[1.1.1]Propellane with Alkynes: Synthesis of Exocyclic Allenic Cyclobutanes Danieĺ Lasanyí and Gergely L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Conformations of Cycloalkanes
The Conformations of Cycloalkanes Ring-containing structures are a common occurrence in organic chemistry. We must, therefore spend some time studying the special characteristics of the parent cycloalkanes. Cyclical connectivity imposes constraints on the range of motion that the atoms in rings can undergo. Cyclic molecules are thus more rigid than linear or branched alkanes because cyclic structures have fewer internal degrees of freedom (that is, the motion of one atom greatly influences the motion of the others when they are connected in a ring). In this lesson we will examine structures of the common ring structures found in organic chemistry. The first four cycloalkanes are shown below. cyclopropane cyclobutane cyclopentane cyclohexane The amount of energy stored in a strained ring is estimated by comparing the experimental heat of formation to the calculated heat of formation. The calculated heat of formation is based on the notion that, in the absence of strain, each –CH2– group contributes equally to the heat of formation, in line with the behavior found for the acyclic alkanes (i.e., open chains). Thus, the calculated heat of formation varies linearly with the number of carbon atoms in the ring. Except for the 6-membered ring, the experimental values are found to have a more positive heat of formation than the calculated value owning to ring strain. The plots of calculated and experimental enthalpies of formation and their difference (i.e., ring strain) are seen in the Figure. The 3-membered ring has about 27 kcal/mol of strain. It can be seen that the 6-membered ring possesses almost no ring strain. -
Comparing Models for Measuring Ring Strain of Common Cycloalkanes
The Corinthian Volume 6 Article 4 2004 Comparing Models for Measuring Ring Strain of Common Cycloalkanes Brad A. Hobbs Georgia College Follow this and additional works at: https://kb.gcsu.edu/thecorinthian Part of the Chemistry Commons Recommended Citation Hobbs, Brad A. (2004) "Comparing Models for Measuring Ring Strain of Common Cycloalkanes," The Corinthian: Vol. 6 , Article 4. Available at: https://kb.gcsu.edu/thecorinthian/vol6/iss1/4 This Article is brought to you for free and open access by the Undergraduate Research at Knowledge Box. It has been accepted for inclusion in The Corinthian by an authorized editor of Knowledge Box. Campring Models for Measuring Ring Strain of Common Cycloalkanes Comparing Models for Measuring R..ing Strain of Common Cycloalkanes Brad A. Hobbs Dr. Kenneth C. McGill Chemistry Major Faculty Sponsor Introduction The number of carbon atoms bonded in the ring of a cycloalkane has a large effect on its energy. A molecule's energy has a vast impact on its stability. Determining the most stable form of a molecule is a usefol technique in the world of chemistry. One of the major factors that influ ence the energy (stability) of cycloalkanes is the molecule's ring strain. Ring strain is normally viewed as being directly proportional to the insta bility of a molecule. It is defined as a type of potential energy within the cyclic molecule, and is determined by the level of "strain" between the bonds of cycloalkanes. For example, propane has tl1e highest ring strain of all cycloalkanes. Each of propane's carbon atoms is sp3-hybridized. -
Text Related to Segment 5.02 ©2002 Claude E. Wintner from the Previous Segment We Have the Value of the Heat of Combustion Of
