Inter- and Intra- Species Variation in Secondary Metabolites

Total Page:16

File Type:pdf, Size:1020Kb

Inter- and Intra- Species Variation in Secondary Metabolites INTER- AND INTRA- SPECIES VARIATION IN SECONDARY METABOLITES FROM CARIBBEAN OCTOCORALS OF THE GENUS PSEUDOPTEROGORGIA: ANTIOXIDANT ACTIVITY AND A POTENTIAL ECOLOGICAL ROLE by MAIA STAPLETON MUKHERJEE (Under the direction of William K. Fitt) ABSTRACT Trends of the past century suggest that coral bleaching events may become more frequent and severe as the climate continues to warm, exposing coral reefs to an increasingly hostile environment. The combination of higher than average temperatures (as small as 1°C–2°C) and intense light can lead to mass coral bleaching events, which result in apoptosis and/or the expulsion of the zooxanthellae from the host tissue. The decline of coral reefs is significant, because coral reefs maintain high levels of biodiversity, provide habitats for coastal fisheries, protect shorelines from erosion, and may contain potential pharmacological compounds. A striking difference between Caribbean octocorals and other zooxanthellate cnidarians is their seemingly greater resistance of bleaching. While there have been numerous reports of scleractinian coral bleaching throughout the world’s tropical oceans, there have been far fewer observations of bleaching among octocorals. If the increasing incidence of bleaching events continues, the relative insensitivity of most gorgonians to high temperatures may have important consequences for Caribbean reefs. This research attempts to examine whether secondary metabolites from the genus Pseudopterogorgia act as antioxidants and thus mediate thermal and UV induced oxidative stress and thereby protect the coral-algal symbiosis. Chemical diversity in soft corals may have an adaptive value in mediating ecological interactions in reef environments. Extracts from Pseudopterogorgia sps have differing antioxidant potentials as seen using the FRAP assay. Diterpenes isolated from P elisabethae exhibit antioxidant potential in FRAP and pseudopterosins scavenge superoxide radicals generated in mouse neuronal cells deprived of NGF and prevent apoptosis. Most significantly, pseudopterosins (and especially the aglycone) reduce the loss of quantum photosynthetic yield in zooxanthellae exposed to excess heat and light, and reduced significantly the oxidation of the probe DCFH in the zooxanthellae/ micro-plate based assay. Index Words: Coral bleaching, Photoinhibition, Octocoral, Zooxanthellae, Antioxidant, Pseudopterogorgia, Pseudopterosin, Natural product, FRAP, DCFH-DA, Nerve Growth Factor, Diterpene INTER- AND INTRA- SPECIES VARIATION IN SECONDARY METABOLITES FROM CARIBBEAN OCTOCORALS OF THE GENUS PSEUDOPTEROGORGIA: ANTIOXIDANT ACTIVITY AND A POTENTIAL ECOLOGICAL ROLE by MAIA STAPLETON MUKHERJEE B.A., Michigan State University, 1987 B.A., Michigan State University, 1988 M.A., New York University, 1998 M.S., Florida Atlantic University, 2005 A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY ATHENS, GEORGIA 2008 ©2008 Maia Stapleton Mukherjee All Rights Reserved INTER- AND INTRA- SPECIES VARIATION IN SECONDARY METABOLITES FROM CARIBBEAN OCTOCORALS OF THE GENUS PSEUDOPTEROGORGIA: ANTIOXIDANT ACTIVITY AND A POTENTIAL ECOLOGICAL ROLE by MAIA STAPLETON MUKHERJEE Major Professor: William K. Fitt Committee: James W. Porter James L. Franklin James L. Shelton C. Ronald Carroll Electronic Version Approved: Maureen Grasso Dean of the Graduate School The University of Georgia December, 2008 DEDICATION For my father and mother; we were but stones; your light made us stars. For Kevin, who reminds me every day that the world is full of wondrous discoveries yet to be made. iv ACKNOWLEDGEMENTS Thanks to my advisor, Dr. William Fitt, and the members of my committee, Dr. Jim Porter, Dr. Jim