Numbers and Functions from a Classical- Experimental Mathematician’S Point of View
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Generalizations of Euler Numbers and Polynomials 1
GENERALIZATIONS OF EULER NUMBERS AND POLYNOMIALS QIU-MING LUO AND FENG QI Abstract. In this paper, the concepts of Euler numbers and Euler polyno- mials are generalized, and some basic properties are investigated. 1. Introduction It is well-known that the Euler numbers and polynomials can be defined by the following definitions. Definition 1.1 ([1]). The Euler numbers Ek are defined by the following expansion t ∞ 2e X Ek = tk, |t| ≤ π. (1.1) e2t + 1 k! k=0 In [4, p. 5], the Euler numbers is defined by t/2 ∞ n 2n 2e t X (−1) En t = sech = , |t| ≤ π. (1.2) et + 1 2 (2n)! 2 n=0 Definition 1.2 ([1, 4]). The Euler polynomials Ek(x) for x ∈ R are defined by xt ∞ 2e X Ek(x) = tk, |t| ≤ π. (1.3) et + 1 k! k=0 It can also be shown that the polynomials Ei(t), i ∈ N, are uniquely determined by the following two properties 0 Ei(t) = iEi−1(t),E0(t) = 1; (1.4) i Ei(t + 1) + Ei(t) = 2t . (1.5) 2000 Mathematics Subject Classification. 11B68. Key words and phrases. Euler numbers, Euler polynomials, generalization. The authors were supported in part by NNSF (#10001016) of China, SF for the Prominent Youth of Henan Province, SF of Henan Innovation Talents at Universities, NSF of Henan Province (#004051800), Doctor Fund of Jiaozuo Institute of Technology, China. This paper was typeset using AMS-LATEX. 1 2 Q.-M. LUO AND F. QI Euler polynomials are related to the Bernoulli numbers. For information about Bernoulli numbers and polynomials, please refer to [1, 2, 3, 4]. -
Arxiv:1301.0252V1 [Math.NT]
VARIATIONS OF LUCAS’ THEOREM MODULO PRIME POWERS ROMEO MESTROVIˇ C´ Abstract. Let p be a prime, and let k,n,m,n0 and m0 be nonnegative integers such that k ≥ 1, and 0 and m0 are both less than p. K. Davis and W. Webb established that for a prime p ≥ 5 the following variation of Lucas’ Theorem modulo prime powers holds k ⌊(k−1)/3⌋ np + n0 np n0 k k ≡ ⌊(k−1)/3⌋ (mod p ). mp + m0 mp m0 In the proof the authors used their earlier result that present a general- ized version of Lucas’ Theorem. In this paper we present a a simple inductive proof of the above con- gruence. Our proof is based on a classical congruence due to Jacobsthal, and we additionally use only some well known identities for binomial coefficients. Moreover, we prove that the assertion is also true for p =2 and p = 3 if in the above congruence one replace ⌊(k − 1)/3⌋ by ⌊k/2⌋, and by ⌊(k − 1)/2⌋, respectively. As an application, in terms of Lucas’ type congruences, we obtain a new characterization of Wolstenholme primes. 1. INTRODUCTION AND MAIN RESULTS In 1878, E.´ Lucas proved a remarkable result which provides a simple a way to compute the binomial coefficient b modulo a prime p in terms of the binomial coefficients of the base-p digits of nonnegative integers a and b with b ≤ a. Namely, if p is a prime, and n, m, n0 and m0 are nonnegative integers with n0, m0 ≤ p − 1, then a beautiful theorem of Lucas ([11]; also see [6]) states that for every prime p, arXiv:1301.0252v1 [math.NT] 29 Dec 2012 np + n n n 0 ≡ 0 (mod p) (1) mp + m0 mm0 1991 Mathematics Subject Classification. -
An Identity for Generalized Bernoulli Polynomials
1 2 Journal of Integer Sequences, Vol. 23 (2020), 3 Article 20.11.2 47 6 23 11 An Identity for Generalized Bernoulli Polynomials Redha Chellal1 and Farid Bencherif LA3C, Faculty of Mathematics USTHB Algiers Algeria [email protected] [email protected] [email protected] Mohamed Mehbali Centre for Research Informed Teaching London South Bank University London United Kingdom [email protected] Abstract Recognizing the great importance of Bernoulli numbers and Bernoulli polynomials in various branches of mathematics, the present paper develops two results dealing with these objects. The first one proposes an identity for the generalized Bernoulli poly- nomials, which leads to further generalizations for several relations involving classical Bernoulli numbers and Bernoulli polynomials. In particular, it generalizes a recent identity suggested by Gessel. The second result allows the deduction of similar identi- ties for Fibonacci, Lucas, and Chebyshev polynomials, as well as for generalized Euler polynomials, Genocchi polynomials, and generalized numbers of Stirling. 