Text Related to Segment 5.02 ©2002 Claude E. Wintner From the previous segment we have the value of the heat of combustion of an "unstrained" methylene unit as -157.4 kcal/mole. On this basis one would predict that combustion of "unstrained" cyclopropane should liberate 3 X 157.4 = 472.2 kcal/mole; however, when cyclopropane is burned, a value of 499.8 kcal/mole is measured for the actual heat of combustion. The difference of 27.6 kcal/mole is interpreted as representing the higher internal energy ("strain energy") of real cyclopropane as compared to a postulated strain-free "model." ("Model" in this usage speaks of a proposal, or postulate.) These facts are graphed conveniently on an energy diagram as follows: "Strain Energy" represents the error units: kcal/mole not to scale in the "strain-free model" real cyclopropane + 4.5 O2 27.6 "strain-free model" of cyclopropane 499.8 observed heat of combustion + 4.5 O2 472.2 3CO2 + 3H2O heat of combustion predicted for "strain-free model" Note that this estimate of the strain energy in cyclopropane amounts to 9.2 kcal/mole of strain per methylene group (dividing 27.6 by 3, because of the three carbon atoms). Comparable values in kcal/mole for other small and medium rings are given in the following table. As one might expect, in general the strain decreases as the ring is enlarged. units: kcal/mole n Total Strain Strain per CH2 3 27.6 9.2 (CH2)n 4 26.3 6.6 5 6.2 1.2 6 0.1 0.0 ! 7 6.2 0.9 8 9.7 1.2 9 12.6 1.4 10 12.4 1.2 12 4.1 0.3 15 1.9 0.1 Without entering into a discussion of the relevant bonding concepts here, and instead relying on geometry alone, interpretation of the source of the strain energy in cyclopropane and cyclobutane is to some extent self-evident. -
Cycloalkanes, Cycloalkenes, and Cycloalkynes
CYCLOALKANES, CYCLOALKENES, AND CYCLOALKYNES any important hydrocarbons, known as cycloalkanes, contain rings of carbon atoms linked together by single bonds. The simple cycloalkanes of formula (CH,), make up a particularly important homologous series in which the chemical properties change in a much more dramatic way with increasing n than do those of the acyclic hydrocarbons CH,(CH,),,-,H. The cyclo- alkanes with small rings (n = 3-6) are of special interest in exhibiting chemical properties intermediate between those of alkanes and alkenes. In this chapter we will show how this behavior can be explained in terms of angle strain and steric hindrance, concepts that have been introduced previously and will be used with increasing frequency as we proceed further. We also discuss the conformations of cycloalkanes, especially cyclo- hexane, in detail because of their importance to the chemistry of many kinds of naturally occurring organic compounds. Some attention also will be paid to polycyclic compounds, substances with more than one ring, and to cyclo- alkenes and cycloalkynes. 12-1 NOMENCLATURE AND PHYSICAL PROPERTIES OF CYCLOALKANES The IUPAC system for naming cycloalkanes and cycloalkenes was presented in some detail in Sections 3-2 and 3-3, and you may wish to review that ma- terial before proceeding further. Additional procedures are required for naming 446 12 Cycloalkanes, Cycloalkenes, and Cycloalkynes Table 12-1 Physical Properties of Alkanes and Cycloalkanes Density, Compounds Bp, "C Mp, "C diO,g ml-' propane cyclopropane butane cyclobutane pentane cyclopentane hexane cyclohexane heptane cycloheptane octane cyclooctane nonane cyclononane "At -40". bUnder pressure. polycyclic compounds, which have rings with common carbons, and these will be discussed later in this chapter. -
Strain-Promoted 1,3-Dipolar Cycloaddition of Cycloalkynes and Organic Azides
Top Curr Chem (Z) (2016) 374:16 DOI 10.1007/s41061-016-0016-4 REVIEW Strain-Promoted 1,3-Dipolar Cycloaddition of Cycloalkynes and Organic Azides 1 1 Jan Dommerholt • Floris P. J. T. Rutjes • Floris L. van Delft2 Received: 24 November 2015 / Accepted: 17 February 2016 / Published online: 22 March 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract A nearly forgotten reaction discovered more than 60 years ago—the cycloaddition of a cyclic alkyne and an organic azide, leading to an aromatic triazole—enjoys a remarkable popularity. Originally discovered out of pure chemical curiosity, and dusted off early this century as an efficient and clean bio- conjugation tool, the usefulness of cyclooctyne–azide cycloaddition is now adopted in a wide range of fields of chemical science and beyond. Its ease of operation, broad solvent compatibility, 100 % atom efficiency, and the high stability of the resulting triazole product, just to name a few aspects, have catapulted this so-called strain-promoted azide–alkyne cycloaddition (SPAAC) right into the top-shelf of the toolbox of chemical biologists, material