Franklin, Dr. Jay Shelton and Dr. Ron Carroll for all the support and advice. Thanks to Dr. Gregory Schmidt and Dr. Bill Fitt for allowing me to use cultures of Symbiodinium spp and the PAM Fluorometer. Thanks to Clint Oakley for assisting me with the zooxanthellae based assays. Thanks to Rebecca Kirkland and Jim Franklin for performing the assays with mouse sympathetic neurons. Thanks to Dr. Prasoon Gupta and Dr. Lyndon West for the structural elucidation and characterization of pseudopterosins. Additional thanks to Dr. West his support and for generously allowing me to use the facilities in his lab to conduct my research. Thanks to Dr. Howard Lasker for supporting my field work, for generously sharing his expertise in octocoral biology and ecology, and all his advice and encouragement. Finally a very special thanks to the Mukherjees; mom, dad, Joia, Janam, Che, and Kevin- “If not for you, winter would have no spring, couldn't hear the robin sing, I just wouldn't have a clue, anyway it wouldn't ring true, if not for you.” v TABLE OF CONTENTS ACKNOWLEDGEMENTS……………………………………………………… v LIST OF TABLES………………………………………………………………... viii LIST OF FIGURES………………………………………………………………. x CHAPTER 1 Introduction and Background……………………………………….. 1 1.1-Coral reefs and coral bleaching………………………………….. 1 1.2-Natural products………………………………………………….. 10 1.3-Marine natural products……………………................................. 13 1.4 Reactive oxygen and antioxidants……………………………….. 26 1.5 The antioxidant potential of extracts and compounds from Pseudopterogorgia sps………………………………………………… 32 2 Intra-specific chemical variability of Pseudopterogorgia elisabethae 37 2.1 Caribbean octocorals……………………………………………... 37 2.2 Terpene Biosynthesis……………………………………………... 38 2.3 Terpenes from Pseudopterogorgia spp…………………………... 40 2.4 Pseudopterosins…………………………………………………… 42 2.5 Variability of pseudopterosin content across a geographic gradient................................................................................................... 52 vi 3 Antioxidant potential of extracts and pure compounds from Pseudopterogorgia sps………………………………………………………. 68 3.1 Antioxidants and marine organisms…………………………….. 68 3.2 Ferric reducing antioxidant power (FRAP) assay……………… 70 4 In vivo antioxidant activity of extracts and pure compounds from Pseudopterogorgia…………………………………………………………... 90 4.1 Photosynthesis and oxidative stress……………………………… 90 4.2 Detection of intracellular ROS using 2’,7’- dichlorodihydrofluorescein diacetate………………………………... 92 4.3 Detection of photoinhibition using PAM fluorometry………….. 100 5 A potential pharmacological role for the antioxidants from Pseudopterogorgia sps………………………………………………………. 110 5.1 Oxidative stress and human diseases………………..................... 110 5.2 Oxidative stress and neurodengerative diseases………………... 112 5.3 Pseudopterosins promote survival in NGF deprived mouse sympathetic neurons………………………………………………….. 116 5.4 Pseudopterosins suppress ROS formation in NGF deprived sympathetic neurons………………………………………………….. 118 6 Methods and materials………………………………………………... 123 REFERENCES……………………………………………………………………. 133 APPENDICES…………………………………………………………………….. 163 vii LIST OF TABLES Table 1. Comparison of pseudopterosin A-D and kallolide A Acetate content from P. elisabethae and P. bipinnata expressed as % organic extract... 49 Table 2. Comparison specific activities of pseudopterosin and Kallolide A acetate from larvae treated with antibiotics and antimycotics and those untreated. Average of n = 3 experiments ± st. dev…………………… 51 Table 3. Distribution of pseudopterosins. Sites are grouped by chemotype. Values reported as %w/w of the 75% fraction of the crude extract…………………………………………………………………. 63 Table 4. FRAP assay of the intermediate polarity (75%) fraction of seven species of Pseudopterogorgia. Values given are µM of Trolox / µg extract, n=4 ± standard deviation. Different letters indicate significantly different means (P <0.01), Tukey’s HSD……………….. 