Direct Joule Heating As a Means to Efficiently and Homogeneously
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
3-D Electromagnetic Radiative Non-Newtonian Nanofluid Flow With
www.nature.com/scientificreports OPEN 3‑D electromagnetic radiative non‑Newtonian nanofuid fow with Joule heating and higher‑order reactions in porous materials Amel A. Alaidrous1* & Mohamed R. Eid2,3* The aim of this work is to discuss the efect of mth‑order reactions on the magnetic fow of hyperbolic tangent nanofuid through extending surface in a porous material with thermal radiation, several slips, Joule heating, and viscous dissipation. In order to convert non‑linear partial diferential governing equations into ordinary ones, a technique of similarity transformations has been implemented and then solved using the OHAM (optimal homotopy analytical method). The outcomes of novel efective parameters on the non‑dimensional interesting physical quantities are established utilizing the tabular and pictorial outlines. After a comparison with previous literature studies, the results were fnely compliant. The study explores that the reduced Nusselt number is diminished for the escalating values of radiation, porosity, and source (sink) parameters. It is found that the order of the chemical reaction m = 2 is dominant in concentration as well as mass transfer in both destructive and generative reactions. When m reinforces for a destructive reaction, mass transfer is reduced with 34.7% and is stabled after η = 3. In the being of the destructive reaction and Joule heating, the nanofuid’s temperature is enhanced. Abbreviations a, b Constants (–) B0 Magnetic parameter C Concentration (mol/m3) cp Specifc heat C Free stream concentration (mol/m3) -
Tubular Heaters Heat up the Foodservice Industry
FOODSERVICE TUBULAR HEATERS Tubular Heaters Heat Up the Foodservice Industry When there’s a need for heat in your foodservice equipment Applications application—from fryers to griddles to ovens—turn to Watlow, the leader with more than 25 years experience providing • Griddles heating solutions to the foodservice equipment market. Using • Rotisserie ovens • Convection ovens Watlow’s WATROD round tubular and FIREBAR® flat tubular heating elements in the cooking process promotes faster • Combi ovens cooking, consistent food preparation, ease of operation and • Conveyor ovens low maintenance. • Fryers • Steamers These reliable, versatile heating elements can be configured • Smokers with a variety of wattage and voltage ratings, terminations, • Warewashers sheath materials and mounting options to satisfy the most • Warming cabinets demanding foodservice applications. • Toasters • Other clamp-on applications Advantages • Watlow’s heaters for the foodservice industry are constructed with epoxy or silicone seals to combat moisture contamination from environmental kitchen conditions. • Compacted MgO insulation transfers heat away from resistance wire to sheath material and media more efficiently resulting in faster heat up. • Over 36 standard and a virtually limitless array of custom bend formation options enable the heating element to be HAN-FTH-0807 designed around available space to maximize heating efficiency. To be automatically connected to the nearest North American Technical and Sales Office: 1-800-WATLOW2 • www.watlow.com • [email protected] -
Electric Permittivity of Carbon Fiber
Carbon 143 (2019) 475e480 Contents lists available at ScienceDirect Carbon journal homepage: www.elsevier.com/locate/carbon Electric permittivity of carbon fiber * Asma A. Eddib, D.D.L. Chung Composite Materials Research Laboratory, Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260-4400, USA article info abstract Article history: The electric permittivity is a fundamental material property that affects electrical, electromagnetic and Received 19 July 2018 electrochemical applications. This work provides the first determination of the permittivity of contin- Received in revised form uous carbon fibers. The measurement is conducted along the fiber axis by capacitance measurement at 25 October 2018 2 kHz using an LCR meter, with a dielectric film between specimen and electrode (necessary because an Accepted 11 November 2018 LCR meter is not designed to measure the capacitance of an electrical conductor), and with decoupling of Available online 19 November 2018 the contributions of the specimen volume and specimen-electrode interface to the measured capaci- tance. The relative permittivity is 4960 ± 662 and 3960 ± 450 for Thornel P-100 (more graphitic) and Thornel P-25 fibers (less graphitic), respectively. These values are high compared to those of discon- tinuous carbons, such as reduced graphite oxide (relative permittivity 1130), but are low compared to those of steels, which are more conductive than carbon fibers. The high permittivity of carbon fibers compared to discontinuous carbons is attributed to the continuity of the fibers and the consequent substantial distance that the electrons can move during polarization. The P-100/P-25 permittivity ratio is 1.3, whereas the P-100/P-25 conductivity ratio is 67. -
Commercial Electric Water Heaters
