The Geology of Svalbard to Svalbard Colleagues

Total Page:16

File Type:pdf, Size:1020Kb

The Geology of Svalbard to Svalbard Colleagues The Geology of Svalbard To Svalbard Colleagues Geological Society Memoirs Series Editor A. J. FLEET View of Ny-.&lesund settlement seen from the west with three mountain peaks, Tre Kroner, in the distance. The peaks are capped by Carboniferous strata unconformably resting on Early Devonian rocks. They are 30 km distant from the buildings, being foreshortened by the telephoto lens. The glacier from which they emerge as nunataks extends about 15 km nearer. The remaining 15 km just visible is the eastern, inner part of Kongsfjorden. To the right in the foreground is a raised, insulated and heated utiliduct supplying water from a small lake. Photo M. J. Hambrey, CSE 1962 (SP.941e). View WSW from the old road quay at Ny Alesund, with Scheteligf]ellet in the centre right formed mainly of Carboniferous and Permian strata. Typical low cloud is creeping half way up the mountain from the right. The middle foreshortened low tundra with snow is characteristic raised beach or strandflat topography. The cliffs in the foreground usually about 5-10 m high form the coastline of the shallow bay, Thiisbukta, where in somewhat deeper water motorboats have a sheltered anchorage. The ice in the foreground is 'bay ice', which forms each winter and melts in the early summer. After a hard winter (probably in June) this bay ice is grounded in shallow water at low tide. In a few days it would disintegrate and drift away with tide. Photo M. J. Hambrey (SP631). The Geology of Svalbard By W. BRIAN HARLAND (University of Cambridge, UK) Assisted by LESTER M. ANDERSON and DAOUD MANASRAH (CASP, UK) With contributions by NICHOLAS J. BUTTERFIELD (University of Cambridge, UK) ANTHONY CHALLINOR (deceased formerly University of Cambridge, UK) PAUL A. DOUBLEDAY (CASP, UK) EVELYN K. DOWDESWELL (University of Aberystwyth, UK) JULIAN A. DOWDESWELL (University of Aberystwyth, UK) ISOBEL GEDDES (CASP, UK) SIMON R. A. KELLY (CASP, UK) EDA L. LESK (CASP, UK) ANTHONY M. SPENCER (Statoil, Norway) CLARE F. STEPHENS (CASP, UK) Memoir 17 1997 Published by The Geological Society London THE GEOLOGICAL SOCIETY The Society was founded in 1807 as The Geological Society of London and is the oldest geological society in the world. It received its Royal Charter in 1825 for the purpose of 'investigating the mineral structure of the Earth'. The Society is Britain's national society for geology with a membership of around 8000. It has countrywide coverage and approximately 1000 members reside overseas. The Society is responsible for all aspects of the geological sciences including professional matters. The Society has its own publishing house, which produces the Society's international journals, books and maps, and which acts as the European distributor for publications of the American Association of Petroleum Geologists, SEPM and the Geological Society of America. Fellowship is open to those holding a recognized honours degree in geology or cognate subject and who have at least two years' relevant postgraduate experience, or who have not less than six years' relevant experience in geology or a cognate subject. A Fellow who has not less than five years' relevant postgraduate experience in the practice of geology may apply for validation and, subject to approval, may be able to use the designatory letters C Geol (Chartered Geologist). Further information about the Society is available from the Membership Manager, The Geological Society, Burlington House, Piccadilly, London W1V 0JU, UK. The Society is a Registered Charity, No. 210161. Published by The Geological Society from: Distributors The Geological Society Publishing House USA Unit 7 Brassmill Enterprise Centre AAPG Bookstore Brassmill Lane PO Box 979 Bath BA1 3JN Tulsa UK OK 74101-0979 (Orders: Tel. 01225 445046 USA Fax 