Eph and Ephrins in Palate Development

Total Page:16

File Type:pdf, Size:1020Kb

Eph and Ephrins in Palate Development EPH AND EPHRINS IN PALATE DEVELOPMENT A Dissertation by MARIA JULIANA SERRANO Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Kathy Svoboda Co-Chair of Committee, Lynne Opperman Committee Members, Bruno Ruest Emet Schneiderman Reginald Taylor Head of Department, Paul Dechow May 2015 Major Subject: Biomedical Sciences Copyright 2015 Maria Juliana Serrano ABSTRACT Cleft palate (CP) is one of the most common birth defects. It may not be life threatening but many functions, such as feeding, digestion, speech, middle-ear ventilation, hearing, respiration, and facial and dental development, can be disturbed because of the structures involved. These problems can also cause emotional, psychosocial, and educational difficulties. It imposes a tremendous health burden and often leaves lasting disfigurement. In humans and mice, the secondary palate forms from outgrowths of neural crest-derived mesenchyme covered with a double layer of epithelial cells. The shelves elevate over the tongue and grow toward each other. The medial edge epithelium (MEE) adheres to form the medial epithelial seam (MES). MES cells then undergo epithelial to mesenchymal transition (EMT), cell apoptosis or migrate to the oral and nasal surfaces to form a mesenchymal cell confluence. This fusion process requires transforming growth factor β3 (TGFβ3), and blocking the expression of this protein or its downstream signaling cascade results in CP. Eph receptors tyrosine kinases and their ephrin ligands are responsible for multiple developmental events such as adhesion and migration. Binding of ephrins to Ephs on opposing cells causes tyrosine kinase activation in the Eph- bearing cells (forward signaling), while binding of Ephs can activate intracellular signaling inside ephrin- bearing cells (reverse signaling). Activation of ephrin reverse signaling in chicken palates induces fusion, and it requires phosphatidylinositol-3 kinase (PI3K). Blockage of reverse signaling inhibited TGFβ3 induced fusion in the chicken and natural fusion in ii the mouse palate. Thus, ephrin reverse signaling is necessary to induce palate fusion independent of TGFβ3. EMT is orchestrated by a complex network of signaling molecules and it is a critical step for palatal fusion. TGFβ family is a multifunctional cytokine that oversees and directs all aspects of cell development, differentiation and survival of essentiall cell types and tissues. Also, it is a suppressor of cell growth and proliferation particularly in tumor cells of epithelial and mesenchymal origins. Ephrin signaling promotes elevation of TGFβ signaling. These findings lead to the central hypothesis that the TGFβ and Eph/ephrin pathways cooperate in EMT in palatal fusion. Thus, the goal of this research project is to use the palate model system to generate cellular responses and changes to study the basic mechanisms that control EMT during palatogenesis. Therefore the aims of this work are as follows: a) Determine if Eph and ephrins play a role in palatal fusion and b) Establish if ephrin reverse signaling is necessary and sufficient to induce EMT in palatal fusion independent of TGFβ. iii DEDICATION To God for providing me with the inspiration, perseverance and strength to pursue my dreams. To my mother, husband, son, family and friends for their love, understanding and support during this long journey. iv ACKNOWLEDGEMENTS I would like to thank my committee chair: Dr. Kathy Svoboda. This dissertation could not have been written without her mentoring and direction. During my Ph.D. program, Dr. Svoboda not only served as my advisor, but she also set high standards in our lab by being an outstanding scientist in this field. I am proud to be one of her students, and I will try to emulate her spirit and persistent drive towards the advancement of science for the rest of my life. My deepest gratitude also to my committee members, Dr. Lynne Opperman, Dr. Emet Schneiderman, Dr. Bruno Ruest and Dr. Reginald Taylor for their guidance and support throughout the course of this research. I sincerely thank my husband Alexander Reyes and my son Sebastian Reyes for all their patience, support and most importantly their unconditional love. Also, thanks to my wonderful friends Liliana Mantilla, Claudia Mantilla, Cynthia Cobb, Claudia Fernandez, Ashneet Sachar, Symone San Miguel, Monica Prasad, Poova Gharpore, Leslie Pryor, Fatma Mohammed, Priyam Jani, Aditi Bhattacharya, Rene Yin Shi, and Isra Mohammed for their friendship and support. v NOMENCLATURE A-P Anterior to Posterior ADAMTS Disintegrin And Metalloproteinase with Thrombospondin Motifs ANOVA The Analysis Of Variance ASCs Adipose Stem Cells ATCC Cell lines BMP Bone morphogenetic