Shiga Toxin 2F-Producing Escherichia Albertii from a Symptomatic Human

Total Page:16

File Type:pdf, Size:1020Kb

Shiga Toxin 2F-Producing Escherichia Albertii from a Symptomatic Human Jpn. J. Infect. Dis., 67, 204-208, 2014 Short Communication Shiga Toxin 2f-Producing Escherichia albertii from a Symptomatic Human Koichi Murakami1*, Yoshiki Etoh1, Eri Tanaka2, Sachiko Ichihara1, Kazumi Horikawa1, Kimiko Kawano3,TadasukeOoka4, Yoshiaki Kawamura2, and Kenitiro Ito5 1Fukuoka Institute of Health and Environmental Sciences, Fukuoka 818-0135; 2Department of Microbiology, School of Pharmacy, Aichi Gakuin University, Aichi 464-8650; 3Miyazaki Prefectural Institute for Public Health and Environment, Miyazaki 889-2155; 4Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692; and 5National Institute of Infectious Diseases, Tokyo 162-8640, Japan (Received August 15, 2013. Accepted November 18, 2013) SUMMARY: The previously identified Shiga toxin (Stx) 2f-producing Escherichia coli O115:HNM strain F08/101-31, isolated from a symptomatic human, was confirmed to be E. albertii in the present study by whole genome DNA–DNA hybridizations, by sequencing (cpn60, dnaJ, and 16S rRNA genes), and by multi-locus sequence typing. The F08/101-31 strain was originally identified as E. coli rather than the relatively new bacterial species E. albertii, which was first described in 2003, because it did not display any of the biochemical characteristics of E. albertii. This new classification will impact public health management strategies in Japan because the present study showed that some E. albertii strains, which are often misidentified as E. coli, produce Stx and likely cause diarrhea in humans. Therefore, further guidelines for the management and identification of Stx-producing E. albertii are required in Japan. The discovery of Shiga toxin (Stx)-producing Es- nome DNA–DNA hybridization and DNA sequencing cherichia albertii strains was significant from a public techniques. The purpose of this study was to describe health perspective in Japan (1). E. albertii was first de- the characteristics of the E. albertii strain for the benefit scribed by Huys et al. in 2003 (2). This newly described of public health. enteropathogen is often misidentified as E. coli (3) or For genetic analysis, species-specific PCR analysis, other members of the family Enterobacteriaceae be- whole-genome DNA–DNA hybridization, sequence cause of its poorly defined biochemical characteristics analysis (16S rRNA genes, cpn60 (groEL), and dnaJ), and general obscurity. In addition, E. albertii closely and multi-locus sequence typing (MLST) were per- resembles E. coli in its phenotypic characteristics. formed. The F08/101-31 strain was examined by Retention of the major virulence factor intimin in E. al- species-specific PCR, as described previously, for the bertii is well established (4,5), whereas little is known presence of E. albertii-specific sequences within lysP about the incidence of Stx-producing E. albertii (1). Stxs and mdh (4) and for E. coli, Shigella,andE. albertii/S. are the most significant virulence factors of Stx-produc- boydii lineage-detecting alleles of clpX (4,8). Whole-ge- ing E. coli (STEC) in human infections. However, nome DNA–DNA hybridizations were performed be- STEC strains that produce intimin, a host-cell adhesin, tween the F08/101-31 strain and the E. albertii type often cause more critical symptoms in patients than strain LMG 20976T as well as other strains of closely STEC strains that do not produce intimin (6). There- related species (E. coli JCM 1649T and Hafnia alvei fore, the misidentification of Stx-producing E. albertii JCM 1666T). DNA extraction and purification were per- strains that also produce intimin as E. coli may compli- formed as described by Marmur (9) and Boom et al. cate public health monitoring strategies in many coun- (10), respectively. A membrane-filter DNA–DNA tries. hybridization