01225 442836) (Orders: Tel. (918) 584-2555 Fax (918) 560-2652) First published 1997 Australia The publishers make no representation, express or implied, with Australian Mineral Foundation regard to the accuracy of the information contained in this book 63 Conyngham Street and cannot accept any legal responsibility for any errors or Glenside omissions that may be made. South Australia 5065 Australia (Orders: Tel. (08) 379-0444 The Geological Society 1998. All rights reserved. Fax (08) 379-4634) No reproduction, copy or transmission of this publication may be made without written permission. No paragraph of this publication India may be reproduced, copied or transmitted save with the provisions Affiliated East-West Press PVT Ltd of the Copyright Licensing Agency, 90 Tottenham Court Road, G-l/16 Ansari Road London W1P 9HE. Users registered with the Copyright Clearance New Delhi 110 002 Center, 27 Congress Street, Salem, MA 01970, USA: the item-fee India code for this publication is 0435-4052/97/$10.00. (Orders." Tel. (11) 327-9113 Fax (11) 326-0538) British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Japan Library. Kanda Book Trading Co. Tanikawa Building ISBN 1-897799-93-4 3-2 Kanda Surugadai Chiyoda-Ku Typeset by Aarontype Ltd, Unit 47, Easton Business Centre, Tokyo 101 Felix Road, Bristol BS5 0HE, UK. Japan (Orders: Tel. (03) 3255-3497 Printed by Alden Press, Osney Mead, Fax (03) 3255-3495) Oxford OX2 0EF, UK Contents List of figures ix 5.4 Northeastern Spitsbergen, Wilhelmoya and ..~ List of tables Xln Hinlopenstretet 77 List of photographs Xln 5.5 Southwestern Nordaustlandet 80 Preface XV 5.6 Kong Karls Land (with S. R. A. Kelly) 83 Acknowledgements xvii 5.7 Barentsoya, Edgeoya and Tusenoyane 86 Participants ixx 5.8 Hopen 91 Conventions xxi 5.9 Correlation of four exploratory wells: Edgeoya and Hopen 93 PART 1 Introduction CHAPTER 6 NORTHERN NORDAUSTLANDET 96 6.1 Early work 96 CHAPTER 1 SVALBARD 6.2 Stratal succession 96 1.1 Geographical names 3 6.3 Subjacent metamorphic complex 104 1.2 Topography and bathymetry 7 6.4 Late tectonic plutons 105 1.3 The physical environment 8 6.5 Minor igneous bodies 106 1.4 The biota 10 6.6 Summary of isotopic ages 106 1.5 Political history 11 6.7 Structure of Nordaustlandet 107 1.6 The Spitsbergen Treaty 11 6.8 The Lomonosov Ridge in relation to Nordaustlandet 108 1.7 Settlements 13 1.8 Official publications 13 CHAPTER 7 NORTHEASTERN SPITSBERGEN 110 CHAPTER 2 OUTLINE HISTORY OF GEOLOGICAL 7.1 Geological frame 110 RESEARCH 16 7.2 Younger (cover) rocks 112 2.1 Early exploration 16 7.3 Post-Permian deformation 112 2.2 1858 to 1920 16 7.4 Ny Friesland plutons 112 2.3 1920 to 1945 18 7.5 The Hecla Hoek Complex: the continuing debate 113 2.4 1946 to 1960 19 7.6 Hinlopenstretet Supergroup 116 2.5 1960 to 1975 20 7.7 Lomfj orden Supergroup 118 2.6 1975 onwards 21 7.8 Stubendorffbreen Supergroup: succession 121 7.9 Stubendorffbreen Supergroup: genesis 125 7.10 The Hecla Hoek Complex: mid-Paleozoic structure CHAPTER 3 SVALBARD'S GEOLOGICAL FRAME 23 and metamorphism 128 3.1 The space frame: Svalbard's structural frame 23 3.2 The time frame 25 3.3 The rock frame 29 CHAPTER 8 NORTHWESTERN SPITSBERGEN 132 3.4 Tectonostratigraphic sequences 31 8.1 Cenozoic volcanic rocks of the Woodfjorden area 133 3.5 Geotectonic interpretations 37 8.2 Mesozoic, Permian and Carboniferous cover 134 8.3 Liefde Bay Supergroup (Devonian) 135 8.4 The 'crystalline' rocks of Northwestern Spitsbergen 142 8.5 Structure 145 PART 2 Regional descriptions 8.6 Offshore geology (with P.A. Doubleday) 152 CHAPTER 4 THE CENTRAL BASIN 47 4.1 Geological frame 47 CHAPTER 9 CENTRAL WESTERN SPITSBERGEN 154 4.2 Van Mijenfjorden Group (Paleogene) 48 9.1 Paleogene strata 154 4.3 Adventdalen Group (Cretaceous-Jurassic) 9.2 Mesozoic strata of Oscar II Land 158 (by S. R. A. Kelly) 52 9.3 Late Paleozoic strata of Oscar II Land 159 4.4 Kapp Toscana and Sassendalen Groups 