proteins Cbf Core Binding proteins CD1 Cluster of differentiation (cell surface protein) CHO-K1 Cell line CL Cleft Lip CLP Cleft Lip and Palate CNC Neural Crest Derived CP Cleft Palate DNA Deoxyribonucleic acid DO Distraction Osteogenesis ECM Extracellular Matrix EGFR Epidermal Growth Factor Receptor EMT Epithelial Mesenchymal Transition Eph Erythropoietin-producing human hepatocellular carcinoma cell ERK Extracellular signal-regulated kinases vi Fc Crystalized fraction Fgf Fibroblast Growth Factor FgfR Fibroblast Growth Factor Receptor FOXE1 Forkhead Box Protein E1 GABA Gamma Aminobutyric acid GPI Glycosylphosphatidyl-inositol GRIP1 Glutamate receptor interacting protein GSK Glycogen synthase kinase GSTT Glutathione S-transferase theta H&E Hematoxylin and Eosin HA Hydroxyapatite hh Hedge hog Ig G Immunoglobulin G Irf Interferon Regulatory Factor Lhx LIM homeobox MAPK Mitogen-activated protein kinases MEE Middle Edge Epithelium MES Medial epithelial Seam MFS Mean Fusion Score Mmps Matrix metaloproteinases MP Mid Palatal mRNA Messenger RNA vii MSCs Mesenchymal Stem Cells Msx1 Msh homeobox 1 NFAT Nuclear Factor of Activated T-cells NS Nonsyndromic NOS Nitric oxide synthase OO Orbicularis Oris OR Odds Ratio Osr Protein odd-skipped-related Pax Paired box PDGF Platelet-derived growth factor PI3K Phosphatidylinositol-3 Kinase PLA Poly lactic acid PLGA Poly lactic glycolic acid RTKs Receptor Tyrosine Kinases SEM Standard error of the Mean SH2 Src Homology 2 (Binding Domain) Shh Sonic hedge hog Shox2 The short stature homeobox siRNA Small interfering RNA SPSS Statistical Package for the Social Sciences SUMO Small ubiquitin-like modifier SVF Stromo-Vascular Fraction viii Tbx22 T-box transcription factor TGFβ3 Transforming Growth Factor β3 Tim Tissue inhibitor of metalloprotein TP Trans Palatal VAX1 Ventral anterior homeobox 1 ix TABLE OF CONTENTS Page ABSTRACT ................................................................................................................. ii DEDICATION ............................................................................................................. iv ACKNOWLEDGEMENTS ......................................................................................... v NOMENCLATURE ................................................................................................... vi TABLE OF CONTENTS ............................................................................................ x LIST OF FIGURES ..................................................................................................... xiii LIST OF TABLES ....................................................................................................... xiv CHAPTER I INTRODUCTION AND LITERATURE REVIEW ............................ 1 Palate Development .............................................................................................. 2 Molecular Genetics Behind Cleft Palate ............................................................. 3 TGFβ3 ........................................................................................................... 4 Ephs and Ephrins .......................................................................................... 5 PDGF Signaling ............................................................................................ 6 Wingless Type (Wnt) Protein Signaling ....................................................... 6 Irf 6 (Interferon Regulatory Factor 6) ........................................................... 7 VAX1 ........................................................................................................... 7 ADAMTS Family Metalloproteases ............................................................. 8 Fibroblast Growth Factor 10 (Fgf10) ........................................................... 8 FOXE1 (Forkhead Box Protein E1) .............................................................. 9 Molecular Signaling Events in Embryonic Palatal Development ........................ 9 Failure of Palatal Shelf Formation ................................................................ 9 Fusion of the Palatal Shelf with the Tongue or Mandible ............................ 11 Failure of Palatal Elevation ........................................................................... 12 Failure of Palatal Shelves to Meet After Elevation ...................................... 13 Persistence of Middle Edge Epithelium ........................................................ 13 SUMO Modification of Signaling Pathways in Palatogenesis ............................. 14 A-P Gradient of Molecular Signaling in Palatal Development ............................ 16 Types of Cleft Palate ..........................................................................................
