Curriculum Vitae Susan Friedlander Professional Addresses
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Olga Ladyzhenskaya and Olga Ole˘Inik: Two Great Women Mathematicians of the 20Th Century
OLGA LADYZHENSKAYA AND OLGA OLE˘INIK: TWO GREAT WOMEN MATHEMATICIANS OF THE 20TH CENTURY SUSAN FRIEDLANDER∗ AND BARBARA LEE KEYFITZ This short article celebrates the contributions of women to partial differ- ential equations and their applications. Although many women have made important contributions to this field, we have seen the recent deaths of two of the brightest stars–Olga Ladyzhenskaya and Olga Ole˘ınik–and in their memory, we focus on their work and their lives. The two Olgas had much in common and were also very different. Both were born in the 1920s in the Soviet Union, grew up during very difficult years, and survived the awful death and destruction of the World War II. Shortly after the war, they were students together at Moscow State Uni- versity where they were both advised by I. G. Petrovsky, whose influence on Moscow mathematics at the time was unsurpassed. Both were much in- fluenced by the famous seminar of I. M. Gelfand, and both young women received challenging problems in PDE from Gelfand. In 1947, both Olgas graduated from Moscow State University, and then their paths diverged. Olga Ole˘ınik remained in Moscow and continued to be supervised by Petro- vsky. Her whole career was based in Moscow; after receiving her Ph.D. in 1954, she became first a professor and ultimately the head of the Depart- ment of Differential Equations at Moscow State University. Olga Ladyzhen- skaya moved in 1947 to Leningrad, and her career developed at the Steklov Institute there. Like Ole˘ınik, her mathematical achievements were very in- fluential; as a result of her work, Ladyzhenskaya overcame discrimination to become the uncontested leader of the Leningrad school of PDE. -
Twenty Female Mathematicians Hollis Williams
Twenty Female Mathematicians Hollis Williams Acknowledgements The author would like to thank Alba Carballo González for support and encouragement. 1 Table of Contents Sofia Kovalevskaya ................................................................................................................................. 4 Emmy Noether ..................................................................................................................................... 16 Mary Cartwright ................................................................................................................................... 26 Julia Robinson ....................................................................................................................................... 36 Olga Ladyzhenskaya ............................................................................................................................. 46 Yvonne Choquet-Bruhat ....................................................................................................................... 56 Olga Oleinik .......................................................................................................................................... 67 Charlotte Fischer .................................................................................................................................. 77 Karen Uhlenbeck .................................................................................................................................. 87 Krystyna Kuperberg ............................................................................................................................. -
Chapter 4 X.Pdf
CHAPTER 4 ANALYSIS OF THE GOVERNING EQUATIONS 4.1 INTRODUCTION The mathematical nature of the systems of governing equations deduced in Chapters 2 and 3 is investigated in this chapter. The systems of PDEs that express the quasi-equilibrium approximation are studied in greater depth. The analysis is especially important for the systems whose solutions are likely to feature discontinuities, as a result of strong gradients growing steeper, or because the initial data is already discontinuous. The geomorphic shallow-water flows, such as the dam-break flow considered in Chapter 3, are the paradigmatic example of flows for which discontinuities arise fundamentally because of the initial conditions. Laboratory experiments show that, in the first instants of a sudden collapse of a dam, vertical accelerations are strong and a bore is formed, either through the breaking of a wave (Stansby et al. 1998) or due to the incorporation of bed material (Capart 2000, Leal et al. 2002). Intense erosion occurs in the vicinity of the dam and a highly saturated wave front is likely to form at ttt≡≈0 4 , thg00= , where h0 is the initial water depth in the reservoir. The saturated wave front can be seen forming in figure 3.1(a). Unlike the debris flow resulting from avalanches or lahars, the saturated front is followed by a sheet-flow similar to that 303 encountered in surf or swash zones (Asano 1995), as seen in figures 3.2(b) and (c). The intensity of the sediment transport decreases in the upstream direction as the flow velocities approach fluvial values. -