9.4 Early Paleozoic rocks 162 (Liassic-Triassic) (with I. Geddes) 59 9.5 Proterozoic strata of Oscar II Land 165 4.5 Biinsow Land Supergroup (Permian-Carboniferous) 63 9.6 Pre-Carboniferous rocks of Prins Karls Forland 166 4.6 Tempelfjorden Group (Permian) with I. Geddes & 9.7 Structure of Oscar II Land (with P. A. Doubleday) 168 P.A. Doubleday 63 9.8 Structure of Prins Karls Forland 171 4.7 Gipsdalen Group (Permian-Carboniferous) with 9.9 Structure of Forlandsundet Basin I. Geddes & P. A. Doubleday 66 (with P. A. Doubleday) 175 4.8 Billefjorden Group (Early Carboniferous) with I. Geddes 9.10 A tectonic interpretation of the West Spitsbergen & P. A. Doubleday 71 Orogen: northern segment 177 4.9 Structure and development of Central Basin 73 CHAPTER 5 EASTERN SVALBARD PLATFORM 75 CHAPTER 10 SOUTHWESTERN AND SOUTHERN SPITSBERGEN 179 5.1 Platform strata 75 5.2 Igneous rocks 76 10.1 Paleogene strata 180 5.3 Submarine outcrops 76 10.2 Mesozoic strata in southwest Sorkapp Land 182 vi CONTENTS 10.3 Permian and Carboniferous strata of southern CHAPTER 16 DEVONIAN HISTORY 289 Spitsbergen 183 16.1 Devonian time scale and correlation 289 10.4 Devonian strata 187 16.2 Devonian succession 291 10.5 Proterozoic strata of western Nordenski61d Land 188 16.3 Devonian biotas 291 10.6 Proterozoic strata of western Nathorst and 16.4 ?Silurian and Devonian sedimentation 296 northwestern Wedel Jarlsberg Lands 189 16.5 Devonian tectonics 299 10.7 Early Paleozoic and Proterozoic strata of 16.6 The question of sinistral Paleozoic strike-slip southwestern Wedel Jarlsberg Land 191 faulting, transpression and transtension 303 10.8 Early Paleozoic and Proterozoic strata of 16.7 Sequence of events through Devonian time 306 Sorkapp Land 197 16.8 A Lomonosov conjecture 309 10.9 Pre-Devonian correlation through southwest Spitsbergen 199 10.10 Structure of western Nordenski61d Land 200 CHAPTER 17 CARBONIFEROUS-PERMIAN 10.11 Structure of western Nathorst Land 201 HISTORY 310 10.12 Structure of Wedel Jarlsberg Land (with P.
Recommended publications
  • Surface Magnetic Anomaly Study on the Eastern Part of the Forlandsundet Graben
    Surface magnetic anomaly study on the eastern part of the Forlandsundet Graben A. A. KRASIL'ScIKOV*, A. P. KUBANSKIJ'* and Y. OHTA Krasil'Stikov, A. A,, Kubanskij, A. P. & Ohta, Y. 1995: Surface magnetic anomaly study on the eastern part of the Forlandsundet Graben. Polar Research 14(1), 55-68. A surface magnetic survey was carried out by use of a proton magnetometer over wide strandflats along the eastern coast of Forlandsundet, western Spitsbergen, to decipher subsurface structures and lithologies. Distinctive linear high-anomaly segments and zones were recognised on the magnetic anomaly maps. These zones coincide well with the eastern marginal fault of the Tertiary Forlandsundet Graben and associated faults north of St. Jonsfjorden, while they reflect bedrock lithologies in the south. The high-anomaly segments, which constitute the zones, are locally aligned in a left-stepping. en echelon arrangement within the zones, indicating a dextral transpressional stress regime on the eastern marginal fault of the graben during a certain time. Sudden termination and bends of the segments define a later transverse fault system. A. A. Kradftikou and A. P. Kubanskij, Polar Marine Geological Expedition, ul. Pobeda, 24, 189510 Lomonosou. Russia; Y. Ohta, Norwegian Polar Institute, P.O. Box 5072 Majorstua. N-0301 Oslo, Norway. Introduction Kleinspehn & Teyssier (1992), Gabrielsen et al. (1992) and Lepvrier (1992), and various esti- Pronounced coastal plains have developed on the mations of the subsurface geology have been pro- eastern coast of Forlandsundet, 1.5-6 km in posed. width, extending N-S for approximately 75 km The areas have complex structures resulting from Engelskbukta to the northern side of Isfjor- from Caledonian thrusting which was overprinted den (Fig.
