Biogeographical Patterns of Bacterial and Archaeal Communities from Distant Hypersaline Environments

Total Page:16

File Type:pdf, Size:1020Kb

Biogeographical Patterns of Bacterial and Archaeal Communities from Distant Hypersaline Environments Systematic and Applied Microbiology 41 (2018) 139–150 Contents lists available at ScienceDirect Systematic and Applied Microbiology j ournal homepage: www.elsevier.de/syapm Biogeographical patterns of bacterial and archaeal communities from distant hypersaline environments a,∗ a a b c M.del R. Mora-Ruiz , A. Cifuentes , F. Font-Verdera , C. Pérez-Fernández , M.E. Farias , d e a B. González , A. Orfila , R. Rosselló-Móra a Department of Ecology and Marine Resources, Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Spain b Environmental Microbiology Laboratory, Puerto Rico University, Rio Piedras campus, Puerto Rico c Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT, CONICET, San Miguel de Tucumán, Tucumán, Argentina d Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibá˜nez — Center of Applied Ecology and Sustainability, Santiago, Chile e Marine Technology and Operational Oceanography Department, IMEDEA (CSIC-UIB), Esporles, Spain a r t a b i c l e i n f o s t r a c t Article history: Microorganisms are globally distributed but new evidence shows that the microbial structure of their Received 10 July 2017 communities can vary due to geographical location and environmental parameters. In this study, 50 sam- Received in revised form 22 October 2017 ples including brines and sediments from Europe, Spanish-Atlantic and South America were analysed by Accepted 23 October 2017 applying the operational phylogenetic unit (OPU) approach in order to understand whether microbial community structures in hypersaline environments exhibited biogeographical patterns. The fine-tuned Keywords: identification of approximately 1000 OPUs (almost equivalent to “species”) using multivariate analysis Archaea revealed regionally distinct taxa compositions. This segregation was more diffuse at the genus level and Bacteria Brines pointed to a phylogenetic and metabolic redundancy at the higher taxa level, where their different species acquired distinct advantages related to the regional physicochemical idiosyncrasies. The presence of pre- Hypersaline sediments Operational phylogenetic units viously undescribed groups was also shown in these environments, such as Parcubacteria, or members of Salterns Nanohaloarchaeota in anaerobic hypersaline sediments. Finally, an important OPU overlap was observed between anoxic sediments and their overlaying brines, indicating versatile metabolism for the pelagic organisms. © 2017 Elsevier GmbH. All rights reserved. Introduction formed on the global distribution of microorganisms, but they have mostly focused on their possible pathogenic effects [24,30,52,101]. In recent decades, the paradigm of the global distribution of Nonetheless, attention has drifted away from clinical microbiology microorganisms (“everything is everywhere”) has been constantly towards global environmental studies, including oceanic sediments questioned [71,98]. Traditional explanations for cosmopolitan dis- [47], ocean waters [13] and hypersaline environments such as tributions are large microbial population sizes, high probability salterns [8,36,96]. of dispersion and low probability of extinction [28]. The actual Extreme environments, due to their isolated nature, that are concept of microbial biogeography and the possibility of non- often scattered between different geographical points without random distribution of microorganisms are currently considered direct connexions are excellent systems to evaluate biogeo- to be hot topics [31,45,83]. The analysis of microbial commu- graphical patterns and allopatric speciation [84,95]. Hypersaline nities sampled at different distant locations can facilitate the environments are globally distributed in different climatic regions understanding of the underlying drivers causing the differentiation and include some of the most extreme environments, such as the of populations/communities [38]. Some studies have been per- Atacama desert, or the Arctic and Antarctic regions [27,29,69,97]. Therefore, they offer an excellent opportunity to compare com- plex halophilic communities in very distant yet similar hypersaline environments around the world. Depending on the origin of the ∗ ionic composition of their brines, salterns can be divided into Corresponding author at: Marine Microbiology Group, Department of Ecology and Marine Resources, Mediterranean Institute for Advanced Studies, CSIC-UIB, thalassohaline and athalassohaline. Briefly, thalassohaline salterns C/Miquel Marqués 21, 07190 Esporles, Spain. present a similar ionic composition to seawater and they ultimately E-mail address: [email protected] (M.delR. Mora-Ruiz). https://doi.org/10.1016/j.syapm.2017.10.006 0723-2020/© 2017 Elsevier GmbH. All rights reserved. 140 M.delR. Mora-Ruiz et al. / Systematic and Applied Microbiology 41 (2018) 139–150 occur due to evaporation of seawater or dissolution of evaporite Environmental DNA was extracted from sediment pellets and rocks. On the other hand, athalassohaline hypersaline environ- thawed cut filters from brine samples. Sediment pellets and cut ments show different multiple ionic compositions, distinct from filter pieces were separately vortexed in 2 mL extraction buffer seawater, which depend directly on the composition of the sur- (100 mM Tris–HCl, 100 mM EDTA) in 50 mL polypropylene cen- rounding substrates [82]. trifuge tubes. The supernatant was then transferred to a new tube −1 −1 In general, diversity in hypersaline environments is domi- and 20 ␮L 10 mg mL proteinase K (Roche), 24 ␮L 300 mg mL −1 nated by halophilic microorganisms belonging to the bacterial lysozyme (Roche), and 20 ␮L 1000 U mL mutanolysin (Roche) and archaeal taxa, such as Bacillus [49] and Salinibacter [5], and were added, and the tubes were incubated for 1 h in an orbital ◦ Haloquadratum, Halorubrum [22,70] and the candidate division shaker (Thermo Electron Corp.) at 