76 Table 5. FRAP assay of pure pseudopterosins and related molecules isolated from Pseudopterogorgia elisabethae Values given are µM of Trolox / µg extract, n=4 ± standard deviation. Different letters indicate significantly different means (P <0.01), Tukey’s HSD……………….. 82 Table 6. DCFH-DA assay of the intermediate polarity (75%) fraction of seven species of Pseudopterogorgia. Values given are % reduction in DCF fluorescence versus MeOH control, n=4 ± standard deviation. Different letters indicate significantly different means (P <0.01), Tukey’s HSD………………………………………………………….. 96 Table 7. DCFH-DA assay of pure pseudopterosins and related molecules isolated from Pseudopterogorgia elisabethae, given as percent fluorescence inhibition versus control cells (MeOH only) n=4 ± standard deviation. Different letters indicate significantly different means (P <0.01), Tukey’s HSD……………………….......................... 98 Table 8. Pairwise comparison of treatments; Tukey’s HSD, p<0.05…………... 106 Table A1. GPS coordinates of Pseudopterogorgia sps. collection sites…………. 163 Table A2. One-way analysis of variance for FRAP assay of 75% fractions from seven species of the genus Pseudopterogorgia shows that means are significantly different amongst the treatments. (Graphpad Prism)……. 163 viii Table A3. One-way analysis of variance for FRAP assay of 15 pseudopterosins isolated from Pseudopterogorgia elisabethae shows that means are significantly different amongst the treatments. The water soluble vitamin E analog Trolox serves as the positive control. (Graphpad Prism)………………………………………………………………….. 164 Table A4. One-way analysis of variance for DCFH-DA - zooxanthellae assay of 75% fractions from seven species of the genus Pseudopterogorgia shows that means are significantly different amongst the treatments. Cells with no treatment and cells
Recommended publications
  • MARINE FAUNA and FLORA of BERMUDA a Systematic Guide to the Identification of Marine Organisms
    MARINE FAUNA AND FLORA OF BERMUDA A Systematic Guide to the Identification of Marine Organisms Edited by WOLFGANG STERRER Bermuda Biological Station St. George's, Bermuda in cooperation with Christiane Schoepfer-Sterrer and 63 text contributors A Wiley-Interscience Publication JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore ANTHOZOA 159 sucker) on the exumbrella. Color vari­ many Actiniaria and Ceriantharia can able, mostly greenish gray-blue, the move if exposed to unfavorable condi­ greenish color due to zooxanthellae tions. Actiniaria can creep along on their embedded in the mesoglea. Polyp pedal discs at 8-10 cm/hr, pull themselves slender; strobilation of the monodisc by their tentacles, move by peristalsis type. Medusae are found, upside­ through loose sediment, float in currents, down and usually in large congrega­ and even swim by coordinated tentacular tions, on the muddy bottoms of in­ motion. shore bays and ponds. Both subclasses are represented in Ber­ W. STERRER muda. Because the orders are so diverse morphologically, they are often discussed separately. In some classifications the an­ Class Anthozoa (Corals, anemones) thozoan orders are grouped into 3 (not the 2 considered here) subclasses, splitting off CHARACTERISTICS: Exclusively polypoid, sol­ the Ceriantharia and Antipatharia into a itary or colonial eNIDARIA. Oral end ex­ separate subclass, the Ceriantipatharia. panded into oral disc which bears the mouth and Corallimorpharia are sometimes consid­ one or more rings of hollow tentacles. ered a suborder of Scleractinia. Approxi­ Stomodeum well developed, often with 1 or 2 mately 6,500 species of Anthozoa are siphonoglyphs. Gastrovascular cavity compart­ known. Of 93 species reported from Ber­ mentalized by radially arranged mesenteries.