    [Show full text]
  • Handbok07.Pdf
    - . - - - . -. � ..;/, AGE MILL.YEAR$ ;YE basalt �- OUATERNARY votcanoes CENOZOIC \....t TERTIARY ·· basalt/// 65 CRETACEOUS -� 145 MESOZOIC JURASSIC " 210 � TRIAS SIC 245 " PERMIAN 290 CARBONIFEROUS /I/ Å 360 \....t DEVONIAN � PALEOZOIC � 410 SILURIAN 440 /I/ ranite � ORDOVICIAN T 510 z CAM BRIAN � w :::;: 570 w UPPER (J) PROTEROZOIC � c( " 1000 Ill /// PRECAMBRIAN MIDDLE AND LOWER PROTEROZOIC I /// 2500 ARCHEAN /(/folding \....tfaulting x metamorphism '- subduction POLARHÅNDBOK NO. 7 AUDUN HJELLE GEOLOGY.OF SVALBARD OSLO 1993 Photographs contributed by the following: Dallmann, Winfried: Figs. 12, 21, 24, 25, 31, 33, 35, 48 Heintz, Natascha: Figs. 15, 59 Hisdal, Vidar: Figs. 40, 42, 47, 49 Hjelle, Audun: Figs. 3, 10, 11, 18 , 23, 28, 29, 30, 32, 36, 43, 45, 46, 50, 51, 52, 53, 54, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 75 Larsen, Geir B.: Fig. 70 Lytskjold, Bjørn: Fig. 38 Nøttvedt, Arvid: Fig. 34 Paleontologisk Museum, Oslo: Figs. 5, 9 Salvigsen, Otto: Figs. 13, 59 Skogen, Erik: Fig. 39 Store Norske Spitsbergen Kulkompani (SNSK): Fig. 26 © Norsk Polarinstitutt, Middelthuns gate 29, 0301 Oslo English translation: Richard Binns Editor of text and illustrations: Annemor Brekke Graphic design: Vidar Grimshei Omslagsfoto: Erik Skogen Graphic production: Grimshei Grafiske, Lørenskog ISBN 82-7666-057-6 Printed September 1993 CONTENTS PREFACE ............................................6 The Kongsfjorden area ....... ..........97 Smeerenburgfjorden - Magdalene- INTRODUCTION ..... .. .... ....... ........ ....6 fjorden - Liefdefjorden................ 109 Woodfjorden - Bockfjorden........ 116 THE GEOLOGICAL EXPLORATION OF SVALBARD .... ........... ....... .......... ..9 NORTHEASTERN SPITSBERGEN AND NORDAUSTLANDET ........... 123 SVALBARD, PART OF THE Ny Friesland and Olav V Land .. .123 NORTHERN POLAR REGION ...... ... 11 Nordaustlandet and the neigh- bouring islands........................... 126 WHA T TOOK PLACE IN SVALBARD - WHEN? ....
    [Show full text]
  • Petroleum, Coal and Research Drilling Onshore Svalbard: a Historical Perspective
    NORWEGIAN JOURNAL OF GEOLOGY Vol 99 Nr. 3 https://dx.doi.org/10.17850/njg99-3-1 Petroleum, coal and research drilling onshore Svalbard: a historical perspective Kim Senger1,2, Peter Brugmans3, Sten-Andreas Grundvåg2,4, Malte Jochmann1,5, Arvid Nøttvedt6, Snorre Olaussen1, Asbjørn Skotte7 & Aleksandra Smyrak-Sikora1,8 1Department of Arctic Geology, University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Norway. 2Research Centre for Arctic Petroleum Exploration (ARCEx), University of Tromsø – the Arctic University of Norway, P.O. Box 6050 Langnes, 9037 Tromsø, Norway. 3The Norwegian Directorate of Mining with the Commissioner of Mines at Svalbard, P.O. Box 520, 9171 Longyearbyen, Norway. 4Department of Geosciences, University of Tromsø – the Arctic University of Norway, P.O. Box 6050 Langnes, 9037 Tromsø, Norway. 5Store Norske Spitsbergen Kulkompani AS, P.O. Box 613, 9171 Longyearbyen, Norway. 6NORCE Norwegian Research Centre AS, Fantoftvegen 38, 5072 Bergen, Norway. 7Skotte & Co. AS, Hatlevegen 1, 6240 Ørskog, Norway. 8Department of Earth Science, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway. E-mail corresponding author (Kim Senger): [email protected] The beginning of the Norwegian oil industry is often attributed to the first exploration drilling in the North Sea in 1966, the first discovery in 1967 and the discovery of the supergiant Ekofisk field in 1969. However, petroleum exploration already started onshore Svalbard in 1960 with three mapping groups from Caltex and exploration efforts by the Dutch company Bataaffse (Shell) and the Norwegian private company Norsk Polar Navigasjon AS (NPN). NPN was the first company to spud a well at Kvadehuken near Ny-Ålesund in 1961.