Prizes and Awards Session
PRIZES AND AWARDS SESSION Wednesday, July 12, 2021 9:00 AM EDT 2021 SIAM Annual Meeting July 19 – 23, 2021 Held in Virtual Format 1 Table of Contents AWM-SIAM Sonia Kovalevsky Lecture ................................................................................................... 3 George B. Dantzig Prize ............................................................................................................................. 5 George Pólya Prize for Mathematical Exposition .................................................................................... 7 George Pólya Prize in Applied Combinatorics ......................................................................................... 8 I.E. Block Community Lecture .................................................................................................................. 9 John von Neumann Prize ......................................................................................................................... 11 Lagrange Prize in Continuous Optimization .......................................................................................... 13 Ralph E. Kleinman Prize .......................................................................................................................... 15 SIAM Prize for Distinguished Service to the Profession ....................................................................... 17 SIAM Student Paper Prizes .................................................................................................................... -
President's Report
Volume 38, Number 4 NEWSLETTER July–August 2008 President’s Report Dear Colleagues: I am delighted to announce that our new executive director is Maeve Lewis McCarthy. I am very excited about what AWM will be able to accomplish now that she is in place. (For more about Maeve, see the press release on page 7.) Welcome, Maeve! Thanks are due to the search committee for its thought and energy. These were definitely required because we had some fabulous candidates. Thanks also to Murray State University, Professor McCarthy’s home institution, for its coopera- tion as we worked out the details of her employment with AWM. The AWM Executive Committee has voted to give honorary lifetime mem- IN THIS ISSUE berships to our founding presidents, Mary Gray and Alice T. Schafer. In my role as president, I am continually discovering just how extraordinary AWM is 7 McCarthy Named as an organization. Looking back at its early history, I find it hard to imagine AWM Executive Director how AWM could have come into existence without the vision, work, and persist- ence of these two women. 10 AWM Essay Contest Among newly elected members of the National Academy of Sciences in the physical and mathematical sciences are: 12 AWM Teacher Partnerships 16 MIT woMen In maTH Emily Ann Carter Department of Mechanical and Aerospace Engineering and the Program in 19 Girls’ Angle Applied and Computational Mathematics, Princeton University Lisa Randal Professor of theoretical physics, Department of Physics, Harvard University Elizabeth Thompson Department of Statistics, University of Washington, Seattle A W M The American Academy of Arts and Sciences has also announced its new members. -
Jfr Mathematics for the Planet Earth
SOME MATHEMATICAL ASPECTS OF THE PLANET EARTH José Francisco Rodrigues (University of Lisbon) Article of the Special Invited Lecture, 6th European Congress of Mathematics 3 July 2012, KraKow. The Planet Earth System is composed of several sub-systems: the atmosphere, the liquid oceans and the icecaps and the biosphere. In all of them Mathematics, enhanced by the supercomputers, has currently a key role through the “universal method" for their study, which consists of mathematical modeling, analysis, simulation and control, as it was re-stated by Jacques-Louis Lions in [L]. Much before the advent of computers, the representation of the Earth, the navigation and the cartography have contributed in a decisive form to the mathematical sciences. Nowadays the International Geosphere-Biosphere Program, sponsored by the International Council of Scientific Unions, may contribute to stimulate several mathematical research topics. In this article, we present a brief historical introduction to some of the essential mathematics for understanding the Planet Earth, stressing the importance of Mathematical Geography and its role in the Scientific Revolution(s), the modeling efforts of Winds, Heating, Earthquakes, Climate and their influence on basic aspects of the theory of Partial Differential Equations. As a special topic to illustrate the wide scope of these (Geo)physical problems we describe briefly some examples from History and from current research and advances in Free Boundary Problems arising in the Planet Earth. Finally we conclude by referring the potential impact of the international initiative Mathematics of Planet Earth (www.mpe2013.org) in Raising Public Awareness of Mathematics, in Research and in the Communication of the Mathematical Sciences to the new generations. -