Recommended publications
  • ARTICLES Fibroblast Growth Factors 1, 2, 17, and 19 Are The
    0031-3998/07/6103-0267 PEDIATRIC RESEARCH Vol. 61, No. 3, 2007 Copyright © 2007 International Pediatric Research Foundation, Inc. Printed in U.S.A. ARTICLES Fibroblast Growth Factors 1, 2, 17, and 19 Are the Predominant FGF Ligands Expressed in Human Fetal Growth Plate Cartilage PAVEL KREJCI, DEBORAH KRAKOW, PERTCHOUI B. MEKIKIAN, AND WILLIAM R. WILCOX Medical Genetics Institute [P.K., D.K., P.B.M., W.R.W.], Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Obstetrics and Gynecology [D.K.] and Department of Pediatrics [W.R.W.], UCLA School of Medicine, Los Angeles, California 90095 ABSTRACT: Fibroblast growth factors (FGF) regulate bone growth, (G380R) or TD (K650E) mutations (4–6). When expressed at but their expression in human cartilage is unclear. Here, we deter- physiologic levels, FGFR3-G380R required, like its wild-type mined the expression of entire FGF family in human fetal growth counterpart, ligand for activation (7). Similarly, in vitro cul- plate cartilage. Using reverse transcriptase PCR, the transcripts for tivated human TD chondrocytes as well as chondrocytes FGF1, 2, 5, 8–14, 16–19, and 21 were found. However, only FGF1, isolated from Fgfr3-K644M mice had an identical time course 2, 17, and 19 were detectable at the protein level. By immunohisto- of Fgfr3 activation compared with wild-type chondrocytes and chemistry, FGF17 and 19 were uniformly expressed within the showed no receptor activation in the absence of ligand (8,9). growth plate. In contrast, FGF1 was found only in proliferating and hypertrophic chondrocytes whereas FGF2 localized predominantly to Despite the importance of the FGF ligand for activation of the resting and proliferating cartilage.
    [Show full text]
  • Disruption of Fibroblast Growth Factor Signal
    Cancer Therapy: Preclinical Disruption of Fibroblast Growth Factor Signal Pathway Inhibits the Growth of Synovial Sarcomas: Potential Application of Signal Inhibitors to MolecularTarget Therapy Ta t s u y a I s hi b e , 1, 2 Tomitaka Nakayama,2 Ta k e s h i O k a m o t o, 1, 2 Tomoki Aoyama,1Koichi Nishijo,1, 2 Kotaro Roberts Shibata,1, 2 Ya s u ko Shim a ,1, 2 Satoshi Nagayama,3 Toyomasa Katagiri,4 Yusuke Nakamura, 4 Takashi Nakamura,2 andJunya Toguchida 1 Abstract Purpose: Synovial sarcoma is a soft tissue sarcoma, the growth regulatory mechanisms of which are unknown.We investigatedthe involvement of fibroblast growth factor (FGF) signals in synovial sarcoma andevaluatedthe therapeutic effect of inhibiting the FGF signal. Experimental Design:The expression of 22 FGF and4 FGF receptor (FGFR) genes in18prima- ry tumors andfive cell lines of synovial sarcoma were analyzedby reverse transcription-PCR. Effects of recombinant FGF2, FGF8, andFGF18 for the activation of mitogen-activatedprotein kinase (MAPK) andthe growth of synovial sarcoma cell lines were analyzed.Growth inhibitory effects of FGFR inhibitors on synovial sarcoma cell lines were investigated in vitro and in vivo. Results: Synovial sarcoma cell lines expressedmultiple FGF genes especially those expressed in neural tissues, among which FGF8 showedgrowth stimulatory effects in all synovial sarcoma cell lines. FGF signals in synovial sarcoma induced the phosphorylation of extracellular signal ^ regulatedkinase (ERK1/2) andp38MAPK but not c-Jun NH 2-terminal kinase. Disruption of the FGF signaling pathway in synovial sarcoma by specific inhibitors of FGFR causedcell cycle ar- rest leading to significant growth inhibition both in vitro and in vivo.Growthinhibitionbythe FGFR inhibitor was associatedwith a down-regulation of phosphorylatedERK1/2 but not p38MAPK, andan ERK kinase inhibitor also showedgrowth inhibitory effects for synovial sar- coma, indicating that the growth stimulatory effect of FGF was transmitted through the ERK1/2.