    [Show full text]
  • Climate in Svalbard 2100
    M-1242 | 2018 Climate in Svalbard 2100 – a knowledge base for climate adaptation NCCS report no. 1/2019 Photo: Ketil Isaksen, MET Norway Editors I.Hanssen-Bauer, E.J.Førland, H.Hisdal, S.Mayer, A.B.Sandø, A.Sorteberg CLIMATE IN SVALBARD 2100 CLIMATE IN SVALBARD 2100 Commissioned by Title: Date Climate in Svalbard 2100 January 2019 – a knowledge base for climate adaptation ISSN nr. Rapport nr. 2387-3027 1/2019 Authors Classification Editors: I.Hanssen-Bauer1,12, E.J.Førland1,12, H.Hisdal2,12, Free S.Mayer3,12,13, A.B.Sandø5,13, A.Sorteberg4,13 Clients Authors: M.Adakudlu3,13, J.Andresen2, J.Bakke4,13, S.Beldring2,12, R.Benestad1, W. Bilt4,13, J.Bogen2, C.Borstad6, Norwegian Environment Agency (Miljødirektoratet) K.Breili9, Ø.Breivik1,4, K.Y.Børsheim5,13, H.H.Christiansen6, A.Dobler1, R.Engeset2, R.Frauenfelder7, S.Gerland10, H.M.Gjelten1, J.Gundersen2, K.Isaksen1,12, C.Jaedicke7, H.Kierulf9, J.Kohler10, H.Li2,12, J.Lutz1,12, K.Melvold2,12, Client’s reference 1,12 4,6 2,12 5,8,13 A.Mezghani , F.Nilsen , I.B.Nilsen , J.E.Ø.Nilsen , http://www.miljodirektoratet.no/M1242 O. Pavlova10, O.Ravndal9, B.Risebrobakken3,13, T.Saloranta2, S.Sandven6,8,13, T.V.Schuler6,11, M.J.R.Simpson9, M.Skogen5,13, L.H.Smedsrud4,6,13, M.Sund2, D. Vikhamar-Schuler1,2,12, S.Westermann11, W.K.Wong2,12 Affiliations: See Acknowledgements! Abstract The Norwegian Centre for Climate Services (NCCS) is collaboration between the Norwegian Meteorological In- This report was commissioned by the Norwegian Environment Agency in order to provide basic information for use stitute, the Norwegian Water Resources and Energy Directorate, Norwegian Research Centre and the Bjerknes in climate change adaptation in Svalbard.
    [Show full text]
  • Terrestrial Inputs Govern Spatial Distribution of Polychlorinated Biphenyls (Pcbs) and Hexachlorobenzene (HCB) in an Arctic Fjord System (Isfjorden, Svalbard)*
    Environmental Pollution 281 (2021) 116963 Contents lists available at ScienceDirect Environmental Pollution journal homepage: www.elsevier.com/locate/envpol Terrestrial inputs govern spatial distribution of polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) in an Arctic fjord system (Isfjorden, Svalbard)* * Sverre Johansen a, b, c, Amanda Poste a, Ian Allan c, Anita Evenset d, e, Pernilla Carlsson a, a Norwegian Institute for Water Research, Tromsø, Norway b Norwegian University of Life Sciences, Ås, Norway c Norwegian Institute for Water Research, Oslo, Norway d Akvaplan-niva, Tromsø, Norway e UiT, The Arctic University of Norway, Tromsø, Norway article info abstract Article history: Considerable amounts of previously deposited persistent organic pollutants (POPs) are stored in the Received 20 July 2020 Arctic cryosphere. Transport of freshwater and terrestrial material to the Arctic Ocean is increasing due to Received in revised form ongoing climate change and the impact this has on POPs in marine receiving systems is unknown This 11 March 2021 study has investigated how secondary sources of POPs from land influence the occurrence and fate of Accepted 13 March 2021 POPs in an Arctic coastal marine system. Available online 17 March 2021 Passive sampling of water and sampling of riverine suspended particulate matter (SPM) and marine sediments for analysis of polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) was carried out Keywords: Particle transport in rivers and their receiving fjords in Isfjorden system in Svalbard. Riverine SPM had low contaminant < S e Terrestrial runoff concentrations ( level of detection-28 pg/g dw PCB14,16 100 pg/g dw HCB) compared to outer marine Environmental contaminants sediments 630-880 pg/g dw SPCB14,530e770 pg/g dw HCB).