method was performed as described by The F08/101-31 strain, which was previously reported Tourova and Antonov (11). Photobiotin-labeled DNA as Stx2f-producing E. coli O115:HNM harboring eae was hybridized with filter-bound DNA in 6× standard (7), was recently inferred to be an Stx2f-producing E. al- saline citrate and 50z formamide at 359C (optimal con- bertii strain on the basis of species-specific polymerase dition) and 459C (stringent condition). The amount of chain reaction (PCR) analysis (4,8). Therefore, in the re-associated DNA was measured using Image Quant present study, we attempted to definitively determine LAS4000 (GE Healthcare Bioscience, Tokyo, Japan), whether the strain is an E. albertii isolate by whole-ge- followed by the addition of alkaline phosphatase-conju- gated streptavidin and chemiluminescence substrate *Corresponding author: Mailing address: Fukuoka Institute (CDP-star; Roche Applied Science, Tokyo, Japan) to of Health and Environmental Sciences, 39 Mukaizano, the filters. The amplification and sequencing of 16S Dazaifu, Fukuoka 818-0135, Japan. Tel: +81-92-921- rRNA genes, cpn60 (groEL), and dnaJ were performed 9944, Fax: +81-92-928-1203, E-mail: murakami@fihes. as follows: the 16S rRNA genes (1483 bp) were se- pref.fukuoka.jp quenced using previously described primers (12), and 204 E. albertii with Stx2f from a Symptomatic Human 1352 bp of the resultant sequences were compared with of phenotypic assays using both conventional methods corresponding regions from other bacterial species from and a commercial test strip (Table 1). The strain was ex- the DNA Data Bank of Japan (DDBJ) using a the Basic amined for indole production, Voges–Proskauer reac- Local Alignment Search Tool (BLAST) (http://blast. tion, motility at 359C, presence of lysine decarboxylase ddbj.nig.ac.jp/blastn?lang=ja). Partial sequences of and ornithine decarboxylase, acetate utilization, and gas cpn60 (590 bp) were amplified as described previously production from D-glucose, as described previously (http://homepage.usask.ca/ Ã jeh369/cpn60 _ universal _ (18). Other phenotypic characteristics of the strain were primers.html, accessed June 2012), along with those of tested using API 20E and API 50 CH test strips (bio- dnaJ (554 bp) (13). The amplified sequences were then Máerieux, Ltd., Marcy-l' ÁEtoile, France), according to compared with corresponding sequences from other the manufacturer's instructions. related species listed in DDBJ using BLAST analysis. Genotyping analysis by species-specific PCR revealed MLST analysis was performed as described previously that the F08/101-31 strain exhibited E. albertii-specific (14) using the housekeeping genes adk, fumC, gyrB, icd, bands for lysP (252 bp) and mdh (115 bp). The DNA– mdh, purA,andrecA. Allele sequences for each strain DNA hybridization values obtained under optimal were then concatenated in the order adk–fumC–gyrB– (359C) and stringent (459C) conditions are shown in Ta- icd–mdh–purA–recA to obtain a final composite length ble 2. The values for the F08/101-31 strain and the E. of 3423 bp and analyzed as described previously (14). albertii control strain LMG 20976T were almost identi- Further genotypic analysis of the F08/101-31 strain cal, indicating that F08/101-31 is an E. albertii strain, was performed as detailed below, along with intimin with a hybridization value of À70z obtained even un- typing. In brief, the genes lpfAO26, sfpA,EHEC-hlyA, der stringent conditions. Sequences comparison of the irp2,andfyuA were amplified using primers described 16S rRNA genes, cpn60,anddnaJ of the F08/101-31 by Sonntag et al. (15), and the cytolethal distending tox- strain with those of other related strains revealed that in gene (cdt) was amplified according to the method de- F08/101-31 was more similar to E. albertii than other scribed by Pickett et al. (16). The intimin gene (eae) species (Fig. 1). Only 8 out of 1352 bp of