    [Show full text]
  • FGF Signaling Network in the Gastrointestinal Tract (Review)
    163-168 1/6/06 16:12 Page 163 INTERNATIONAL JOURNAL OF ONCOLOGY 29: 163-168, 2006 163 FGF signaling network in the gastrointestinal tract (Review) MASUKO KATOH1 and MASARU KATOH2 1M&M Medical BioInformatics, Hongo 113-0033; 2Genetics and Cell Biology Section, National Cancer Center Research Institute, Tokyo 104-0045, Japan Received March 29, 2006; Accepted May 2, 2006 Abstract. Fibroblast growth factor (FGF) signals are trans- Contents duced through FGF receptors (FGFRs) and FRS2/FRS3- SHP2 (PTPN11)-GRB2 docking protein complex to SOS- 1. Introduction RAS-RAF-MAPKK-MAPK signaling cascade and GAB1/ 2. FGF family GAB2-PI3K-PDK-AKT/aPKC signaling cascade. The RAS~ 3. Regulation of FGF signaling by WNT MAPK signaling cascade is implicated in cell growth and 4. FGF signaling network in the stomach differentiation, the PI3K~AKT signaling cascade in cell 5. FGF signaling network in the colon survival and cell fate determination, and the PI3K~aPKC 6. Clinical application of FGF signaling cascade in cell polarity control. FGF18, FGF20 and 7. Clinical application of FGF signaling inhibitors SPRY4 are potent targets of the canonical WNT signaling 8. Perspectives pathway in the gastrointestinal tract. SPRY4 is the FGF signaling inhibitor functioning as negative feedback apparatus for the WNT/FGF-dependent epithelial proliferation. 1. Introduction Recombinant FGF7 and FGF20 proteins are applicable for treatment of chemotherapy/radiation-induced mucosal injury, Fibroblast growth factor (FGF) family proteins play key roles while recombinant FGF2 protein and FGF4 expression vector in growth and survival of stem cells during embryogenesis, are applicable for therapeutic angiogenesis. Helicobacter tissues regeneration, and carcinogenesis (1-4).
    [Show full text]
  • Age-Driven Developmental Drift in the Pathogenesis of Idiopathic Pulmonary Fibrosis
    BACK TO BASICS INTERSTITIAL LUNG DISEASES | Age-driven developmental drift in the pathogenesis of idiopathic pulmonary fibrosis Moisés Selman1, Carlos López-Otín2 and Annie Pardo3 Affiliations: 1Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico city, Mexico. 2Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain. 3Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico city, Mexico. Correspondence: Moisés Selman, Instituto Nacional de Enfermedades Respiratorias, Tlalpan 4502, CP 14080, México DF, México. E-mail: [email protected] ABSTRACT Idiopathic pulmonary fibrosis (IPF) is a progressive and usually lethal disease of unknown aetiology. A growing body of evidence supports that IPF represents an epithelial-driven process characterised by aberrant epithelial cell behaviour, fibroblast/myofibroblast activation and excessive accumulation of extracellular matrix with the subsequent destruction of the lung architecture. The mechanisms involved in the abnormal hyper-activation of the epithelium are unclear, but we propose that recapitulation of pathways and processes critical to embryological development associated with a tissue specific age-related stochastic epigenetic drift may be implicated. These pathways may also contribute to the distinctive behaviour of IPF fibroblasts. Genomic and epigenomic studies have revealed that wingless/ Int, sonic hedgehog and other developmental signalling pathways are reactivated and deregulated in IPF. Moreover, some of these pathways cross-talk with transforming growth factor-β activating a profibrotic feedback loop. The expression pattern of microRNAs is also dysregulated in IPF and exhibits a similar expression profile to embryonic lungs. In addition, senescence, a process usually associated with ageing, which occurs early in alveolar epithelial cells of IPF lungs, likely represents a conserved programmed developmental mechanism.