    [Show full text]
  • Checklist of Lichenicolous Fungi and Lichenicolous Lichens of Svalbard, Including New Species, New Records and Revisions
    Herzogia 26 (2), 2013: 323 –359 323 Checklist of lichenicolous fungi and lichenicolous lichens of Svalbard, including new species, new records and revisions Mikhail P. Zhurbenko* & Wolfgang von Brackel Abstract: Zhurbenko, M. P. & Brackel, W. v. 2013. Checklist of lichenicolous fungi and lichenicolous lichens of Svalbard, including new species, new records and revisions. – Herzogia 26: 323 –359. Hainesia bryonorae Zhurb. (on Bryonora castanea), Lichenochora caloplacae Zhurb. (on Caloplaca species), Sphaerellothecium epilecanora Zhurb. (on Lecanora epibryon), and Trimmatostroma cetrariae Brackel (on Cetraria is- landica) are described as new to science. Forty four species of lichenicolous fungi (Arthonia apotheciorum, A. aspicili- ae, A. epiphyscia, A. molendoi, A. pannariae, A. peltigerina, Cercidospora ochrolechiae, C. trypetheliza, C. verrucosar- ia, Dacampia engeliana, Dactylospora aeruginosa, D. frigida, Endococcus fusiger, E. sendtneri, Epibryon conductrix, Epilichen glauconigellus, Lichenochora coppinsii, L. weillii, Lichenopeltella peltigericola, L. santessonii, Lichenostigma chlaroterae, L. maureri, Llimoniella vinosa, Merismatium decolorans, M. heterophractum, Muellerella atricola, M. erratica, Pronectria erythrinella, Protothelenella croceae, Skyttella mulleri, Sphaerellothecium parmeliae, Sphaeropezia santessonii, S. thamnoliae, Stigmidium cladoniicola, S. collematis, S. frigidum, S. leucophlebiae, S. mycobilimbiae, S. pseudopeltideae, Taeniolella pertusariicola, Tremella cetrariicola, Xenonectriella lutescens, X. ornamentata,
    [Show full text]
  • Heavy Rain Events in Svalbard Summer and Autumn of 2016 to 2018
    Heavy Rain Events in Svalbard Summer and Autumn of 2016 to 2018 Ola Bakke Aashamar Thesis submitted for the degree of Master of Science in Meteorology Department of Geosciences Faculty of Mathematics and Natural Sciences University of Oslo Department of Arctic Geophysics The University Centre in Svalbard August 15, 2019 2 “ Når merket vel dere byfolk her i deres stengte gater selv det minste pust av den frihet som tindrer over Ishavets veldige rom? Sto en eneste av dere noensinne ensom under Herrens øyne i et øde av snø og natt? Stirret dere noen gang opp i polarlandets flammende nordlys og forstod de tause toner som strømmet under stjernene? Hva vet dere om de makter som taler i stormer, som roper i snøløsningens skred og som jubler i fuglefjellenes vårskrik? Ingenting. “ - Fritt etter John Giæver, Ishavets glade borgere (1956) ​ 3 Acknowledgements First of all, I am forever grateful to my main supervisor Marius Jonassen, who with his great insight and supportive comments gave me all the motivation and help I needed along the way towards this master thesis. Big round of applause to all the amazing students and staff at UNIS who I was lucky to meet during my stays in Svalbard, and the people at MetOs in Oslo. The times shared with you inspire me both personally and professionally, and I will always keep the memories! Then I want to thank Grete Stavik-Døvle, Terje Berntsen, Frode Stordal and Karl-Johan Ullavik Bakken for ​ ​ admitting and guiding two lost NTNU students into studies at UiO. If not for you, who knows what would have happened.