1Corresponding author. 1 1 Introduction Let N and C denote, respectively, the set of positive integers and the set of complex numbers. (α) In his book, Roman [41, p. 93] defined generalized Bernoulli polynomials Bn (x) as follows: for all n ∈ N and α ∈ C, we have ∞ tn t α B(α)(x) = etx. (1) n n! et − 1 Xn=0 The Bernoulli numbers Bn, classical Bernoulli polynomials Bn(x), and generalized Bernoulli (α) numbers Bn are, respectively, defined by (1) (α) (α) Bn = Bn(0), Bn(x)= Bn (x), and Bn = Bn (0). (2) The Bernoulli numbers and the Bernoulli polynomials play a fundamental role in various branches of mathematics, such as combinatorics, number theory, mathematical analysis, and topology. -
Solving Solvable Quintics
mathematics of computation volume 57,number 195 july 1991, pages 387-401 SOLVINGSOLVABLE QUINTICS D. S. DUMMIT Abstract. Let f{x) = x 5 +px 3 +qx 2 +rx + s be an irreducible polynomial of degree 5 with rational coefficients. An explicit resolvent sextic is constructed which has a rational root if and only if f(x) is solvable by radicals (i.e., when its Galois group is contained in the Frobenius group F20 of order 20 in the symmetric group S5). When f(x) is solvable by radicals, formulas for the roots are given in terms of p, q, r, s which produce the roots in a cyclic order. 1. Introduction It is well known that an irreducible quintic with coefficients in the rational numbers Q is solvable by radicals if and only if its Galois group is contained in the Frobenius group F20 of order 20, i.e., if and only if the Galois group is isomorphic to F20 , to the dihedral group DXQof order 10, or to the cyclic group Z/5Z. (More generally, for any prime p, it is easy to see that a solvable subgroup of the symmetric group S whose order is divisible by p is contained in the normalizer of a Sylow p-subgroup of S , cf. [1].) The purpose here is to give a criterion for the solvability of such a general quintic in terms of the existence of a rational root of an explicit associated resolvent sextic polynomial, and when this is the case, to give formulas for the roots analogous to Cardano's formulas for the general cubic and quartic polynomials (cf. -
Casus Irreducibilis and Maple
48 Casus irreducibilis and Maple Rudolf V´yborn´y Abstract We give a proof that there is no formula which uses only addition, multiplication and extraction of real roots on the coefficients of an irreducible cubic equation with three real roots that would provide a solution. 1 Introduction The Cardano formulae for the roots of a cubic equation with real coefficients and three real roots give the solution in a rather complicated form involving complex numbers. Any effort to simplify it is doomed to failure; trying to get rid of complex numbers leads back to the original equation. For this reason, this case of a cubic is called casus irreducibilis: the irreducible case. The usual proof uses the Galois theory [3]. Here we give a fairly simple proof which perhaps is not quite elementary but should be accessible to undergraduates. It is well known that a convenient solution for a cubic with real roots is in terms of trigono- metric functions. In the last section we handle the irreducible case in Maple and obtain the trigonometric solution. 2 Prerequisites By N, Q, R and C we denote the natural numbers, the rationals, the reals and the com- plex numbers, respectively. If F is a field then F [X] denotes the ring of polynomials with coefficients in F . If F ⊂ C is a field, a ∈ C but a∈ / F then there exists a smallest field of complex numbers which contains both F and a, we denote it by F (a). Obviously it is the intersection of all fields which contain F as well as a. -