    [Show full text]
  • The Roles of Fgfs in the Early Development of Vertebrate Limbs
    Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW The roles of FGFs in the early development of vertebrate limbs Gail R. Martin1 Department of Anatomy and Program in Developmental Biology, School of Medicine, University of California at San Francisco, San Francisco, California 94143–0452 USA ‘‘Fibroblast growth factor’’ (FGF) was first identified 25 tion of two closely related proteins—acidic FGF and ba- years ago as a mitogenic activity in pituitary extracts sic FGF (now designated FGF1 and FGF2, respectively). (Armelin 1973; Gospodarowicz 1974). This modest ob- With the advent of gene isolation techniques it became servation subsequently led to the identification of a large apparent that the Fgf1 and Fgf2 genes are members of a family of proteins that affect cell proliferation, differen- large family, now known to be comprised of at least 17 tiation, survival, and motility (for review, see Basilico genes, Fgf1–Fgf17, in mammals (see Coulier et al. 1997; and Moscatelli 1992; Baird 1994). Recently, evidence has McWhirter et al. 1997; Hoshikawa et al. 1998; Miyake been accumulating that specific members of the FGF 1998). At least five of these genes are expressed in the family function as key intercellular signaling molecules developing limb (see Table 1). The proteins encoded by in embryogenesis (for review, see Goldfarb 1996). Indeed, the 17 different FGF genes range from 155 to 268 amino it may be no exaggeration to say that, in conjunction acid residues in length, and each contains a conserved with the members of a small number of other signaling ‘‘core’’ sequence of ∼120 amino acids that confers a com- molecule families [including WNT (Parr and McMahon mon tertiary structure and the ability to bind heparin or 1994), Hedgehog (HH) (Hammerschmidt et al.
    [Show full text]
  • Thymic Mesenchymal Cells Have a Distinct Transcriptomic Profile
    Thymic Mesenchymal Cells Have a Distinct Transcriptomic Profile Julien Patenaude and Claude Perreault This information is current as J Immunol 2016; 196:4760-4770; Prepublished online 29 of October 1, 2021. April 2016; doi: 10.4049/jimmunol.1502499 http://www.jimmunol.org/content/196/11/4760 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2016/04/29/jimmunol.150249 Material 9.DCSupplemental References This article cites 65 articles, 18 of which you can access for free at: http://www.jimmunol.org/content/196/11/4760.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 1, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Thymic Mesenchymal Cells Have a Distinct Transcriptomic Profile Julien Patenaude and Claude Perreault In order to understand the role of mesenchymal cells (MCs) in the adult thymus, we performed whole transcriptome analyses of primary thymic, bone, and skin MCs.
    [Show full text]
  • A Novel Regulatory Mechanism for Fgf18 Signaling Involving Cysteine
    RESEARCH ARTICLE 159 Development 137, 159-167 (2010) doi:10.1242/dev.041574 A novel regulatory mechanism for Fgf18 signaling involving cysteine-rich FGF receptor (Cfr) and delta-like protein (Dlk) Yuichiro Miyaoka1, Minoru Tanaka2, Toru Imamura3, Shinji Takada4,5 and Atsushi Miyajima1,* SUMMARY Fibroblast growth factors (FGFs) transduce signals through FGF receptors (FGFRs) and have pleiotropic functions. Besides signal- transducing FGFRs, cysteine-rich FGF receptor (Cfr; Glg1) is also known to bind some FGFs, although its physiological functions remain unknown. In this study, we generated Cfr-deficient mice and found that some of them die perinatally, and show growth retardation, tail malformation and cleft palate. These phenotypes are strikingly similar to those of Fgf18-deficient mice, and we revealed interaction between Cfr and Fgf18 both genetically and physically, suggesting functional cooperation. Consistently, introduction of Cfr facilitated Fgf18-dependent proliferation of Ba/F3 cells expressing Fgfr3c. In addition, we uncovered binding between Cfr and delta-like protein (Dlk), and noticed that Cfr-deficient mice are also similar to Dlk-transgenic mice, indicating that Cfr and Dlk function in opposite ways. Interestingly, we also found that Dlk interrupts the binding between Cfr and Fgf18. Thus, the Fgf18 signaling pathway seems to be finely tuned by Cfr and Dlk for skeletal development. This study reveals a novel regulatory mechanism for Fgf18 signaling involving Cfr and Dlk. KEY WORDS: Cysteine-rich FGF receptor (Cfr), Delta-like protein (Dlk), Fibroblast growth factor 18 (Fgf18) INTRODUCTION signaling (Trueb et al., 2003), and has indispensable roles in the The fibroblast growth factor (FGF) family consists of 22 members development of the diaphragm (Baertschi et al., 2007).