Service Handbook COMMERCIAL ELECTRIC WATER HEATERS MODELS CSB52**I, CSB82**I, CSB120**I & CSB52**S, CSB82**S, CSB120**S INSTALLATION CONSIDERATIONS - PRE SERVICE CHECKS - WATER HEATER CONSTRUCTION - 500 Tennessee Waltz Parkway OPERATION & SERVICE - TROUBLESHOOTING Ashland City, TN 37015 SERVICING SHOULD ONLY BE PERFORMED BY A QUALIFIED SERVICE AGENT. PRINTED IN THE U.S.A 1008 315015-000 1 COMMERCIAL ELECTRIC WATER HEATER SERVICE MANUAL TABLE OF CONTENTS INTRODUCTION .......................................................................2 ELECTRONIC CONTROLS..................................................... 41 Qualifications ......................................................................2 CCB - Central Control Board............................................ 42 Service Warning .................................................................2 CCB Socket & Wiring Terminal Identification ............ 43 Tools Required....................................................................3 CCB Enable Disable Circuit(s) Test........................... 45 INSTALLATION CONSIDERATIONS ........................................4 Checking Power And Ground To The CCB ............... 46 Closed Water Systems .......................................................4 UIM - User Interface Module ............................................ 47 Thermal Expansion.............................................................4 ELECTRONIC CONTROL SYSTEM ....................................... 48 Electrical Requirements......................................................5 -
Joule Heating of the South Polar Terrain on Enceladus K
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116, E04010, doi:10.1029/2010JE003776, 2011 Joule heating of the south polar terrain on Enceladus K. P. Hand,1 K. K. Khurana,2 and C. F. Chyba3 Received 12 November 2010; revised 1 February 2011; accepted 13 February 2011; published 27 April 2011. [1] We report that Joule heating in Enceladus, resulting from the interaction of Enceladus with Saturn’s magnetic field, may account for 150 kW to 52 MW of power through Enceladus. Electric currents passing through subsurface channels of low salinity and just a few kilometers in depth could supply a source of power to the south polar terrain, providing a small but previously unaccounted for contribution to the observed heat flux and plume activity. Studies of the electrical heating of Jupiter’s moon Europa have concluded that electricity is a negligible heating source since no connection between the conductive subsurface and Alfvén currents has been observed. Here we show that, contrary to results for the Jupiter system, electrical heating may be a source of internal energy for Enceladus, contributing to localized heating, production of water vapor, and the persistence of the “tiger stripes.” This contribution is of order 0.001–0.25% of the total observed heat flux, and thus, Joule heating cannot explain the total south polar terrain heat anomaly. The exclusion of salt ions during refreezing serves to enhance volumetric Joule heating and could extend the lifetime of liquid water fractures in the south polar terrain. Citation: Hand, K. P., K. K. Khurana, and C. F. Chyba (2011), Joule heating of the south polar terrain on Enceladus, J. -
Misc Thesisdb Bythesissuperv
Honors Theses 2006 to August 2020 These records are for reference only and should not be used for an official record or count by major or thesis advisor. Contact the Honors office for official records. Honors Year of Student Student's Honors Major Thesis Title (with link to Digital Commons where available) Thesis Supervisor Thesis Supervisor's Department Graduation Accounting for Intangible Assets: Analysis of Policy Changes and Current Matthew Cesca 2010 Accounting Biggs,Stanley Accounting Reporting Breaking the Barrier- An Examination into the Current State of Professional Rebecca Curtis 2014 Accounting Biggs,Stanley Accounting Skepticism Implementation of IFRS Worldwide: Lessons Learned and Strategies for Helen Gunn 2011 Accounting Biggs,Stanley Accounting Success Jonathan Lukianuk 2012 Accounting The Impact of Disallowing the LIFO Inventory Method Biggs,Stanley Accounting Charles Price 2019 Accounting The Impact of Blockchain Technology on the Audit Process Brown,Stephen Accounting Rebecca Harms 2013 Accounting An Examination of Rollforward Differences in Tax Reserves Dunbar,Amy Accounting An Examination of Microsoft and Hewlett Packard Tax Avoidance Strategies Anne Jensen 2013 Accounting Dunbar,Amy Accounting and Related Financial Statement Disclosures Measuring Tax Aggressiveness after FIN 48: The Effect of Multinational Status, Audrey Manning 2012 Accounting Dunbar,Amy Accounting Multinational Size, and Disclosures Chelsey Nalaboff 2015 Accounting Tax Inversions: Comparing Corporate Characteristics of Inverted Firms Dunbar,Amy Accounting Jeffrey Peterson 2018 Accounting The Tax Implications of Owning a Professional Sports Franchise Dunbar,Amy Accounting Brittany Rogan 2015 Accounting A Creative Fix: The Persistent Inversion Problem Dunbar,Amy Accounting Foreign Account Tax Compliance Act: The Most Revolutionary Piece of Tax Szwakob Alexander 2015D Accounting Dunbar,Amy Accounting Legislation Since the Introduction of the Income Tax Prasant Venimadhavan 2011 Accounting A Proposal Against Book-Tax Conformity in the U.S. -
How to Introduce the Magnetic Dipole Moment