    [Show full text]
  • Springtime Nitrogen Oxides and Tropospheric Ozone in Svalbard: Local and Long-Range Transported Air Pollution
    EGU21-9126 https://doi.org/10.5194/egusphere-egu21-9126 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Springtime nitrogen oxides and tropospheric ozone in Svalbard: local and long-range transported air pollution Alena Dekhtyareva1, Mark Hermanson2, Anna Nikulina3, Ove Hermansen4, Tove Svendby5, Kim Holmén6, and Rune Graversen7 1Geophysical Institute, University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway ([email protected]) 2Hermanson and Associates LLC, Minneapolis, USA 3Department of Research Coordination and Planning, Arctic and Antarctic Research Institute, Russia 4Department of Monitoring and Information Technology, NILU - Norwegian Institute for Air Research, Norway 5Department of Atmosphere and Climate, NILU - Norwegian Institute for Air Research, Norway 6International director, Norwegian Polar Institute, Longyearbyen, Norway 7Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway Svalbard is a near pristine Arctic environment, where long-range transport from mid-latitudes is an important air pollution source. Thus, several previous studies investigated the background nitrogen oxides (NOx) and tropospheric ozone (O3) springtime chemistry in the region. However, there are also local anthropogenic emission sources on the archipelago such as coal power plants, ships and snowmobiles, which may significantly alter in situ atmospheric composition. Measurement results from three independent research projects were combined to identify the effect of emissions from various local sources on the background concentration of NOx and O3 in Svalbard. The hourly meteorological and chemical data from the ground-based stations in Adventdalen, Ny-Ålesund and Barentsburg were analysed along with daily radiosonde soundings and weekly data from O3 sondes.
    [Show full text]
  • Dolerites of Svalbard, North-West Barents Sea Shelf: Age, Tectonic Setting and Significance for Geotectonic Interpretation of Th
    RESEARCH/REVIEW ARTICLE Dolerites of Svalbard, north-west Barents Sea Shelf: age, tectonic setting and significance for geotectonic interpretation of the High-Arctic Large Igneous Province Krzysztof Nejbert1, Krzysztof P. Krajewski2, Elz˙bieta Dubin´ ska1 & Zolta´ nPe´ cskay3 1 Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw, Al. Z˙ wirki i Wigury 93, PL-02089 Warsaw, Poland 2 Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Warsaw, ul. Twarda 51/55, PL-00818 Warsaw, Poland 3 Institute of Nuclear Research, Hungarian Academy of Sciences, Bem te´ r 18/c, HU-4026 Debrecen, Hungary Keywords Abstract Dolerite; geochemistry; petrogenesis; KÁAr whole rock ages; Svalbard; Cretaceous. The dolerites of Svalbard are mineralogically and geochemically homogeneous with geochemical features typical of continental within-plate tholeiites. Their Correspondence geochemistry is similar to tholeiites belonging to a bimodal suite defined as the Krzysztof P. Krajewski, Institute of Geologi- High-Arctic Large Igneous Province (HALIP). KÁAr dating of numerous cal Sciences, Polish Academy of Sciences, dolerites sampled from many locations across Svalbard define a narrow time Research Centre in Warsaw, ul. Twarda 51/ span of this magmatism from 125.593.6 to 78.392.6 Mya. Discrete peaks of 55, PL-00818 Warsaw, Poland. E-mail: [email protected] intensive activity occurred at 115.3, 100.8, 91.3 and 78.5 Mya corresponding to (1) breakup of the continental crust and formation of an initial rift as a result of mantle plume activity, located in the southern part of the Alpha Ridge; (2) magmatic activity related to spreading along the Alpha Ridge that led to the development of the initial oceanic crust and (3) continuation of spreading along the Alpha Ridge and termination of magmatic activity related to HALIP (last two peaks at 91.3 and 78.5 Mya).