    [Show full text]
  • Coelenterata: Anthozoa), with Diagnoses of New Taxa
    PROC. BIOL. SOC. WASH. 94(3), 1981, pp. 902-947 KEY TO THE GENERA OF OCTOCORALLIA EXCLUSIVE OF PENNATULACEA (COELENTERATA: ANTHOZOA), WITH DIAGNOSES OF NEW TAXA Frederick M. Bayer Abstract.—A serial key to the genera of Octocorallia exclusive of the Pennatulacea is presented. New taxa introduced are Olindagorgia, new genus for Pseudopterogorgia marcgravii Bayer; Nicaule, new genus for N. crucifera, new species; and Lytreia, new genus for Thesea plana Deich- mann. Ideogorgia is proposed as a replacement ñame for Dendrogorgia Simpson, 1910, not Duchassaing, 1870, and Helicogorgia for Hicksonella Simpson, December 1910, not Nutting, May 1910. A revised classification is provided. Introduction The key presented here was an essential outgrowth of work on a general revisión of the octocoral fauna of the western part of the Atlantic Ocean. The far-reaching zoogeographical affinities of this fauna made it impossible in the course of this study to ignore genera from any part of the world, and it soon became clear that many of them require redefinition according to modern taxonomic standards. Therefore, the type-species of as many genera as possible have been examined, often on the basis of original type material, and a fully illustrated generic revisión is in course of preparation as an essential first stage in the redescription of western Atlantic species. The key prepared to accompany this generic review has now reached a stage that would benefit from a broader and more objective testing under practical conditions than is possible in one laboratory. For this reason, and in order to make the results of this long-term study available, even in provisional form, not only to specialists but also to the growing number of ecologists, biochemists, and physiologists interested in octocorals, the key is now pre- sented in condensed form with minimal illustration.
    [Show full text]
  • Octocoral Physiology: Calcium Carbonate Composition and the Effect of Thermal Stress on Enzyme Activity
    OCTOCORAL PHYSIOLOGY: CALCIUM CARBONATE COMPOSITION AND THE EFFECT OF THERMAL STRESS ON ENZYME ACTIVITY by Hadley Jo Pearson A thesis submitted to the faculty of The University of Mississippi in partial fulfillment of the requirements of the Sally McDonnell Barksdale Honors College. Oxford May 2014 Approved by Advisor: Dr. Tamar Goulet Reader: Dr. Gary Gaston Reader: Dr. Marc Slattery © 2014 Hadley Jo Pearson ALL RIGHTS RESERVED ii ACKNOWLEDGMENTS I would like to thank everyone who has helped me to make this thesis a reality. First, I would like to thank Dr. Tamar L. Goulet for her direction in helping me both to choose my topics of study, and to find the finances needed for me to participate in field research in Mexico. Her help in cleaning up my writing was greatly needed and appreciated. I would also like to thank Kartick Shirur. This project would have been completely impossible without his gracious, continuous help over the past three years. Our many late nights in the lab would have been unbearable without his patience, humor, and impeccable taste in music. Thank you for teaching me so much, while keeping my spirits high. Your contributions are invaluable. I would be remiss in not also thanking my other travel companions from my two summers in Mexico: Dr. Denis Goulet, Blake Ramsby, Mark McCauley, and Lauren Camp. Thank you for teaching and helping me along this very, very long journey. I thank my other thesis readers for their time and effort: Dr. Gary Gaston and Dr. Marc Slattery. Also, thank you to Dr. Colin Jackson for the use of his laboratory equipment.