IOP PUBLISHING EUROPEAN JOURNAL OF PHYSICS Eur. J. Phys. 33 (2012) 1313–1320 doi:10.1088/0143-0807/33/5/1313 How to introduce the magnetic dipole moment M Bezerra, W J M Kort-Kamp, M V Cougo-Pinto and C Farina Instituto de F´ısica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, CEP 21941-972, Rio de Janeiro, Brazil E-mail: [email protected] Received 17 May 2012, in final form 26 June 2012 Published 19 July 2012 Online at stacks.iop.org/EJP/33/1313 Abstract We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot–Savart law to obtain, explicitly, the dominant contribution of the magnetic field at distant points, identifying the magnetic dipole moment of the distribution. We also present a simple but general demonstration of the torque exerted by a uniform magnetic field on a current loop of general form, not necessarily planar. For pedagogical reasons we start by reviewing briefly the concept of the electric dipole moment. 1. Introduction The general concepts of electric and magnetic dipole moments are commonly found in our daily life. For instance, it is not rare to refer to polar molecules as those possessing a permanent electric dipole moment. Concerning magnetic dipole moments, it is difficult to find someone who has never heard about magnetic resonance imaging (or has never had such an examination). -
Joule Heating-Induced Particle Manipulation on a Microfluidic Chip
Joule Heating-Induced Particle Manipulation on a Microfluidic Chip Golak Kunti,a) Jayabrata Dhar,b) Anandaroop Bhattacharyaa) and Suman Chakrabortya)* a)Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal - 721302, India b)Universite de Rennes 1, CNRS, Geosciences Rennes UMR6118, Rennes, France *E-mail address of corresponding author: [email protected] We develop an electrokinetic technique that continuously manipulates colloidal particles to concentrate into patterned particulate groups in an energy efficient way, by exclusive harnessing of the intrinsic Joule heating effects. Our technique exploits the alternating current electrothermal flow phenomenon which is generated due to the interaction between non-uniform electric and thermal fields. Highly non-uniform electric field generates sharp temperature gradients by generating spatially-varying Joule heat that varies along radial direction from a concentrated point hotspot. Sharp temperature gradients induce local variation in electric properties which, in turn, generate strong electrothermal vortex. The imposed fluid flow brings the colloidal particles at the centre of the hotspot and enables particle aggregation. Further, manoeuvering structures of the Joule heating spots, different patterns of particle clustering may be formed in a low power budget, thus, opening up a new realm of on-chip particle manipulation process without necessitating highly focused laser beam which is much complicated and demands higher power budget. This technique can find its use in Lab-on-a-chip devices to manipulate particle groups, including biological cells. INTRODUCTION Manipulation and assembly of colloidal particles including biological cells are essential in colloidal crystals, biological assays, bioengineered tissues, and engineered Laboratory-on- a-chip (LOC) devices.1–6 Concentrating, sorting, patterning and transporting of microparticles possess several challenges in these devices/systems. -
Gauss' Theorem (See History for Rea- Son)
Gauss’ Law Contents 1 Gauss’s law 1 1.1 Qualitative description ......................................... 1 1.2 Equation involving E field ....................................... 1 1.2.1 Integral form ......................................... 1 1.2.2 Differential form ....................................... 2 1.2.3 Equivalence of integral and differential forms ........................ 2 1.3 Equation involving D field ....................................... 2 1.3.1 Free, bound, and total charge ................................. 2 1.3.2 Integral form ......................................... 2 1.3.3 Differential form ....................................... 2 1.4 Equivalence of total and free charge statements ............................ 2 1.5 Equation for linear materials ...................................... 2 1.6 Relation to Coulomb’s law ....................................... 3 1.6.1 Deriving Gauss’s law from Coulomb’s law .......................... 3 1.6.2 Deriving Coulomb’s law from Gauss’s law .......................... 3 1.7 See also ................................................ 3 1.8 Notes ................................................. 3 1.9 References ............................................... 3 1.10 External links ............................................. 3 2 Electric flux 4 2.1 See also ................................................ 4 2.2 References ............................................... 4 2.3 External links ............................................. 4 3 Ampère’s circuital law 5 3.1 Ampère’s original -
Lecture 1: Basic Terms and Rules in Mathematics