the 16S rRNA from the F08/101-31 strain was subtyped using gene sequence differed between the F08/101-31 strain heteroduplex mobility analysis, as described previously and E. albertii LMG 20976T (Fig. 1). On the other hand, (17). BLAST analysis revealed a mismatch of 20 bp between The F08/101-31 strain was compared with known E. the 16S rRNA gene sequences of the F08/101-31 strain albertii isolates LMG 20976T and LMG 20973 in a series and E. coli ATCC 1352T, its closest relative among non- Table 1. Biological characteristics of F08/101-31 and other E. albertii strains tested or cited from the literature Characteristic described C) Strain or species 9 -Glucose, gas -Mannitol, acid -Sorbitol, acid -Xylose, acid -Arabinose, acid -Arabitol, acid -Rhamnose, acid Cellobiose, acid Dulcitol, acid Lactose, acid Sucrose, acid Adonitol, acid Raffinose, acid Indole production (24 h) Voges-Proskauer Motility (35 D L L D L D D Lysine decarboxylase Ornithine decarboxylase Acetate use (48 h) F08/101-31 + --+ + + +-+-----+--+- E. albertii LMG20976T and LMG20973 - --+ + + +-+-----+---- E. albertii (biogroup 1)1) 0z2) 0z 0z 100z 100z 40z 100z 0z 100z 0z 0z 0z 0z 0z 100z 0z 0z 100z 0z E. albertii (biogroup 2)1) 100z 0z 0z 0z 100z 0z 40z 0z 100z 0z 0z 0z 0z 0z 100z 0z 0z 0z 0z 1): Cited from ref. 19. 2):0z, percentage of positive strains. Table 2. DNA–DNA hybridization values DNA hybridization (z) with biotin-labelled DNA from: Escherichia albertii Escherichia coli T Strain F08/101-31 LMG 20976T JCM1649T Hafnia alvei JCM1666 Optimal1) Stringent2) Optimal Stringent Optimal Stringent Optimal Stringent F08/101-31 100 ± 0100± 0 79.7 ± 5.9 73.7 ± 2.4 55.6 ± 3.8 57.5 ± 1.4 12.0 ± 4.7 7.2 ± 1.6 Escherichia albertii LMG20976T 82.6 ± 6.8 80.6 ± 3.7 100 ± 0100± 057.9± 3.3 44.1 ± 1.0 4.4 ± 1.6 7.7 ± 3.2 Escherichia coli JCM1649T 52.9 ± 2.7 35.9 ± 4.4 59.0 ± 0.4 50.8 ± 5.0 100 ± 0 100 ± 010.8± 1.4 5.5 ± 2.4 Hafnia alvei JCM1666T 5.0 ± 0.4 8.7 ± 0.3 8.4 ± 5.6 5.3 ± 1.9 8.6 ± 0.4 3.4 ± 0.8 100 ± 0100± 0 1): Under optimal hybridization condition (359C).
Recommended publications
  • The Shiga Toxin Producing Escherichia Coli
    microorganisms Review An Overview of the Elusive Passenger in the Gastrointestinal Tract of Cattle: The Shiga Toxin Producing Escherichia coli Panagiotis Sapountzis 1,* , Audrey Segura 1,2 , Mickaël Desvaux 1 and Evelyne Forano 1 1 Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France; [email protected] (A.S.); [email protected] (M.D.); [email protected] (E.F.) 2 Chr. Hansen Animal Health & Nutrition, 2970 Hørsholm, Denmark * Correspondence: [email protected] Received: 22 May 2020; Accepted: 7 June 2020; Published: 10 June 2020 Abstract: For approximately 10,000 years, cattle have been our major source of meat and dairy. However, cattle are also a major reservoir for dangerous foodborne pathogens that belong to the Shiga toxin-producing Escherichia coli (STEC) group. Even though STEC infections in humans are rare, they are often lethal, as treatment options are limited. In cattle, STEC infections are typically asymptomatic and STEC is able to survive and persist in the cattle GIT by escaping the immune defenses of the host. Interactions with members of the native gut microbiota can favor or inhibit its persistence in cattle, but research in this direction is still in its infancy. Diet, temperature and season but also industrialized animal husbandry practices have a profound effect on STEC prevalence and the native gut microbiota composition. Thus, exploring the native cattle gut microbiota in depth, its interactions with STEC and the factors that affect them could offer viable solutions against STEC carriage in cattle. Keywords: cattle; STEC colonization; microbiota; bacterial interactions 1. Introduction The domestication of cattle, approximately 10,000 years ago [1], brought a stable supply of protein to the human diet, which was instrumental for the building of our societies.
