of the Oomycetes (Mastigomycetes) in particular. In fact, more attention has been paid to the phylogenetic derivation of the larger taxonomic units in which the watermolds are placed than to the infrafamilial components. For example, Margulis (1968), who proposed that the eukaryotic cell arose through a series of specific symbioses with prokaryotes, suggested that animals and most fungi had a protozoan ancestry. On the other hand, Klein and Cronquist (1967) saw the Oomycetes as misfits in the otherwise cohesive unit of organisms recognizable as the fungi. These authors thought that oomycete ancestry was traceable to a different group of algae than that from which the fungi allegedly arose. Klein (1970) adopted essentially this same view. Chiefly, the phylogeny of the saprolegniaceous fungi has long been thought to be woven closely with some ancestral alga, and the morphological resemblance of watermolds to certain existing algal groups is usually advanced to testify to the soundness of this view. The propositions that derive the Saprolegniaceae (or Oomycetes in a broader sense) from algae has, of course, gone beyond simply selecting these chlorophyllous plants to be likely ancestors (C.
    [Show full text]
  • 21St Century Guidebook to Fungi OUTLINE CLASSIFICATION of FUNGI
    Outline Classification of Fungi: Page 1 21st Century Guidebook to Fungi OUTLINE CLASSIFICATION OF FUNGI Evolution and phylogeny Until the latter half of the twentieth century fungi were classified in the Plant Kingdom (strictly speaking into the subkingdom Cryptogamia, Division Fungi, subdivision Eumycotina) and were separated into four classes: the Phycomycetes, Ascomycetes, Basidiomycetes, and Deuteromycetes (the latter also known as Fungi Imperfecti because they lacked a sexual cycle). These traditional groups of ‘fungi’ were largely defined by the morphology of their sexual organs, whether or not their hyphae had cross-walls (septa), and the ploidy (degree of repetition of the basic number of chromosomes) of nuclei in their vegetative mycelium. The slime moulds, all grouped in the subdivision Myxomycotina, were also included in Division Fungi. Around the middle of the twentieth century the three major kingdoms of multicellular eukaryotes were finally recognised as being absolutely distinct; the crucial character difference being the mode of nutrition: animals (whether single cells or multicellular) engulf food; plants photosynthesise; and fungi excrete digestive enzymes and absorb externally- digested nutrients. Other differences can be added to these. For example: in their cell membranes animals use cholesterol, fungi use ergosterol; in their cell walls, plants use cellulose (a glucose polymer), fungi use chitin (a glucosamine polymer); recent genomic surveys show that plant genomes lack gene sequences that are crucial in animal development, and vice-versa, and fungal genomes have none of the sequences that are important in controlling multicellular development in animals or plants. This latter point implies that animals, plants and fungi separated at a unicellular grade of organisation.
    [Show full text]