A Tetra-Amido-Protected Ge5‑Spiropentadiene
Communication Cite This: J. Am. Chem. Soc. 2019, 141, 19252−19256 pubs.acs.org/JACS ‑ A Tetra-amido-Protected Ge5 Spiropentadiene ⊥ † ⊥ † † † ‡ § § Yan Guo, , Zhengqiang Xia, , Jingjing Liu, Jiaxiu Yu, Shenglai Yao, Weiqun Shi, Kongqiu Hu, † † † ‡ † Sanping Chen, Yaoyu Wang, Anyang Li,*, Matthias Driess,*, and Wenyuan Wang*, † Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi 710069, China ‡ Metalorganics and Inorganic Materials, Department of Chemistry, Technische Universitaẗ Berlin, Straße des 17, Juni 135, Sekr. C2, 10623 Berlin, Germany § Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China *S Supporting Information spiropentadiene B (spiropentasiladiene) was successfully fi ABSTRACT: The rst isolable Ge5-spiropentadiene 1 7 i isolated by Kira and co-workers. Up to now, isolation of was synthesized via the reduction of ( Pr3Si)2NGeCl (3) other E -spiropentadienes (E = Ge, Sn, Pb) has not been with potassium. The crystal structure of 1 reveals a 5 spirocyclic Ge skeleton containing two Ge−Ge double reported. 5 During the past decade, extremely bulky monodentate amido bonds (avg. 2.34 Å), which are fettered in two Ge3 rings with a dihedral angle of 70.193°. The DFT calculations protective groups were more applied in the synthesis of low- and orbital analysis show that the σ-delocalization of the coordinate complexes for main-group elements,8 transition π 9 10 Ge5 skeleton and the 2 -delocalized aromatic Ge3 rings metals, and f-block metals. Herein, we report the synthesis enhance the stability of molecule 1.
[Show full text]