    [Show full text]
  • Extensive Microbial Diversity Within the Chicken Gut Microbiome Revealed by Metagenomics and Culture
    Extensive microbial diversity within the chicken gut microbiome revealed by metagenomics and culture Rachel Gilroy1, Anuradha Ravi1, Maria Getino2, Isabella Pursley2, Daniel L. Horton2, Nabil-Fareed Alikhan1, Dave Baker1, Karim Gharbi3, Neil Hall3,4, Mick Watson5, Evelien M. Adriaenssens1, Ebenezer Foster-Nyarko1, Sheikh Jarju6, Arss Secka7, Martin Antonio6, Aharon Oren8, Roy R. Chaudhuri9, Roberto La Ragione2, Falk Hildebrand1,3 and Mark J. Pallen1,2,4 1 Quadram Institute Bioscience, Norwich, UK 2 School of Veterinary Medicine, University of Surrey, Guildford, UK 3 Earlham Institute, Norwich Research Park, Norwich, UK 4 University of East Anglia, Norwich, UK 5 Roslin Institute, University of Edinburgh, Edinburgh, UK 6 Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Banjul, The Gambia 7 West Africa Livestock Innovation Centre, Banjul, The Gambia 8 Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, Hebrew University of Jerusalem, Jerusalem, Israel 9 Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK ABSTRACT Background: The chicken is the most abundant food animal in the world. However, despite its importance, the chicken gut microbiome remains largely undefined. Here, we exploit culture-independent and culture-dependent approaches to reveal extensive taxonomic diversity within this complex microbial community. Results: We performed metagenomic sequencing of fifty chicken faecal samples from Submitted 4 December 2020 two breeds and analysed these, alongside all (n = 582) relevant publicly available Accepted 22 January 2021 chicken metagenomes, to cluster over 20 million non-redundant genes and to Published 6 April 2021 construct over 5,500 metagenome-assembled bacterial genomes.
    [Show full text]
  • Axel Janssen Mechanisms and Evolution of Colistin Resistance in Clinical Enterobacteriaceae
    Mechanisms and evolution of colistin resistance in clinical Enterobacteriaceae Axel Janssen Mechanisms and evolution of colistin resistance in clinical Enterobacteriaceae Axel B. Janssen Mechanisms and evolution of colistin resistance in clinical Enterobacteriaceae PhD thesis, Utrecht University, Utrecht, the Netherlands Author: Axel B. Janssen Cover design: Axel B. Janssen Lay-out: Axel B. Janssen Printing: ProefschriftMaken ISBN: 978-94-6380-950-4 © Axel B. Janssen, 2020, Utrecht, the Netherlands. All rights reserved. No parts of this thesis may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without prior permission of the author. The copyright of articles that have been published has been transferred to the respective journals. Printing of this thesis was financially supported by: the Netherlands Society of Medical Microbiology, the Royal Netherlands Society for Microbiology, Infection & Immunity Utrecht, and the University Medical Center Utrecht. Mechanisms and evolution of colistin resistance in clinical Enterobacteriaceae Mechanismen en evolutie van colistin resistentie in klinische Enterobacteriaceae (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof. dr. H.R.B.M. Kummeling, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op dinsdag 3 november 2020 des middags te 12.45 uur door Absalom Benjamin Janssen geboren op 31 oktober 1991 te Nijmegen Promotoren: Prof. dr. R.J.L. Willems Prof. dr. ir. W. van Schaik Beoordelingscommissie: Prof. dr. J.A.J.W. Kluytmans Prof. dr. S.H.M. Rooijakkers Prof. dr. J.W.A. Rossen Prof.