    [Show full text]
  • A Case of Modular Phenotypic Plasticity in the Depth
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Calixto-Botía and Sánchez BMC Evolutionary Biology (2017) 17:55 DOI 10.1186/s12862-017-0900-8 RESEARCH ARTICLE Open Access A case of modular phenotypic plasticity in the depth gradient for the gorgonian coral Antillogorgia bipinnata (Cnidaria: Octocorallia) Iván Calixto-Botía1,2* and Juan A. Sánchez2,3 Abstract Background: Phenotypic plasticity, as a phenotypic response induced by the environment, has been proposed as a key factor in the evolutionary history of corals. A significant number of octocoral species show high phenotypic variation, exhibiting a strong overlap in intra- and inter-specific morphologic variation. This is the case of the gorgonian octocoral Antillogorgia bipinnata (Verrill 1864), which shows three polyphyletic morphotypes along a bathymetric gradient. This research tested the phenotypic plasticity of modular traits in A. bipinnata with a reciprocal transplant experiment involving 256 explants from two morphotypes in two locations and at two depths. Vertical and horizontal length and number of new branches were compared 13 weeks following transplant. The data were analysed with a linear mixed-effects model and a graphic approach by reaction norms. Results: At the end of the experiment, 91.8% of explants survived. Lower vertical and horizontal growth rates and lower branch promotion were found for deep environments compared to shallow environments. The overall variation behaved similarly to the performance of native transplants. In particular, promotion of new branches showed variance mainly due to a phenotypic plastic effect. Conclusions: Globally, environmental and genotypic effects explain the variation of the assessed traits.
    [Show full text]
  • Zoologische Verhandelingen
    Corals of the South-west Indian Ocean: VI. The Alcyonacea (Octocorallia) of Mozambique, with a discussion on soft coral distribution on south equatorial East African reefs Y. Benayahu, A. Shlagman & M.H. Schleyer Benayahu, Y., A. Shlagman & M.H. Schleyer. Corals of the South-west Indian Ocean: VI. The Alcyo- nacea (Octocorallia) of Mozambique, with a discussion on soft coral distribution on south equatorial East African reefs. Zool. Verh. Leiden 345, 31.x.2003: 49-57, fig. 1.— ISSN 0024-1652/ISBN 90-73239-89-3. Y. Benayahu & A. Shlagman. Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel (e-mail: [email protected]). M.H. Schleyer. Oceanographic Research Institute, P.O. Box 10712, Marine Parade 4056, Durban, South Africa. Key words: Mozambique; East African reefs; Octocorallia; Alcyonacea. A list of 46 species of Alcyonacea is presented for the coral reefs of the Segundas Archipelago and north- wards in Mozambique, as well as a zoogeographical record for the Bazaruto Archipelago in southern Mozambique. Among the 12 genera listed, Rhytisma, Lemnalia and Briareum were recorded on Mozambi- can reefs for the first time and the study yielded 27 new zoogeographical records. The survey brings the number of soft coral species listed for Mozambique to a total of 53. A latitudinal pattern in soft coral diversity along the south equatorial East African coast is presented, with 46 species recorded in Tanza- nia, 46 along the northern coast of Mozambique, dropping to 29 in the Bazaruto Archipelago in southern Mozambique and rising again to 38 along the KwaZulu-Natal coast in South Africa.
    [Show full text]
  • Observations on the Size, Predators and Tumor-Like Outgrowths of Gorgonian Octocoral Colonies in the Area of Santa Marta, Caribbean Coast of Colombia
    Northeast Gulf Science Volume 11 Article 1 Number 1 Number 1 7-1990 Observations on the Size, Predators and Tumor- Like Outgrowths of Gorgonian Octocoral Colonies in the Area of Santa Marta, Caribbean Coast of Colombia Leonor Botero Instituto de Investigaciones Marinas de Punta de Betin INVEMAR DOI: 10.18785/negs.1101.01 Follow this and additional works at: https://aquila.usm.edu/goms Recommended Citation Botero, L. 1990. Observations on the Size, Predators and Tumor-Like Outgrowths of Gorgonian Octocoral Colonies in the Area of Santa Marta, Caribbean Coast of Colombia. Northeast Gulf Science 11 (1). Retrieved from https://aquila.usm.edu/goms/vol11/iss1/1 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf of Mexico Science by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Botero: Observations on the Size, Predators and Tumor-Like Outgrowths of Northeast Gulf Science Vol. 11, No. 1 July 1990 p. 1-10 OBSERVATIONS ON THE SIZE, PREDATORS AND TUMOR-LIKE OUTGROWTHS OF GORGONIAN OCTOCORAL COLONIES IN THE AREA OF SANTA MARTA, CARIBBEAN COAST OF COLOMBIA Leonor Botero Institute de Investigaciones Marinas de Punta de Betin INVEMAR Apartado Aereo 1016 Santa Marta, Colombia South America ABSTRACT: Gorgon ian communities of the Santa Marta area are dominated by species with large numbers of large colonies (height ;;.40 em) in contrast to that reported for other Caribbean sites where species with large numbers of small (<10 em in height) colonies are predominant.