Sums of Powers and the Bernoulli Numbers Laura Elizabeth S
Eastern Illinois University The Keep Masters Theses Student Theses & Publications 1996 Sums of Powers and the Bernoulli Numbers Laura Elizabeth S. Coen Eastern Illinois University This research is a product of the graduate program in Mathematics and Computer Science at Eastern Illinois University. Find out more about the program. Recommended Citation Coen, Laura Elizabeth S., "Sums of Powers and the Bernoulli Numbers" (1996). Masters Theses. 1896. https://thekeep.eiu.edu/theses/1896 This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. THESIS REPRODUCTION CERTIFICATE TO: Graduate Degree Candidates (who have written formal theses) SUBJECT: Permission to Reproduce Theses The University Library is rece1v1ng a number of requests from other institutions asking permission to reproduce dissertations for inclusion in their library holdings. Although no copyright laws are involved, we feel that professional courtesy demands that permission be obtained from the author before we allow theses to be copied. PLEASE SIGN ONE OF THE FOLLOWING STATEMENTS: Booth Library of Eastern Illinois University has my permission to lend my thesis to a reputable college or university for the purpose of copying it for inclusion in that institution's library or research holdings. u Author uate I respectfully request Booth Library of Eastern Illinois University not allow my thesis -
Higher Order Bernoulli and Euler Numbers
David Vella, Skidmore College [email protected] Generating Functions and Exponential Generating Functions • Given a sequence {푎푛} we can associate to it two functions determined by power series: • Its (ordinary) generating function is ∞ 풏 푓 풙 = 풂풏풙 풏=ퟏ • Its exponential generating function is ∞ 풂 품 풙 = 풏 풙풏 풏! 풏=ퟏ Examples • The o.g.f and the e.g.f of {1,1,1,1,...} are: 1 • f(x) = 1 + 푥 + 푥2 + 푥3 + ⋯ = , and 1−푥 푥 푥2 푥3 • g(x) = 1 + + + + ⋯ = 푒푥, respectively. 1! 2! 3! The second one explains the name... Operations on the functions correspond to manipulations on the sequence. For example, adding two sequences corresponds to adding the ogf’s, while to shift the index of a sequence, we multiply the ogf by x, or differentiate the egf. Thus, the functions provide a convenient way of studying the sequences. Here are a few more famous examples: Bernoulli & Euler Numbers • The Bernoulli Numbers Bn are defined by the following egf: x Bn n x x e 1 n1 n! • The Euler Numbers En are defined by the following egf: x 2e En n Sech(x) 2x x e 1 n0 n! Catalan and Bell Numbers • The Catalan Numbers Cn are known to have the ogf: ∞ 푛 1 − 1 − 4푥 2 퐶 푥 = 퐶푛푥 = = 2푥 1 + 1 − 4푥 푛=1 • Let Sn denote the number of different ways of partitioning a set with n elements into nonempty subsets. It is called a Bell number. It is known to have the egf: ∞ 푆 푥 푛 푥푛 = 푒 푒 −1 푛! 푛=1 Higher Order Bernoulli and Euler Numbers th w • The n Bernoulli Number of order w, B n is defined for positive integer w by: w x B w n xn x e 1 n1 n! th w • The n Euler Number of -
Handbook of Number Theory Ii
HANDBOOK OF NUMBER THEORY II by J. Sändor Babes-Bolyai University ofCluj Department of Mathematics and Computer Science Cluj-Napoca, Romania and B. Crstici formerly the Technical University of Timisoara Timisoara Romania KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON Contents PREFACE 7 BASIC SYMBOLS 9 BASIC NOTATIONS 10 1 PERFECT NUMBERS: OLD AND NEW ISSUES; PERSPECTIVES 15 1.1 Introduction 15 1.2 Some historical facts 16 1.3 Even perfect numbers 20 1.4 Odd perfect numbers 23 1.5 Perfect, multiperfect and multiply perfect numbers 32 1.6 Quasiperfect, almost perfect, and pseudoperfect numbers 36 1.7 Superperfect and