    [Show full text]
  • Molecular Characterization of Cytolethal
    Hinenoya et al. BMC Microbiology 2014, 14:97 http://www.biomedcentral.com/1471-2180/14/97 RESEARCH ARTICLE Open Access Molecular characterization of cytolethal distending toxin gene-positive Escherichia coli from healthy cattle and swine in Nara, Japan Atsushi Hinenoya1, Kensuke Shima1,5, Masahiro Asakura1, Kazuhiko Nishimura1, Teizo Tsukamoto1, Tadasuke Ooka2, Tetsuya Hayashi2, Thandavarayan Ramamurthy3, Shah M Faruque4 and Shinji Yamasaki1* Abstract Background: Cytolethal distending toxin (CDT)-producing Escherichia coli (CTEC) has been isolated from patients with gastrointestinal or urinary tract infection, and sepsis. However, the source of human infection remains unknown. In this study, we attempted to detect and isolate CTEC strains from fecal specimens of healthy farm animals and characterized them phenotypically and genotypically. Results: By PCR analysis, the cdtB gene was detected in 90 and 14 out of 102 and 45 stool specimens of healthy cattle and swine, respectively, and none from 45 chicken samples. Subtypes of the cdtB genes (I to V) were further examined by restriction fragment length polymorphism analysis of the amplicons and by type-specific PCRs for the cdt-III and cdt-V genes. Of the 90 cdtB gene-positive cattle samples, 2 cdt-I,25cdt-III,1cdt-IV,52cdt-V and 1 both cdt-III and cdt-V gene-positive strains were isolated while 1 cdt-II and 6 cdt-V gene-positive were isolated from 14 cdtB positive swine samples. Serotypes of some isolates were identical to those of human isolates. Interestingly, a cdt-II gene-positive strain isolated from swine was for the first time identified as Escherichia albertii. Phylogenetic analysis grouped 87 E.
    [Show full text]
  • Clinical Significance of Escherichia Albertii
    DISPATCHES biochemical properties (6–9). A large number of E. albertii Clinical strains might have been misidentifi ed as EPEC or EHEC Signifi cance of because they possess the eae gene. The Study Escherichia albertii We collected 278 eae-positive strains that were Tadasuke Ooka, Kazuko Seto, Kimiko Kawano, originally identifi ed by routine diagnostic protocols Hideki Kobayashi, Yoshiki Etoh, as EPEC or EHEC. They were isolated from humans, Sachiko Ichihara, Akiko Kaneko, Junko Isobe, animals, and the environment in Japan, Belgium, Brazil, Keiji Yamaguchi, Kazumi Horikawa, and Germany during 1993–2009 (Table 1; online Technical Tânia A.T. Gomes, Annick Linden, Appendix, wwwnc.cdc.gov/pdfs/11-1401-Techapp.pdf). Marjorie Bardiau, Jacques G. Mainil, To characterize the strains, we fi rst determined their Lothar Beutin, Yoshitoshi Ogura, intimin subtypes by sequencing the eae gene as described and Tetsuya Hayashi (online Technical Appendix). Of the 275 strains examined, 267 possessed 1 of the 26 known intimin subtypes (4 Discriminating Escherichia albertii from other subtypes—η, ν, τ, and a subtype unique to C. rodentium— Enterobacteriaceae is diffi cult. Systematic analyses were not found). In the remaining 8 strains, we identifi ed showed that E. albertii represents a substantial portion 5 new subtypes; each showed <95% nt sequence identity of strains currently identifi ed as eae-positive Escherichia to any known subtype, and they were tentatively named coli and includes Shiga toxin 2f–producing strains. subtypes N1–N5. For subtype N1, 3 variants were identifi ed Because E. albertii possesses the eae gene, many strains might have been misidentifi ed as enterohemorrhagic or (N1.1, N1.2, and N1.3, with >95% sequence identity among enteropathogenic E.