    [Show full text]
  • Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients with Stable Coronary Heart Disease
    Supplementary Online Content Ganz P, Heidecker B, Hveem K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. doi: 10.1001/jama.2016.5951 eTable 1. List of 1130 Proteins Measured by Somalogic’s Modified Aptamer-Based Proteomic Assay eTable 2. Coefficients for Weibull Recalibration Model Applied to 9-Protein Model eFigure 1. Median Protein Levels in Derivation and Validation Cohort eTable 3. Coefficients for the Recalibration Model Applied to Refit Framingham eFigure 2. Calibration Plots for the Refit Framingham Model eTable 4. List of 200 Proteins Associated With the Risk of MI, Stroke, Heart Failure, and Death eFigure 3. Hazard Ratios of Lasso Selected Proteins for Primary End Point of MI, Stroke, Heart Failure, and Death eFigure 4. 9-Protein Prognostic Model Hazard Ratios Adjusted for Framingham Variables eFigure 5. 9-Protein Risk Scores by Event Type This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Supplemental Material Table of Contents 1 Study Design and Data Processing ......................................................................................................... 3 2 Table of 1130 Proteins Measured .......................................................................................................... 4 3 Variable Selection and Statistical Modeling ........................................................................................
    [Show full text]
  • Comparison of the Interactions of Different Growth Factors And
    molecules Article Comparison of the Interactions of Different Growth Factors and Glycosaminoglycans Fuming Zhang 1,* , Lanhong Zheng 2,3, Shuihong Cheng 2,4, Yanfei Peng 2,5, Li Fu 2, Xing Zhang 2,6 and Robert J. Linhardt 1,2,7,* 1 Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA 2 Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; [email protected] (L.Z.); [email protected] (S.C.); [email protected] (Y.P.); [email protected] (L.F.); [email protected] (X.Z.) 3 School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China 4 CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China 5 College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China 6 School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China 7 Departments of Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA * Correspondence: [email protected] (F.Z.); [email protected] (R.J.L.); Tel.: +1-518-276-3404 (R.J.L.) Received: 20 August 2019; Accepted: 11 September 2019; Published: 16 September 2019 Abstract: Most growth factors are naturally occurring proteins, which are signaling molecules implicated in cellular multiple functions such as proliferation, migration and differentiation under patho/physiological conditions by interacting with cell surface receptors and other ligands in the extracellular microenvironment.
    [Show full text]
  • Fgf10 Dosage Is Critical for the Amplification of Epithelial Cell Progenitors and for the Formation of Multiple Mesenchymal Lineages During Lung Development
    Developmental Biology 307 (2007) 237–247 www.elsevier.com/locate/ydbio Fgf10 dosage is critical for the amplification of epithelial cell progenitors and for the formation of multiple mesenchymal lineages during lung development Suresh K. Ramasamy a,1, Arnaud A. Mailleux b,1, Varsha V. Gupte a, Francisca Mata a, Frédéric G. Sala a, Jacqueline M. Veltmaat c, Pierre M. Del Moral a, Stijn De Langhe a, Sara Parsa a, Lisa K. Kelly d, Robert Kelly e, Wei Shia a, Eli Keshet f, Parviz Minoo g, ⁎ David Warburton a, Savério Bellusci a, a Developmental Biology Program, Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA b Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA c Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore d Division of Pediatrics, Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA e Developmental Biology Institute of Marseille Luminy-UMR6216-CNRS-Université de la Méditerranée, France f Department of Molecular Biology, The Hebrew University–Hadassah Medical School, Jerusalem, Israel g Department of Pediatrics, Women's and Children's Hospital, USC Keck School of Medicine, Los Angeles, CA 90033, USA Received for publication 23 October 2006; revised 24 April 2007; accepted 26 April 2007 Available online 3 May 2007 Abstract The key role played by Fgf10 during early lung development is clearly illustrated in Fgf10 knockout mice, which exhibit lung agenesis. However, Fgf10 is continuously expressed throughout lung development suggesting extended as well as additional roles for FGF10 at later stages of lung organogenesis. We previously reported that the enhancer trap Mlcv1v-nLacZ-24 transgenic mouse strain functions as a reporter for Fgf10 expression and displays decreased endogenous Fgf10 expression.