    [Show full text]
  • General Guide to the Science and Cosmos Museum
    General guide to the Science and Cosmos Museum 1 Background: “Tenerife monts” and “Pico” near of Plato crater in the Moon PLANTA TERRAZA Terrace Floor 5 i 2 1 4 6 3 ASCENSOR 4 RELOJ DE SOL ECUATORIAL Elevator Analemmatic sundial i INFORMACIÓN 5 BUSTO PARLANTE Information “AGUSTÍN DE BETANCOURT” Agustín de Betancourt 1 PLAZA “AGUSTÍN DE talking bust BETANCOURT” Agustín de Betancourt 6 ZONA WI-FI Square Wi-Fi zone 2 ANTENA DE RADIOASTRONOMÍA Radioastronomy antenna 3 TELESCOPIO Telescope PLANTA BAJA Ground Floor WC 10 9 8 11 7 1 6 5 4 12 2 3 ASCENSOR Cosmos Lab - Creative Elevator Laboratory 1 EXPOSICIÓN 7 PLANETARIO Exhibition Planetarium 2 TALLER DE DIDÁCTICA 8 SALIDA DE EMERGENCIA Didactic Workshop Emergency exit 3 EFECTOS ÓPTICOS 9 MICROCOSMOS Optical illusions 10 SALÓN DE ACTOS 4 SALA CROMA KEY Assembly hall Chroma Key room 11 EXPOSICIONES TEMPORALES 5 LABERINTO DE ESPEJOS Temporary exhibitions Mirror Labyrinth 12 ZONA DE DESCANSO 6 COSMOS LAB - LABORATORIO Rest zone CREATIVO CONTENIDOS Contents 7 LA TIERRA The Earth 23 EL SOL The Sun 33 EL UNIVERSO The Universe 45 CÓMO FUNCIONA How does it work 72 EL CUERPO HUMANO The human body 5 ¿POR QUÉ PIRÁMIDES? Why pyramids? 1 Sacred places have often been con- ceived of as elevated spaces that draw the believer closer to the divi- nity. For this reason, once architec- tural techniques became sufficiently refined, mosques or cathedrals rai- sed their vaults, minarets, towers and spires to the sky. However, for thousands of years, the formula fa- voured by almost every culture was the pyramid.
    [Show full text]
  • A Christian Physicist Examines Noah's Flood and Plate Tectonics
    A Christian Physicist Examines Noah’s Flood and Plate Tectonics by Steven Ball, Ph.D. September 2003 Dedication I dedicate this work to my friend and colleague Rodric White-Stevens, who delighted in discussing with me the geologic wonders of the Earth and their relevance to Biblical faith. Cover picture courtesy of the U.S. Geological Survey, copyright free 1 Introduction It seems that no subject stirs the passions of those intending to defend biblical truth more than Noah’s Flood. It is perhaps the one biblical account that appears to conflict with modern science more than any other. Many aspiring Christian apologists have chosen to use this account as a litmus test of whether one accepts the Bible or modern science as true. Before we examine this together, let me clarify that I accept the account of Noah’s Flood as completely true, just as I do the entirety of the Bible. The Bible demonstrates itself to be reliable and remarkably consistent, having numerous interesting participants in various stories through which is interwoven a continuous theme of God’s plan for man’s redemption. Noah’s Flood is one of those stories, revealing to us both God’s judgment of sin and God’s over-riding grace and mercy. It remains a timeless account, for it has much to teach us about a God who never changes. It is one of the most popular Bible stories for children, and the truth be known, for us adults as well. It is rather unfortunate that many dismiss the account as mythical, simply because it seems to be at odds with a scientific view of the earth.
    [Show full text]
  • Spitsbergen & the Svalbard Archipelago 2019
    Field Guides Tour Report The Norwegian Arctic: Spitsbergen & the Svalbard Archipelago 2019 Jun 26, 2019 to Jul 6, 2019 John Coons & Doug Gochfeld For our tour description, itinerary, past triplists, dates, fees, and more, please VISIT OUR TOUR PAGE. Polar Bear. What more is there to say? Actually there is much more to be said for this most-wanted iconic Arctic mammal. This female, who could have been pregnant by the looks of her, was as at home on the pack ice as one could imagine her being anywhere. After a nap, she curiously approached the ship, before eventually sauntering off across the windswept, seemingly desolate sea ice which stretched to the horizon, and indeed beyond the limits of our sight. This was certainly the most anticipated moment by many of the participants on the ship, and with good reason. What a majestic creature! Photo by guide Doug Gochfeld. The Arctic. That word is one of the most evocative of any which describes a region on this planet. There aren’t many places where you can easily access it, and none of those are as far north as Svalbard. Our journey not only got us up to some of the farthest north tundra, but it also brought us into the Arctic sea ice itself. It all started with a flight from Oslo, the culturally rich capital of the northern kingdom of Norway, across the ocean where the Norwegian and Barents Seas meet, to Longyearbyen, the only substantial settlement on the Svalbard Archipelago. The windswept “city,” along the southern shores of Isfjorden, was established as a coal mining settlement many moons ago, but nowadays there is only one very insignificant mine still active, and it has transformed into a tourism & research-centric town.
    [Show full text]