    [Show full text]
  • Whole Genome Sequence Typing and Analysis of Non-O157 Stec
    WHOLE GENOME SEQUENCE TYPING AND ANALYSIS OF NON-O157 STEC January 2020 1 Scottish E. coli O157/STEC Reference Laboratory Department of Laboratory Medicine Royal Infirmary of Edinburgh Little France Edinburgh EH16 4SA Tel: +44 (0)131 2426013 Main Authors: Lesley Allison, Principal Scientist, Scottish E. coli O157/STEC Reference Laboratory Anne Holmes, Clinical Scientist, Scottish E. coli O157/STEC Reference Laboratory Mary Hanson, Director, Scottish E. coli O157/STEC Reference Laboratory Contributing Author: Melissa Ward, Sir Henry Wellcome Postdoctoral Research Fellowship (WT103953MA), University of Edinburgh (E. coli O26:H11 phylogenetic analysis) 1 CONTENTS 1 Scientific and lay summaries 1.1 Scientific summary 1.2 Lay summary 1.3 Glossary 2 Introduction 2.1 Background 2.1.1 Shiga toxin-producing Escherichia coli (STEC) 2.1.2 Assessment of Pathogenicity 2.1.3 Assigning Pathogenic Potential 2.1.4 Sources of Infection 2.1.5 The Scottish E. coli O157/STEC Reference Laboratory (SERL) 2.1.6 Guidance for Screening for STEC in Scotland 2.1.7 Laboratory Diagnosis 2.1.8 Isolation of STEC 2.1.9 Strain Typing 2.1.10 Prevalence of STEC in Scotland 2.1.11 The Scottish Culture Collection 2.2 Aims of the study 3 Methods 3.1 The Study Group 3.2 DNA extraction, Library Preparation and Sequencing 3.3 Data Analysis 3.4 Phylogenomic Analysis. 3.4.1 Core genome (cg) MLST 3.4.2 Reference Based Assembly of E. coli O26:H11 4 Results 4.1 Isolates Confirmed as non-O157 E. coli by Diagnostic Laboratories 4.2 Molecular typing and Characterisation of non-O157 STEC 4.2.1 Species Identification and Serotyping 4.2.2 7-Gene MLST 4.2.3 Shiga Toxin Gene Profile 4.2.4 Virulence Gene Detection 4.2.5 Acquired Antimicrobial Resistance 4.3 Phylogenetic Overview of Non-O157 STEC 4.4 Potential to Cause Clinical Disease – JEMRA Level Assignment 4.5 Predominant, Emerging and Hybrid Strains: a comparison with published data 4.5.1 E.
    [Show full text]
  • Composition of Gut and Oropharynx Bacterial Communities in Rattus
    He et al. BMC Veterinary Research (2020) 16:413 https://doi.org/10.1186/s12917-020-02619-6 RESEARCH ARTICLE Open Access Composition of gut and oropharynx bacterial communities in Rattus norvegicus and Suncus murinus in China Wen-qiao He1†, Yi-quan Xiong1,2†, Jing Ge1,3, Yan-xia Chen1, Xue-jiao Chen1, Xue-shan Zhong1, Ze-jin Ou1, Yu-han Gao1, Ming-ji Cheng1, Yun Mo1, Yu-qi Wen1, Min Qiu1, Shu-ting Huo1, Shao-wei Chen1, Xue-yan Zheng1, Huan He1, Yong-zhi Li1, Fang-fei You1, Min-yi Zhang1 and Qing Chen1* Abstract Background: Rattus norvegicus and Suncus murinus are important reservoirs of zoonotic bacterial diseases. An understanding of the composition of gut and oropharynx bacteria in these animals is important for monitoring and preventing such diseases. We therefore examined gut and oropharynx bacterial composition in these animals in China. Results: Proteobacteria, Firmicutes and Bacteroidetes were the most abundant phyla in faecal and throat swab samples of both animals. However, the composition of the bacterial community differed significantly between sample types and animal species. Firmicutes exhibited the highest relative abundance in throat swab samples of R. norvegicus, followed by Proteobacteria and Bacteroidetes. In throat swab specimens of S. murinus, Proteobacteria was the predominant phylum, followed by Firmicutes and Bacteroidetes. Firmicutes showed the highest relative abundance in faecal specimens of R. norvegicus, followed by Bacteroidetes and Proteobacteria. Firmicutes and Proteobacteria had almost equal abundance in faecal specimens of S. murinus, with Bacteroidetes accounting for only 3.07%. The family Streptococcaceae was most common in throat swab samples of R.