scientists, biotechnologists, medicinal chemists, and more. In this chapter, a brief historic overview of cycloalkynes is provided first, along with the main synthetic strategies to prepare cycloalkynes and their chemical reactivities. Core aspects of the strain-promoted reaction of cycloalkynes with azides are covered, as well as tools to achieve further reaction acceleration by means of modulation of cycloalkyne structure, nature of azide, and choice of solvent. Keywords Strain-promoted cycloaddition Á Cyclooctyne Á BCN Á DIBAC Á Azide This article is part of the Topical Collection ‘‘Cycloadditions in Bioorthogonal Chemistry’’; edited by Milan Vrabel, Thomas Carell & Floris P. -
Inverted Geometries at Carbon
Acc. Chem. Res. 1984,17, 379-386 379 Inverted Geometries at Carbon KENNETHB. WIBERG Department of Chemistry, Yale University, New Haven, Connecticut 06511 Received March 3, 1984 (Revised Manuscript Received June 25, 1984) One of the main structural elements in organic Scheme I chemistry is the tetrahedral geometry of a four-coor- dinate carbon. Distortions from a perfect tetrahedron are common, but they are generally fairly small. It is, + HOAc - however, possible to "invert" the normal geometry via OAc a C3" or "umbrella" motion leading to a set of com- pounds having all of the groups attached to some car- bon lying on one side of a plane.'J Preparative Methods A number of compounds that are constrained to have The first of these compounds to be prepared is 6 that this type of structure have now been prepared. The is readily obtained from bicyclo[3.2.0]hex-l(5)-ene17via methods of preparation and their reactions and prop- cycloaddition reactions.lJ4 The structure of the di- erties will be described belowq3 It should be noted that (1) K. B. Wiberg, J. E. Hiatt, and G. J. Burgmaier, Tetrahedron Lett., inverted geometries may in some cases be found in the 5855 (1968). absence of structural constraint. Bicyclo[ l.l.0]butane4 (2)'K. B. Wiberg, G. B. Ellison, and J. J. Wendoloski, J. Am. Chem. and its derivatives5 are notable examples, and the re- SOC.,98, 1212 (1976). (3) For a review of earlier work on 'propellanes" see D. Ginsberg, lationship between the geometry at the bridgehead and "Propellanes", Verlag Chemie, Weinheim, 1975, and reference 8. -
Chem 341 • Organic Chemistry I Lecture Summary 10 • September 14, 2007
Chem 341 • Organic Chemistry I Lecture Summary 10 • September 14, 2007 Chapter 4 - Stereochemistry of Alkanes and Cycloalkanes Conformations of Cycloalkanes Cyclic compounds contain something we call Ring Strain. There are three things that contribute to ring strain. Torsional strain (electron repulsion in eclipsing bonds), steric strain (atoms bumping into each other) and angle strain. Angle Strain: the strain due to bond angles being forced to expand or contract from their ideal. Sp3 hybridized atoms want to have bond angles of 109.5°. However, if the rings are very small or very large, there is no way to accommodate this angle. Thus, this increases the energy of the molecule. Heat of Combustion: the amount of heat (energy) released when a molecule burns completely with oxygen. By comparing the heat of combustion of different sized cycloalkanes, their relative energies can be obtained. The fact that the size of the ring has an influence on the total energy of the molecule indicates that there is some degree of instability associated with constraining the rings. This added energy (in addition to what would be expected from carbon and hydrogen combustion per mole) can be attributed to ring strain. n i a r t S g n i R 3 4 5 6 7 8 9 10 11 12 13 14 Ring Size Conformations of Cyclopropane Cyclopropane has a high degree of angle strain due to the highly distorted bond angles. The angle between the carbons is 60°. This cannot be accommodated by sp3-hybridized atoms. Thus, the 60° bonds actually are bent sigma bonds. -
The Synthesis and Reactivity Of