    [Show full text]
  • The Isotopic Composition of Respired Carbon Dioxide in Scleractinian Corals: Implications for Cycling of Organic Carbon in Corals
    Geochimica et Cosmochimica Acta, Vol. 69, No. 6, pp. 1495–1509, 2005 Copyright © 2005 Elsevier Ltd Printed in the USA. All rights reserved 0016-7037/05 $30.00 ϩ .00 doi:10.1016/j.gca.2004.09.004 The isotopic composition of respired carbon dioxide in scleractinian corals: Implications for cycling of organic carbon in corals 1, 2 3 4 3 5 PETER K. SWART *, ALINA SZMANT ,JAMES W. PORTER ,RICHARD E. DODGE ,JENNIFER I. TOUGAS , and JOHN R. SOUTHAM 1Division of Marine Geology and Geophysics, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA 2Center for Marine Science, University of North Carolina at Wilmington, 5600 Marvin Moss Lane, Wilmington, NC 28409, USA 3Institute of Ecology, University of Georgia, Athens, GA 30602, USA 4National Coral Reef Institute, Nova Southeastern University, Dania, FL, USA 5Department of Geological Sciences, University of Miami, Coral Gables, FL 33129, USA (Received March 18, 2004; accepted in revised form September 10, 2004) Abstract—The origin of ␦13C variations within the skeletons of zooxanthellate scleractinian corals is still a ␦13 matter of considerable debate. In particular, the role respired CO2 plays in controlling the eventual Cofthe ␦13 skeleton remains unclear. In this study, the temporal variability of the C of respired CO2 produced by Montastraea faveolata has been measured at approximately monthly intervals over a 1-year period. In these experiments, three corals maintained on a platform at 8 m depth near Molasses Reef in the Florida Keys were incubated in closed chambers for 24-h periods and samples of the incubation water analyzed for the ␦13Cof ⌺ ϳ the dissolved inorganic carbon ( CO2)at 3-h intervals.
    [Show full text]
  • Mollusks Background the Florida Keys Marine Ecosystem Supports a Diverse Fauna of Mollusks Belonging to Several Orders
    2010 Quick Look Report: Miller et al. VII. Abundance and Size of Selected Mollusks Background The Florida Keys marine ecosystem supports a diverse fauna of mollusks belonging to several orders. Opisthobranch mollusks, for example, are represented by at least 30 species of sea slugs (Sacoglossa) and 23 species of nudibranchs (Nudibranchia) (Clark and DeFreese 1987; Levy et al. 1996), including at least three endemic species (Clark 1994). Data on the status and trends of mollusk populations and habitat utilization patterns in the Florida Keys, with the exception of queen conch (Strombus gigas), are generally limited (Marcus 1960; Jensen and Clark 1983; Clark and DeFreese 1987), as most previous studies have been qualitative in nature (Clark 1994; Trowbridge 2002). Clark (1994) noted a declining population trend for the lettuce sea slug, Elysia (Tridachia) crispata Mörch (see cladistic analyses in Gosliner 1995; Jensen 1996) in southern Florida, based upon qualitative comparisons of occurrence and population densities between 1969-80 and 1987-93. About 50% of the nearshore populations assessed by Clark (1994) nearly 17 years ago were declining due to habitat destruction, siltation, eutrophication, and over- collection, particularly evident in nearshore habitats. Since 2001, we have conducted intermittent surveys of various gastropod mollusk species in conjunction with assessments of other benthic variables. For example, we encountered unusually high densities of lettuce sea slugs among 63 shallow fore reef sites during June-September 2001. While sacoglossans are not particularly rare in many shallow-water marine habitats where densities correlate with algal biomass (Clarke and DeFreese 1987), our observations offshore were considered unusual because fleshy algal cover tends to be relatively low (Chiappone et al.