    [Show full text]
  • Isolation of Human Pathogen Escherichia Albertii from Faeces of Seals (Leptonychotes Weddelli) in James Ross Island, Antarctica
    CZECH POLAR REPORTS 3 (2): 173-183, 2013 Isolation of human pathogen Escherichia albertii from faeces of seals (Leptonychotes weddelli) in James Ross Island, Antarctica Ivo Sedláček1*, Linda Grillová2, Eva Kroupová1, Jitka Černohlávková1, David Šmajs2 1Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Tvrdého 14, 602 00 Brno, Czech Republic 2Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 602 00 Brno, Czech Republic Abstract A set of nine gram-negative fermenting rods biochemically identified as Escherichia coli was isolated from faeces of seals. These bacteria were characterized by phenotypic classification, 16S rDNA sequence analyses, automated ribotyping, study of whole-cell protein profiles by SDS-PAGE and finally by bacteriocin production. The results of our polyphasic taxonomic study supported the recognition of P4652, P4653 and P4740 isolates as true members of Escherichia albertii species – probably a major enteric human pathogen. To our best knowledge, this is the first evidence showing that E. albertii produces bacteriocin, colicin D. Obtained data unambiguously showed incon- venience of commercial identification systems to distinguish both Escherichia species due to missing data of E. albertii in the commercial databases. The results of Escherichia isolates taxonomy suggest seals as a novel source of human and animal pathogen, E. albertii in the Antarctic region. Key words: identification, bacteriocin, biotyping, ribotyping, SDS-PAGE The GenBank accession numbers for the 16S rRNA gene sequences of Escherichia albertii P4652 (CCM 8505) and P4653 are KF891381 and KF891382, respectively. DOI: 10.5817/CPR2013-2-18 ——— Received November 22, 2013, accepted December 12, 2013. *Corresponding author: Ivo Sedláček <[email protected]> Acknowledgements: This work was supported by the Operational Programme Education for Competitiveness project CEB (CZ.1.07/2.3.00/20.0183).
    [Show full text]
  • Diarrhoeagenic Escherichia Coli and Escherichia Albertii in Brazil: Pathotypes and Serotypes Over a 6-Year Period of Surveillanc
    Epidemiology and Infection Diarrhoeagenic Escherichia coli and Escherichia albertii in Brazil: pathotypes and serotypes over cambridge.org/hyg a 6-year period of surveillance 1 2 2 2 3 Original Paper E. L. Ori , E. H. Takagi , T. S. Andrade , B. T. Miguel , M. C. Cergole-Novella , B. E. C. Guth4, R. T. Hernandes5, R. C. B. Dias5, S. R. S. Pinheiro1, C. H. Camargo1, Cite this article: Ori EL et al (2019). 1 1 Diarrhoeagenic Escherichia coli and Escherichia E. C. Romero and L. F. Dos Santos albertii in Brazil: pathotypes and serotypes over a 6-year period of surveillance. 1Adolfo Lutz Institute-Centre of Bacteriology (National Reference Laboratory for Escherichia coli Enteric Infections), – Epidemiology and Infection 147,e10,1 9. Sao Paulo, Brazil; 2Adolfo Lutz Institute-Centre of Interdisciplinary Procedures (Culture Collections of https://doi.org/10.1017/S0950268818002595 Microorganisms), Sao Paulo, Brazil; 3Adolfo Lutz Institute-Regional Laboratory of Santo André, Sao Paulo, Brazil; 4 5 Received: 24 January 2018 Universidade Federal de São Paulo, Sao Paulo, Brazil and Universidade Estadual Paulista, Botucatu, Brazil Revised: 14 August 2018 Accepted: 20 August 2018 Abstract Key words: Diarrhoeagenic Escherichia coli (DEC) is a leading cause of infectious diarrhoea worldwide. In Bacterial infections; diarrhoea; Escherichia coli recent years, Escherichia albertii has also been implicated as a cause of human enteric diseases. (E. coli); molecular epidemiology; surveillance This study describes the occurrence of E. coli pathotypes and serotypes associated with enteric Author for correspondence: illness and haemolytic uremic syndrome (HUS) isolated in Brazil from 2011 to 2016. L. F. Dos Santos, Pathotypes isolated included enteropathogenic E.