THE SYNTHESIS AND REACTIVITY OF 3,7 1,3 TETRACYCLO ^3.3.1.1 .0 J DECANE by EDWARD JOHN THORPE B.Sc. (Hons.) University of British Columbia, 1965 M.Sc. University of British Columbia, I968 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF' THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of Chemistry We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA August, 1975 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of The University of British Columbia Vancouver 8. Canada Date it, H-u^jf IVi I - ii - ABSTRACT Supervisor: Dr. R. E. Pincock The structures and some properties of adamantane (lb), strained cyclopropanes (23), and certain small ring propeller• like molecules (28) are reviewed. The synthesis of a new type of compound containing a combination of such structures and properties is presented. This compound tetracyclo more simply 1,3-dehydroadamantane (DHA) contains a very strained cyclopropyl group within an adamantane skeleton and was produced by bonding two bridge• head (tertiary) carbons together across the normally extremely rigid structure of adamantane. (This new compound, DHA, is shown below.) In the synthesis of DHA using alkali metal (or alloys) with 1,3-dibromoadamantane (37)> the reaction times and relative yields of adamantane and DHA were extremely variable. -
Propellane ⇑ Robynne Kirkpatrick A, Tony Masiello B, Matthew Martin A, Joseph W
Journal of Molecular Spectroscopy 281 (2012) 51–62 Contents lists available at SciVerse ScienceDirect Journal of Molecular Spectroscopy journal homepage: www.elsevier.com/locate/jms High-resolution infrared studies of the m10, m11, m14, and m18 levels of [1.1.1]propellane ⇑ Robynne Kirkpatrick a, Tony Masiello b, Matthew Martin a, Joseph W. Nibler a, , Arthur Maki c, Alfons Weber d, Thomas A. Blake e a Department of Chemistry, Oregon State University, Corvallis, OR 97332-4003, USA b Department of Chemistry and Biochemistry, California State University, East Bay, Hayward, CA 94542, USA c 15012 24th Ave., Mill Creek, WA 98012, USA d Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA e Pacific Northwest National Laboratory, P.O. Box 999, Mail Stop K8-88, Richland, WA 99352, USA article info abstract Article history: This paper is a continuation of earlier work in which the high resolution infrared spectrum of [1.1.1]pro- Received 27 July 2012 pellane was measured and its k and l structure resolved for the first time. Here we present results from an In revised form 3 September 2012 0 0 0 0 analysis of more than 16000 transitions involving three fundamental bands m10 ðE À A1Þ; m11ðE À A1Þ, m14 Available online 15 September 2012 00 0 0 00 0 00 ðA2 À A1Þ and two difference bands (m10–m18)(E ÀE ) and (m11 À m18)(E À E ). Additional information 0 00 about m18 was also obtained from the difference band (m15 + m18) À m18 (E À E ) and the binary combina- Keywords: 0 0 tion band (m15 + m18) ðE À A Þ. -
Baeyer's Angle Strain Theory for B.Sc. Sem-II Organic Chemistry: US02CCHE01 by Dr. Vipul B. Kataria Introduction
Baeyer’s Angle Strain Theory For B.Sc. Sem-II Organic Chemistry: US02CCHE01 By Dr. Vipul B. Kataria Introduction Van’t Hoff and Lebel proposed tetrahedral geometry of carbon. The bond angel is of 109˚ 28' (or 109.5˚) for carbon atom in tetrahedral geometry (methane molecule). Baeyer observed different bond angles for different cycloalkanes and also observed some different properties and stability. On this basis, he proposed angle strain theory. The theory explains reactivity and stability of cycloalkanes. Baeyer proposed that the optimum overlap of atomic orbitals is achieved for bond angel of 109.5o. In short, it is ideal bond angle for alkane compounds. Effective and optimum overlap of atomic orbitals produces maximum bond strength and stable molecule. If bond angles deviate from the ideal then ring produce strain. Higher the strain higher the instability. Higher strain produce increased reactivity and increases heat of combustion. Baeyer proposed “any deviation of bond angle from ideal bond angle value (109.5o) will produce a strain in molecule. Higher the deviation lesser the instability”. Que.1 Discuss Baeyer’s angle strain theory using concept of angle strain. Baeyer’s theory is based upon some assumptions as following. 1. All ring systems are planar. Deviation from normal tetrahedral angles results in to instable cycloalkanes. 2. The large ring systems involve negative strain hence do not exists. 3. The bond angles in cyclohexane and higher cycloalkanes (cycloheptane, cyclooctane, cyclononane……..) are not larger than 109.5o because the carbon rings of those compounds are not planar (flat) but they are puckered (Wrinkled). 1 | Page These assumptions are helpful to understand instability of cycloalkane ring systems. -