English Highlights
Vershik Anatoly M., Ithaca, New York, March 15, 1990; Highlights 1 A. Early Biography E.D. How did you get interested in mathematics? There were many mathematical circles 2 and Olympiads in Moscow. Were there any in Leningrad? A.V. While in high school I used to buy every book on mathematics I could, including Mathematical Conversations written by you. There were not many books available, so that as a high school student I could afford buying virtually all of them. I don’t know why I got interested in mathematics. I wasn’t sure what I wanted to do in my life. I had other interests as well, but I knew that eventually I had to choose. There was a permanent mathematical circle at the Pioneers Palace 3. In fact, before the 60s it was the only one in Leningrad. I didn’t want to join it for some reason. I joined the lesser-known mathematical circle hosted by the Leningrad University. When I was in the tenth grade, it was supervised by Misha Solomyak, who is a good friend of mine now. A few years later, when I was a university student, 1 The interview is presented by its highlites A, B, C, D related to four parts 1, 2, 3, 4 of the corresponding audio as follows: A. Early Biography a. Books, Math Circles, Olympiads - Part 2, 00:00-3:27 b. Admission to the Leningrad University - Part 2, 3:28-10:47 B. St. Petersburg School of Mathematics - Part 2, 16:36-29:00 and 38:30-41:32 C. -
American Mathematical Society COUNCIL MINUTES
American Mathematical Society COUNCIL MINUTES New Orleans, Louisiana 05 January 2011 at 1:30 p.m. Prepared January 20, 2011 Abstract The Council of the Society met at 1:30 p.m. on Wednesday, 05 January 2011, in the Mardi Gras E room of the New Orleans Marriott Hotel, 555 Canal Street, New Orleans, LA 70130. These are the minutes of the meeting. Although several items were treated in Executive Session, all actions taken are reported in these minutes. Council Agenda 05 January 2011 Page 2 of 16 Contents I. AGENDA 1. Call to Order 1.1. Opening of the Meeting and Introductions . 4 1.2. 2010 Council Elections........................................4 1.3. Retiring Members. ...........................................4 1.4. Council Members.............................................4 2. Minutes. .........................................................5 2.1. Minutes of the April 2010 Council. 5 2.2. The 05/2010 and 11/2010 Executive Committee and Board of Trustees (ECBT) Meetings.............................................5 3. Consent Agenda....................................................5 3.1. Mathfest Joint Program Committee.. 5 4. Reports of Boards and Standing Committees . 5 4.1. Tellers’ Report on the 2010 Elections [Executive Session]. 5 4.1.1. Tellers’ Report on the Elections of Officers. 5 4.1.2. Tellers’ Report on Elections to the Nominating Committee. 6 4.1.3. Tellers’ Report on Elections to the Editorial Boards Committee. 6 4.2. Executive Committee/Board of Trustees (ECBT). 6 4.2.1. Associate Secretary for the Central Section [Executive Session]. 6 4.2.2. Associate Secretary for the Western Section [Executive Session]. 6 4.2.3. Associate Treasurer [Executive Session] . 7 4.2.4. Dues Levels for the 2012 Membership Year. -
Arxiv:2105.10149V2 [Math.HO] 27 May 2021
Extended English version of the paper / Versión extendida en inglés del artículo 1 La Gaceta de la RSME, Vol. 23 (2020), Núm. 2, Págs. 243–261 Remembering Louis Nirenberg and his mathematics Juan Luis Vázquez, Real Academia de Ciencias, Spain Abstract. The article is dedicated to recalling the life and mathematics of Louis Nirenberg, a distinguished Canadian mathematician who recently died in New York, where he lived. An emblematic figure of analysis and partial differential equations in the last century, he was awarded the Abel Prize in 2015. From his watchtower at the Courant Institute in New York, he was for many years a global teacher and master. He was a good friend of Spain. arXiv:2105.10149v2 [math.HO] 27 May 2021 One of the wonders of mathematics is you go somewhere in the world and you meet other mathematicians, and it is like one big family. This large family is a wonderful joy.1 1. Introduction This article is dedicated to remembering the life and work of the prestigious Canadian mathematician Louis Nirenberg, born in Hamilton, Ontario, in 1925, who died in New York on January 26, 2020, at the age of 94. Professor for much of his life at the mythical Courant Institute of New York University, he was considered one of the best mathematical analysts of the 20th century, a specialist in the analysis of partial differential equations (PDEs for short). 1From an interview with Louis Nirenberg appeared in Notices of the AMS, 2002, [43] 2 Louis Nirenberg When the news of his death was received, it was a very sad moment for many mathematicians, but it was also the opportunity of reviewing an exemplary life and underlining some of its landmarks. -
Louis Nirenberg