    [Show full text]
  • Extensive Microbial Diversity Within the Chicken Gut Microbiome Revealed by Metagenomics and Culture
    This is a repository copy of Extensive microbial diversity within the chicken gut microbiome revealed by metagenomics and culture. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/173881/ Version: Published Version Article: Gilroy, R., Ravi, A., Getino, M. et al. (17 more authors) (2021) Extensive microbial diversity within the chicken gut microbiome revealed by metagenomics and culture. PeerJ, 9. e10941. ISSN 2167-8359 https://doi.org/10.7717/peerj.10941 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Extensive microbial diversity within the chicken gut microbiome revealed by metagenomics and culture Rachel Gilroy1, Anuradha Ravi1, Maria Getino2, Isabella Pursley2, Daniel L. Horton2, Nabil-Fareed Alikhan1, Dave Baker1, Karim Gharbi3, Neil Hall3,4, Mick Watson5, Evelien M. Adriaenssens1, Ebenezer Foster-Nyarko1, Sheikh Jarju6, Arss Secka7, Martin Antonio6, Aharon Oren8, Roy R. Chaudhuri9, Roberto La Ragione2, Falk Hildebrand1,3 and Mark J.
    [Show full text]
  • The Role of Genomic Versatility in Multi-Niche Preferences of Escherichia Coli Gitanjali Nandakafle South Dakota State University
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Electronic Theses and Dissertations 2018 The Role of Genomic Versatility in Multi-Niche Preferences of Escherichia Coli Gitanjali NandaKafle South Dakota State University Follow this and additional works at: https://openprairie.sdstate.edu/etd Part of the Biology Commons, and the Microbiology Commons Recommended Citation NandaKafle, Gitanjali, "The Role of Genomic Versatility in Multi-Niche Preferences of Escherichia Coli" (2018). Electronic Theses and Dissertations. 2463. https://openprairie.sdstate.edu/etd/2463 This Dissertation - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. THE ROLE OF GENOMIC VERSATILITY IN MULTI-NICHE PREFERENCES OF ESCHERICHIA COLI BY GITANJALI NANDAKAFLE A dissertation submitted in partial fulfillment of the requirements for the Doctor of Philosophy Major in Biological Sciences Specialization in Microbiology South Dakota State University 2018 iii ACKNOWLEDGEMENTS First and foremost, I would like to express my sincere gratitude and deep appreciation to my advisor Dr. Volker S. Brözel for his continuous support and guidance throughout my PhD study and research. I greatly appreciate the freedom he has given me to do my research and develop myself as researcher in the best possible way. I have been extremely lucky to have him as my supervisor, who cared so much about my research and, responded to my questions and queries promptly despite of his busy schedules.
    [Show full text]
  • A Review of the Taxonomy, Genetics and Biology of the Genus Escherichia and the Type Species Escherichia Coli
    Canadian Journal of Microbiology A Review of the Taxonomy, Genetics and Biology of the Genus Escherichia and the Type Species Escherichia coli Journal: Canadian Journal of Microbiology Manuscript ID cjm-2020-0508.R1 Manuscript Type: Review Date Submitted by the 13-Feb-2021 Author: Complete List of Authors: Yu, Daniel ; University of Alberta School of Public Health, Room 357 South Academic Bldg, University of Alberta Banting, Graham; University of Alberta School of Public Health, Room 357 South Academic Bldg, University of Alberta Neumann, DraftNorman; University of Alberta School of Public Health, Room 357 South Academic Bldg, University of Alberta; Keyword: Escherichia coli, taxonomy, host specificity, ecotype, genetics Is the invited manuscript for consideration in a Special Not applicable (regular submission) Issue? : © The Author(s) or their Institution(s) Page 1 of 67 Canadian Journal of Microbiology A Review of the Taxonomy, Genetics and Biology of the Genus Escherichia and the Type Species Escherichia coli Daniel Yu1, Graham Banting1, and Norman F. Neumann1* 1School of Public Health, University of Alberta, Edmonton, Alberta, Canada, T6G IC9 Draft * Corresponding Author: Dr. Norman F. Neumann Professor and Vice Dean School of Public Health Room 3-381 Edmonton Clinic Health Academy University of Alberta Edmonton, Alberta, Canada. T6G 1C9 Email: [email protected] 1 © The Author(s) or their Institution(s) Canadian Journal of Microbiology Page 2 of 67 ABSTRACT Historically, bacteriologists have relied heavily on biochemical and structural phenotypes for bacterial taxonomic classification. However, advances in comparative genomics has led to greater insights into the remarkable genetic diversity within the microbial world, and even within well-accepted species such as Escherichia coli.
    [Show full text]