As a Precursor for Ring Opening and Expansion Dissertation Zur
Peraryl-substituted Cyclotrisilene (c-Si3R4) as a Precursor for Ring Opening and Expansion Dissertation Zur Erlangung des Grades des Doktors der Naturwissenschaften der Naturwissenschaftlich-Technischen Fakultät, der Universität des Saarlandes vorgelegt von M. Sc. Hui Zhao Saarbrücken 08.2018 II Tag des Kolloquiums: 06. 12. 2018 Dekan: Prof. Dr. Guido. Kickelbick Berichterstatter: Prof. Dr. David Scheschkewitz Prof. Dr. Guido Kickelbick Vorsitz: Prof. Dr. Michael Springborg Akademischer Mitarbeiter: Dr. Volker Huch III IV Die vorliegende Arbeit entstand in der Zeit von Oktober 2014 bis August 2018 an der Universität des Saarlandes, Naturwissenschaftlich-Technische Fakultät, Fachrichtung Chemie, im Arbeitskreis von Herrn Prof. Dr. David Scheschkewitz. V VI Kurzzusammenfassung Hauptaugenmerk dieser Arbeit liegt auf dem Untersuchen der Reaktivität von peraryl-substituierten Cyclotrisilenen (c-Si3Tip4) gegenüber verschiedenen kleinen Molekülen. Die Reaktion von c-Si3Tip4 mit Styrol und Diketon liefert zugleich weitere Hinweise auf einen dritten Reaktionsmechanismus, die Ringöffnungsreaktion zu Disilenylsilylenen, die Siliciumversion von vinyl-Carbenen. Die beschriebene Synthese von 1,2,3-Trisilacyclopentadienederivaten, durch die Reaktion von c-Si3Tip4 mit Alkinen, stellt eine neue Methode zur Herstellung von cyclischen, konjugierten C=C−Si=Si Systemen dar. Si3E-bicyclo[1.1.0]butane and Si3E2-bicyclo[1.1.1]pentane (E = S, Se, Te) werden erhalten durch die Additionsreaktionen von c-Si3Tip4 mit Chalkogenen. Die thermische Isomerisierung zu 2-Chalcogena-1,3,4-trisilacyclobutenen wird durch die NMR-spektroskopischen Daten nahegelegt und durch die Isolierung des Hydrolyseprodukts 2-Tellura-1,3,4-trisilacyclobuten gestützt. VII VIII Abstract This thesis concentrates mainly on the reactivity study of a peraryl-substituted cyclotrisilene (c-Si3Tip4) towards various small molecules. -
Energetic Molecules As Future Octane Boosters: Theoretical And
Energetic Molecules as Future Octane Boosters: Theoretical and Experimental Study Dissertation by Mohannad Ali Abdullah Al-Khodaier In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy King Abdullah University of Science and Technology Thuwal, Kingdome of Saudi Arabia © June 2018 Mohannad Ali Abdullah Al-Khodaier All Rights Reserved 1 2 EXAMINATION COMMITTEE PAGE The dissertation of Mohannad Ali Abdullah Al-Khodaier is approved by the examination committee. Committee Chairperson: Prof. Mani S. Sarathy Committee Member: Prof. Kazahiro Takanabe, Prof. Luigi Cavallo, Prof. Mohammed Ali Morsy 3 ABSTRACT Energetic Molecules as Future Octane Boosters: Theoretical and Experimental Study Mohannad Ali Abdullah Al-Khodaier The utilization of energetic strained molecules may be one way to mitigate carbon emissions or better and more economical fuel blends. To investigate candidate molecules, limonene and dicyclopentadiene, both theoretical and experimental procedures were implemented here. Computational quantum chemistry methods were employed to determine the thermodynamic properties and kinetic parameters for the hydrogen-abstraction reactions of limonene by a hydrogen atom. Geometry optimization and energy calculation was conducted for all stable species and transition states using Gaussian 09. The rate constants of the H-abstraction reactions were calculated using conventional transition state theory, as implemented in ChemRate software. The obtained values were fitted over the temperature range of 298 – 2000 K to obtain the modified Arrhenius parameters. Increasing the anti-knock quality of gasoline fuels can enable higher efficiency in spark ignition engines. This study explores blending the anti-knock quality of dicyclopentadiene (DCPD, a by-product of ethylene production from naphtha cracking), with various gasoline fuels.