Obituary Louis Nirenberg (1925–2020) Mathematician who transformed the study of partial differential equations. fter the Second World War, PDE in Novosibirsk, which helped to redefine mathe matics in the United States the relationship between the Soviet Union flourished owing to a convergence of and the United States. There, he forged close interests. Mathematicians had shown friendships in an environment he compared to their worth to military and indus- a voyage at sea. A later geopolitically signifi- Atry patrons, who underwrote far-reaching cant trip took him to China toward the end of empires of theories and people, including the the Cultural Revolution. After being assigned consummate problem-solver Louis Nirenberg. a PhD thesis in Italian as the subject for a term One of the world’s most cited and paper during his graduate studies, he devel- productive mathematicians, Nirenberg was oped a lifelong affinity for Italy. also among the most collaborative. His work Nirenberg was known for using methods in continued to make waves until he was well their most fruitful generality. “I have made a into his eighties, and reshaped how mathe- living off the maximum principle,” he quipped, maticians understand and study dynamical referring to a fundamental technique for systems, from cells to markets. Winning the establishing inequalities in PDE. He demon- 2015 Abel Prize (shared with John Nash, made strated its versatile potential to researchers in NEW YORK UNIVERSITY ARCHIVES NEW YORK famous by the 2001 film A Beautiful Mind) was many fields. As a young man, he had worried just a bookend to a fêted career. -
Final Program and Abstracts
Final Program and Abstracts Sponsored by the SIAM Activity Group on Analysis of Partial Differential Equations The Activity Group on Analysis of Partial Differential Equations fosters activity in the analysis of partial differential equations (PDE) and enhances communication between analysts, computational scientists and the broad PDE community. Its goals are to provide a forum where theoretical and applied researchers in the area can meet, to be an intellectual home for researchers in the analysis of PDE, to increase conference activity in PDE, and to enhance connections between SIAM and the mathematics community. SIAM 2015 Events Mobile App Scan the QR code with any QR reader and download the TripBuilder EventMobile™ app to your iPhone, iPad, iTouch or Android mobile device. You can also visit www.tripbuilder.net/mobileweb/apps/siam2015events Society for Industrial and Applied Mathematics 3600 Market Street, 6th Floor Philadelphia, PA 19104-2688 USA Telephone: +1-215-382-9800 Fax: +1-215-386-7999 Conference E-mail: [email protected] Conference Web: www.siam.org/meetings/ Membership and Customer Service: (800) 447-7426 (US& Canada) or +1-215-382-9800 (worldwide) www.siam.org/meetings/pd15 2 SIAM Conference on Analysis of Partial Differential Equations Table of Contents SIAM Registration Desk Corporate Members The SIAM registration desk is located in the and Affiliates Program-at-a-Glance ............................... Grand Ballroom Foyer - Main Level. It is SIAM corporate members provide their .......................See separate handout open during the following hours: employees with knowledge about, access General Information ........................2 Sunday, December 6 to, and contacts in the applied mathematics 4:00 PM – 8:00 PM and computational sciences community Get-togethers .........................................4 through their membership benefits. -
2004 Steele Prizes
2004 Steele Prizes The 2004 Leroy P. Steele Prizes were awarded at the The 2004 Steele Prizes were awarded to JOHN W. 110th Annual Meeting of the AMS in Phoenix in MILNOR for Mathematical Exposition, to LAWRENCE C. January 2004. EVANS and NICOLAI V. KRYLOV for a Seminal Contri- The Steele Prizes were established in 1970 in honor bution to Research, and to CATHLEEN SYNGE MORAWETZ of George David Birkhoff, William Fogg Osgood, and for Lifetime Achievement. The text that follows William Caspar Graustein. Osgood was president of presents, for each awardee, the selection commit- the AMS during 1905–06, and Birkhoff served in that tee’s citation, a brief biographical sketch, and the capacity during 1925–26. The prizes are endowed awardee’s response upon receiving the prize. under the terms of a bequest from Leroy P. Steele. Up to three prizes are awarded each year in the follow- Mathematical Exposition: John W. Milnor ing categories: (1) Lifetime Achievement: for the Citation cumulative influence of the total mathematical work The Leroy P. Steele Prize for Mathematical Exposi- of the recipient, high level of research over a period tion is awarded to John W. Milnor in recognition of time, particular influence on the development of of a lifetime of expository contributions ranging a field, and influence on mathematics through Ph.D. across a wide spectrum of disciplines including students; (2) Mathematical Exposition: for a book topology, symmetric bilinear forms, characteristic or substantial survey or expository-research paper; classes, Morse theory, game theory, algebraic K- (3) Seminal Contribution to Research (limited for theory, iterated rational maps…and the list goes on.