    [Show full text]
  • Fibroblast Growth Factor 18 Promotes Proliferation and Migration of H460 Cells Via the ERK and P38 Signaling Pathways
    ONCOLOGY REPORTS 37: 1235-1242, 2017 Fibroblast growth factor 18 promotes proliferation and migration of H460 cells via the ERK and p38 signaling pathways Taotao CHEN1, WEIYUE GONG1, HAISHAN TIAN1, HAIJUN WANG4, SHENGHUI CHU1, JISHENG MA1, HUANHUAN YANG1, JILIANG CHENG1, MIN LIU1, XIAOKUN LI1,3 and CHAO JIANG1,2,3 1School of Pharmaceutical Science, Wenzhou Medical University; 2College of Life and Environmental Science, Wenzhou University; 3Biomedicine Collaborative Innovation Center, Wenzhou University, Wenzhou, Zhejiang 325035; 4Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China Received July 1, 2016; Accepted November 23, 2016 DOI: 10.3892/or.2016.5301 Abstract. Recently, fibroblast growth factor 18 (FGF18) Introduction expression was reported to be upregulated in colon cancer and ovarian cancer, and increased expression of FGF18 mRNA Lung cancer is the leading cause of cancer-associated mortality and protein is associated with tumor progression and poor in the United States, with 157,000 cases of lung cancer- overall survival in patients; however, its role in lung cancer associated mortality in 2010 and 160,000 people in 2013, remains to be explored. In the present study, the effect and accounting for 26 and 28% of all female and male cancer- underlying molecular mechanisms of FGF18 on H460 cells associated deaths, respectively (1,2). Lung cancer is classified were investigated. Cell proliferation and cell cycle altera- into two main histological types: Non-small cell lung cancer tions were detected using a 3-(4, 5-dimethylthiazol-2-yl)-2, (NSCLC) and small cell lung cancer (SCLC), accounting for 5-diphenyltetrazolium bromide assay and flow cytometry.
    [Show full text]
  • Downloaded from Bioscientifica.Com at 09/30/2021 03:40:24AM Via Free Access
    27 7 Endocrine-Related E Labanca et al. FGF axis in bone metastasis 27:7 R255–R265 Cancer REVIEW Fibroblast growth factors signaling in bone metastasis Estefania Labanca1, Elba S Vazquez2,3, Paul G Corn1, Justin M Roberts1, Fen Wang4, Christopher J Logothetis1 and Nora M Navone1 1Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA 2Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 3CONICET – Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina 4Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA Correspondence should be addressed to N M Navone: [email protected] Abstract Many solid tumors metastasize to bone, but only prostate cancer has bone as a Key Words single, dominant metastatic site. Recently, the FGF axis has been implicated in cancer f prostate cancer progression in some tumors and mounting evidence indicate that it mediates prostate f bone metastasis cancer bone metastases. The FGF axis has an important role in bone biology and f fibroblast growth factors mediates cell-to-cell communication. Therefore, we discuss here basic concepts of f fibroblast growth factor bone biology, FGF signaling axis, and FGF axis function in adult bone, to integrate these receptors concepts in our current understanding of the role of FGF axis in bone metastases. Endocrine-Related Cancer (2020) 27, R255–R265 Introduction Development of metastases is a complex and demanding cancer progression.
    [Show full text]