related numbers 38 1.8 Pseudoperfect, weird and harmonic numbers 42 1.9 Unitary, bi-unitary, infinitary-perfect and related numbers 45 1.10 Hyperperfect, exponentially perfect, integer-perfect and y-perfect numbers 50 1.11 Multiplicatively perfect numbers 55 1.12 Practical numbers 58 1.13 Amicable numbers 60 1.14 Sociable numbers 72 References 77 2 GENERALIZATIONS AND EXTENSIONS OF THE MÖBIUS FUNCTION 99 2.1 Introduction 99 1 CONTENTS 2.2 Möbius functions generated by arithmetical products (or convolutions) 106 1 Möbius functions defined by Dirichlet products 106 2 Unitary Möbius functions 110 3 Bi-unitary Möbius function 111 4 Möbius functions generated by regulär convolutions .... 112 5 K-convolutions and Möbius functions. B convolution . ... 114 6 Exponential Möbius functions 117 7 l.c.m.-product (von Sterneck-Lehmer) 119 8 Golomb-Guerin convolution and Möbius function 121 9 max-product (Lehmer-Buschman) 122 10 Infinitary -
Mathematical Constants and Sequences
Mathematical Constants and Sequences a selection compiled by Stanislav Sýkora, Extra Byte, Castano Primo, Italy. Stan's Library, ISSN 2421-1230, Vol.II. First release March 31, 2008. Permalink via DOI: 10.3247/SL2Math08.001 This page is dedicated to my late math teacher Jaroslav Bayer who, back in 1955-8, kindled my passion for Mathematics. Math BOOKS | SI Units | SI Dimensions PHYSICS Constants (on a separate page) Mathematics LINKS | Stan's Library | Stan's HUB This is a constant-at-a-glance list. You can also download a PDF version for off-line use. But keep coming back, the list is growing! When a value is followed by #t, it should be a proven transcendental number (but I only did my best to find out, which need not suffice). Bold dots after a value are a link to the ••• OEIS ••• database. This website does not use any cookies, nor does it collect any information about its visitors (not even anonymous statistics). However, we decline any legal liability for typos, editing errors, and for the content of linked-to external web pages. Basic math constants Binary sequences Constants of number-theory functions More constants useful in Sciences Derived from the basic ones Combinatorial numbers, including Riemann zeta ζ(s) Planck's radiation law ... from 0 and 1 Binomial coefficients Dirichlet eta η(s) Functions sinc(z) and hsinc(z) ... from i Lah numbers Dedekind eta η(τ) Functions sinc(n,x) ... from 1 and i Stirling numbers Constants related to functions in C Ideal gas statistics ... from π Enumerations on sets Exponential exp Peak functions (spectral) .. -
MASON V(Irtual) Mid-Atlantic Seminar on Numbers March 27–28, 2021
MASON V(irtual) Mid-Atlantic Seminar On Numbers March 27{28, 2021 Abstracts Amod Agashe, Florida State University A generalization of Kronecker's first limit formula with application to zeta functions of number fields The classical Kronecker's first limit formula gives the polar and constant term in the Laurent expansion of a certain two variable Eisenstein series, which in turn gives the polar and constant term in the Laurent expansion of the zeta function of a quadratic imaginary field. We will recall this formula and give its generalization to more general Eisenstein series and to zeta functions of arbitrary number fields. Max Alekseyev, George Washington University Enumeration of Payphone Permutations People's desire for privacy drives many aspects of their social behavior. One such aspect can be seen at rows of payphones, where people often pick an available payphone most distant from already occupied ones.Assuming that there are n payphones in a row and that n people pick payphones one after another as privately as possible, the resulting assignment of people to payphones defines a permutation, which we will refer to as a payphone permutation. It can be easily seen that not every permutation can be obtained this way. In the present study, we consider different variations of payphone permutations and enumerate them. Kisan Bhoi, Sambalpur University Narayana numbers as sum of two repdigits Repdigits are natural numbers formed by the repetition of a single digit. Diophantine equations involving repdigits and the terms of linear recurrence sequences have been well studied in literature. In this talk we consider Narayana's cows sequence which is a third order liner recurrence sequence originated from a herd of cows and calves problem. -