Lecture 5: electricity Content: - introduction - electric charge, potential, field, current, flux - electric dipole - resistance, conductance, Ohm‘s law - resistivity, conductivity - Kirchhoff's circuit laws - dielectric materials, permittivity - capacitor, capacitance - alternating current - skin effect, dispersion - Gaussian law in electrics fundamentals of electric field Electricity is the set of physical phenomena associated with the presence and flow of electric charge. Electric charge has a positive and negative sign. Electricity gives a wide variety of well-known effects, such as lightning, static electricity, electromagnetic induction and electric current (naturally originated). In addition, electricity permits the creation and reception of electromagnetic radiation such as radio waves. fundamentals of electric field Charge carriers: - in metals, the charge carriers are electrons (they are able to move about freely within the crystal structure of the metal). (a cloud of free electrons is called as a Fermi gas). - in electrolytes (such as salt water) the charge carriers are ions, atoms or molecules that have gained or lost electrons so they are electrically charged (anions, cations). This is valid also in melted ionic solids. - in a plasma, an electrically charged gas which is found in electric arcs through air, the electrons and cations of ionized gas act as charge carriers. - in a vacuum, free electrons can act as charge carriers. - in semiconductors (used in electronics), in addition to electrons, the travelling vacancies in the valence-band electron population (called "holes"), act as mobile positive charges and are treated as charge carriers. interesting trials with plasma lamp: https://www.youtube.com/watch?v=2gttW4F86Sg fundamentals of electric field Basic quantities: - electric charge: a property of some subatomic particles, which determines their electromagnetic interactions. -
Temporal Analysis of Radiating Current Densities
Temporal analysis of radiating current densities Wei Guoa aP. O. Box 470011, Charlotte, North Carolina 28247, USA ARTICLE HISTORY Compiled August 10, 2021 ABSTRACT From electromagnetic wave equations, it is first found that, mathematically, any current density that emits an electromagnetic wave into the far-field region has to be differentiable in time infinitely, and that while the odd-order time derivatives of the current density are built in the emitted electric field, the even-order deriva- tives are built in the emitted magnetic field. With the help of Faraday’s law and Amp`ere’s law, light propagation is then explained as a process involving alternate creation of electric and magnetic fields. From this explanation, the preceding math- ematical result is demonstrated to be physically sound. It is also explained why the conventional retarded solutions to the wave equations fail to describe the emitted fields. KEYWORDS Light emission; electromagnetic wave equations; current density In electrodynamics [1–3], a time-dependent current density ~j(~r, t) and a time- dependent charge density ρ(~r, t), all evaluated at position ~r and time t, are known to be the sources of an emitted electric field E~ and an emitted magnetic field B~ : 1 ∂2 4π ∂ ∇2E~ − E~ = ~j + 4π∇ρ, (1) c2 ∂t2 c2 ∂t and 1 ∂2 4π ∇2B~ − B~ = − ∇× ~j, (2) c2 ∂t2 c2 where c is the speed of these emitted fields in vacuum. See Refs. [3,4] for derivation of these equations. (In some theories [5], on the other hand, ρ and ~j are argued to arXiv:2108.04069v1 [physics.class-ph] 6 Aug 2021 be responsible for instantaneous action-at-a-distance fields, not for fields propagating with speed c.) Note that when the fields are observed in the far-field region, the contribution to E~ from ρ can be practically ignored [6], meaning that, in that region, Eq. -
The Effects of Joule Heating on Electric-Driven Microfluidic Flow Alexander P
Research Article from the SC Junior Academy of Science The Effects of Joule Heating on Electric-Driven Microfluidic Flow Alexander P. Spitzer South Carolina Governor’s School for Science and Mathematics This study sought out to more clearly understand the relationship between Joule heating and fluid flow in microfluidic environments, and more specifically, under what circumstances would the fluid flow in the device possibly hinder an experiment being run on it. It had been previous theorised that an electric field may produce turbulence and even vortices within the fluid, which this study attempted to reproduce. Several variables were tested, namely insulating and conducting fluids, higher and lower AC voltages, Newtonian vs. non- Newtonian fluids, and higher and lower DC voltages. A correlation between these variables and turbulent flow was found, with more conductive fluids, higher AC voltages, non-Newtonian fluids, and higher DC voltages more prone to fluid turbulence. Introduction Lab-on-a-chip devices are widely used in research to perform microfluidic chemical and biomedical analysis. However, some of these chips are driven using an electric field, which can cause potentially catastrophic side-effects, one of which is joule heating. Joule heating is an effect where heat is produced in a medium through which an electric current is passed. This can be an issue in microfluidic devices, especially in those with designs that contain constrictions in their channels. Due to the fact that electrical resistance increases with decreasing cross-sectional area and more heat is produce when resistance increases, temperature gradients can form in the fluid. This creates chaotic flow that may disrupt any experiment being performed on the chip.