    [Show full text]
  • Heterotrophic Feeding by Gorgonian Corals with Symbiotic Zooxanthella
    Heterotrophic feeding by gorgonian corals with symbiotic zooxanthella Marta Ribes, Rafel Coma, and Josep-Maria Gili Institut de Ciències del Mar, Passeig Joan de Borbó s/n, 08039 Barcelona, Spain Abstract Gorgonians are one of the most characteristic groups in Caribbean coral reef communities. In this study, we measured in situ rates of grazing on pico-, nano-, and microplankton, zooxanthellae release, and respiration for the ubiquitous symbiotic gorgonian coral Plexaura flexuosa. Zooplankton capture by P. flexuosa and Pseudoplexaura porosa was quantified by examination of stomach contents. In nature, both species captured zooplankton prey ranging from 100 to 700 µm, at a grazing rate of 0.09 and 0.23 prey polyp-1 d-l, respectively. Because of the greater mean size of the prey and the higher mean prey capture per polyp, P. porosa obtained 3.4 × l0-s mg C polyp-1 d-l from zooplankton, about four times the grazing rate of P. flexuosa. On average, P. flexuosa captured 7.2 ± 1.9 microorganisms polyp-1 d-l including ciliates, dinoflagellates, and diatoms, but they did not appear to graze significantly on organisms <5 µm (heterotrophic bacteria, Prochlorococcus sp., Synechococcus sp., or pi- coeukaryotes). Zooplankton and microbial prey accounted for only 0.4% of respiratory requirements in P. flexuosa, but they contributed 17% of nitrogen required annually for new production (growth and reproduction). Although the contribution of microbial prey to gorgonian energetics was low, dense gorgonian populations found on many Caribbean reefs may be important grazers of plankton communities. The role of food as a constraining factor in population and photosynthetic products are deficient in nutrients such.
    [Show full text]
  • California State University, Northridge an Ecological
    CALIFORNIA STATE UNIVERSITY, NORTHRIDGE AN ECOLOGICAL AND PHYSIOLOGICAL ASSESSMENT OF TROPICAL CORAL REEF RESPONSES TO PAST AND PROJECTED DISTURBANCES A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biology By Elizabeth Ann Lenz May 2014 The thesis of Elizabeth A. Lenz is approved by: Robert C. Carpenter, Ph.D. Date: Eric D. Sanford, Ph.D. Date: Mark A. Steele, Ph.D. Date: Peter J. Edmunds, Ph.D., Chair Date: California State University, Northridge ii ACKNOWLEDGEMENTS I would like to thank Dr. Peter J. Edmunds first and foremost for being my fearless leader and advisor - for the incredible opportunities and invaluable mentorship he has provided to me as a graduate student in the Polyp Lab. I am ever so grateful for his guidance, endless caffeinated energy, constructive critiques, and dry British humor. I would also like to thank my loyal committee members Drs. Robert Carpenter and Mark Steele at CSUN for their availability and expert advise during this process. Their suggestions have greatly contributed to my thesis. I would not only like to acknowledge Dr. Eric Sanford from UC Davis for serving on my committee, but thank him for his incessant support throughout my career over the last 7 years. I will always admire his contagious enthusiasm for invertebrates, passion for scientific research, and unlimited knowledge about marine ecology. My research would not have been possible without the technical support and assistance from my colleagues in Moorea, French Polynesia and St. John, USVI. I am grateful to Dr. Lorenzo Bramanti, Dr. Steeve Comeau, Vince Moriarty, Nate Spindel, Emily Rivest, Christopher Wall, Darren Brown, Alexandre Yarid, Nicolas Evensen, Craig Didden, the VIERS staff, and undergraduate assistants: Kristin Privitera-Johnson and Amanda Arnold.