A Short History of Complex Numbers
A Short History of Complex Numbers Orlando Merino University of Rhode Island January, 2006 Abstract This is a compilation of historical information from various sources, about the number i = √ 1. The information has been put together for students of Complex Analysis who − are curious about the origins of the subject, since most books on Complex Variables have no historical information (one exception is Visual Complex Analysis, by T. Needham). A fact that is surprising to many (at least to me!) is that complex numbers arose from the need to solve cubic equations, and not (as it is commonly believed) quadratic equations. These notes track the development of complex numbers in history, and give evidence that supports the above statement. 1. Al-Khwarizmi (780-850) in his Algebra has solution to quadratic equations of various types. Solutions agree with is learned today at school, restricted to positive solutions [9] Proofs are geometric based. Sources seem to be greek and hindu mathematics. According to G. J. Toomer, quoted by Van der Waerden, Under the caliph al-Ma’mun (reigned 813-833) al-Khwarizmi became a member of the “House of Wisdom” (Dar al-Hikma), a kind of academy of scientists set up at Baghdad, probably by Caliph Harun al-Rashid, but owing its preeminence to the interest of al-Ma’mun, a great patron of learning and scientific investigation. It was for al-Ma’mun that Al-Khwarizmi composed his astronomical treatise, and his Algebra also is dedicated to that ruler 2. The methods of algebra known to the arabs were introduced in Italy by the Latin transla- tion of the algebra of al-Khwarizmi by Gerard of Cremona (1114-1187), and by the work of Leonardo da Pisa (Fibonacci)(1170-1250). -
ON the CASUS IRREDUCIBILIS of SOLVING the CUBIC EQUATION Jay Villanueva Florida Memorial University Miami, FL 33055 Jvillanu@Fmu
ON THE CASUS IRREDUCIBILIS OF SOLVING THE CUBIC EQUATION Jay Villanueva Florida Memorial University Miami, FL 33055 [email protected] I. Introduction II. Cardan’s formulas A. 1 real, 2 complex roots B. Multiple roots C. 3 real roots – the casus irreducibilis III. Examples IV. Significance V. Conclusion ******* I. Introduction We often need to solve equations as teachers and researchers in mathematics. The linear and quadratic equations are easy. There are formulas for the cubic and quartic equations, though less familiar. There are no general methods to solve the quintic and other higher order equations. When we deal with the cubic equation one surprising result is that often we have to express the roots of the equation in terms of complex numbers although the roots are real. For example, the equation – 4 = 0 has all roots real, yet when we use the formula we get . This root is really 4, for, as Bombelli noted in 1550, and , and therefore This is one example of the casus irreducibilis on solving the cubic equation with three real roots. 205 II. Cardan’s formulas The quadratic equation with real coefficients, has the solutions (1) . The discriminant < 0, two complex roots (2) ∆ real double root > 0, two real roots. The (monic) cubic equation can be reduced by the transformation to the form where (3) Using the abbreviations (4) and , we get Cardans’ formulas (1545): (5) The complete solutions of the cubic are: (6) The roots are characterized by the discriminant (7) < 0, one real, two complex roots = 0, multiple roots > 0, three real roots.