    [Show full text]
  • In Situ Rates of Fertilization Among Broadcast Spawning Gorgonian Corals
    Reference: Biol. Bull. 190: 45-55. (February, 1996) In situ Rates of Fertilization Among Broadcast Spawning Gorgonian Corals HOWARD R. LASKER, DANIEL A. BRAZEAU1, JULIO CALDERON2, MARY ALICE COFFROTH, RAFEL COMA, AND KIHO KIM Department of Biological Sciences, State University of New York at Buffalo, g#z/o,#ew Fort 74260 Abstract. Fertilization rates among marine benthic column as gametes are diluted, spawning behavior of taxa have implicitly been assumed to be uniformly high the gorgonians, and the current regime. Fertilization in most analyses of life history evolution, but in situ rates are often low and may represent a limiting step fertilization rates during natural spawning events are in recruitment during some years. Low fertilization rates rarely measured. Fertilization rates of the Caribbean may also be an important component of the life history gorgonians Plexaura kuna and Pseudoplexaura porosa evolution of these species. were measured at a site in the San Bias Islands, Panama, by collecting eggs downstream of colonies during syn- Introduction chronous spawning events during the summer months in the years 1988-1994. Eggs collected by divers were One of the primary goals of benthic ecology has been incubated, and the proportion of eggs that developed the determination of the factors limiting populations. For was determined. Proportions of eggs developing suggest most of this century, such efforts have been concentrated fertilization rates that vary from 0% to 100%. Monthly on post-recruitment events in the life history of the or- means ranged from 0% to 60.4%. Failure of gametes to ganism (i.e., Connell, 1961, and hundreds of subsequent develop can be attributed to sperm limitation, as eggs studies).
    [Show full text]
  • Reef Explorer Guide Highlights the Underwater World ALLIGATOR of the Florida Keys, Including Unique Coral Reefs from Key Largo to OLD CANNON Key West
    REEF EXPLORER The Florida Keys & Key West, "come as you are" © 2018 Monroe County Tourist Development Council. All rights reserved. MCTDU-3471 • 15K • 7/18 fla-keys.com/diving GULF OF FT. JEFFERSON NATIONAL MONUMNET MEXICO AND DRY TORTUGAS (70 MILES WEST OF KEY WEST) COTTRELL KEY YELLOW WESTERN ROCKS DRY ROCKS SAND Marathon KEY COFFIN’S ROCK PATCH KEY EASTERN BIG PINE KEY & THE LOWER KEYS DRY ROCKS DELTA WESTERN SOMBRERO SHOALS SAMBOS AMERICAN PORKFISH SHOALS KISSING HERMAN’S GRUNTS LOOE KEY HOLE SAMANTHA’S NATIONAL MARINE SANCTUARY OUTER REEF CARYSFORT ELBOW DRY ROCKS CHRIST GRECIAN CHRISTOF THE ROCKS ABYSS OF THE KEY ABYSSA LARGO (ARTIFICIAL REEF) How it works FRENCH How it works PICKLES Congratulations! You are on your way to becoming a Reef Explorer — enjoying at least one of the unique diving ISLAMORADA HEN & CONCH CHICKENS REEF MOLASSES and snorkeling experiences in each region of the Florida Keys: LITTLE SPANISH CONCH Key Largo, Islamorada, Marathon, Big Pine Key & The Lower Keys PLATE FLEET and Key West. DAVIS CROCKER REEF REEF/WALL Beginners and experienced divers alike can become a Reef Explorer. This Reef Explorer Guide highlights the underwater world ALLIGATOR of the Florida Keys, including unique coral reefs from Key Largo to OLD CANNON Key West. To participate, pursue validation from any dive or snorkel PORKFISH HORSESHOE operator in each of the five regions. Upon completion of your last reef ATLANTIC exploration, email us at [email protected] to receive an access OCEAN code for a personalized Keys Reef Explorer poster with your name on it.
    [Show full text]