15,700 × g at 37 C. After the incu- Nanohaloarchaeota [3], respectively. Despite the local descriptions bation period, 10% sodium dodecyl sulphate (Panreac) was added to ◦ of hypersaline environments, a global vision of these environments a final concentration of 1% and the tubes were incubated at 55 C for is still necessary to understand microbial adaptation to different 30 min. Lysates were extracted with phenol-chloroform-isoamyl environmental conditions and its functioning [55]. In addition, the alcohol, as previously described [54]. Then, the DNA was precipi- analysis of physicochemical characteristics is necessary for achiev- tated overnight with 0.7 (v/v) isopropanol, centrifuged for 30 min at ◦ ing a better understanding of habitats, as well as the response of 15,700 × g and 4 C, rinsed with 70% ethanol (v/v) and centrifuged the microbial communities to environmental variations [54,76,78]. again for 15 min. After air-drying, nucleic acids were resuspended ◦ Recently, Filker et al. [32], using some of the same samples in 50 ␮L sterile nuclease-free water (Sigma), and stored at −20 C. also included in the present study, found a high degree of novel genetic diversity and an effect of geographical distance in protis- PCR amplification and pyrosequencing of 16S rRNA tan communities separated by more than 500 km. To complement the biogeographical findings on protist global patterns, this current 16S rRNA gene sequences of environmental samples were study characterized the structure of the bacterial and archaeal com- amplified using the primer pairs GM3 and S for Bacteria, and 21F and ∼ munities in a larger set from hypersaline sediments and brines in 1492R for Archaea [20,66,94] obtaining fragments of 1450 pb. The geographically distant salterns from Europe, Spanish-Atlantic and PCR reactions were performed as previously described by Mora- South America. Coastal seawater-fed (thalassohaline) and inland Ruiz et al. [63]. A secondary PCR reaction was performed to add endorheic (athalassohaline) systems were also compared. barcodes and sequencing linkers to the previously obtained ampli- cons. This was undertaken using 1:10 ␮L of the original PCR product Materials and methods as a template, and the same PCR conditions but only for five cycles. Primers GM3-PS and 907-PS were used for Bacteria [63] and 21F- Sampling sites and sample collection PS for Archaea [64]. This PCR was carried out in triplicate for each sample in order to minimize PCR-bias, and the final products were ® Between January and March 2011, a total of 17 brine and 33 mixed and purified using MSB Spin PCRapace (INVITEK), follow- sediment samples were collected from 27 sites in ten locations in ing the manufacturer’s instructions. The samples were sequenced Spain, Argentina and Chile (Table 1; Fig. 1). The Spanish samples using the 454 GS-FLX+ Titanium technology. All sequences were included six located in the Mediterranean region, one located in the submitted to the European Nucleotide Archive (ENA) under the inland saltpan Penahueca,˜ and two insular salterns from the Canary accession numbers ERR2003672-ERR2003764. Islands. Nine sampling sites were located in the Argentinean Alti- plano. Finally, there was one sampling site on the Chilean Pacific Processing of pyrosequencing data Ocean coast from the Boyeruca salterns. In all cases, sediments were extracted using methacrylate cores, and sterilized bottles were Data were processed following the Mothur pipeline [86]. Briefly, ◦ filled with brines. All samples were stored at 4 C until processing. low-quality sequences were removed (sequences <500
Recommended publications
  • Regeneration of Unconventional Natural Gas by Methanogens Co
    www.nature.com/scientificreports OPEN Regeneration of unconventional natural gas by methanogens co‑existing with sulfate‑reducing prokaryotes in deep shale wells in China Yimeng Zhang1,2,3, Zhisheng Yu1*, Yiming Zhang4 & Hongxun Zhang1 Biogenic methane in shallow shale reservoirs has been proven to contribute to economic recovery of unconventional natural gas. However, whether the microbes inhabiting the deeper shale reservoirs at an average depth of 4.1 km and even co-occurring with sulfate-reducing prokaryote (SRP) have the potential to produce biomethane is still unclear. Stable isotopic technique with culture‑dependent and independent approaches were employed to investigate the microbial and functional diversity related to methanogenic pathways and explore the relationship between SRP and methanogens in the shales in the Sichuan Basin, China. Although stable isotopic ratios of the gas implied a thermogenic origin for methane, the decreased trend of stable carbon and hydrogen isotope value provided clues for increasing microbial activities along with sustained gas production in these wells. These deep shale-gas wells harbored high abundance of methanogens (17.2%) with ability of utilizing various substrates for methanogenesis, which co-existed with SRP (6.7%). All genes required for performing methylotrophic, hydrogenotrophic and acetoclastic methanogenesis were present. Methane production experiments of produced water, with and without additional available substrates for methanogens, further confrmed biomethane production via all three methanogenic pathways. Statistical analysis and incubation tests revealed the partnership between SRP and methanogens under in situ sulfate concentration (~ 9 mg/L). These results suggest that biomethane could be produced with more fexible stimulation strategies for unconventional natural gas recovery even at the higher depths and at the presence of SRP.
    [Show full text]
  • Evaluation of 16S Rrna Primer Sets for Characterisation of Microbiota in Paediatric Patients with Autism Spectrum Disorder L
    www.nature.com/scientificreports OPEN Evaluation of 16S rRNA primer sets for characterisation of microbiota in paediatric patients with autism spectrum disorder L. Palkova1,2, A. Tomova3, G. Repiska3, K. Babinska3, B. Bokor4, I. Mikula5, G. Minarik2, D. Ostatnikova3 & K. Soltys4,6* Abstract intestinal microbiota is becoming a signifcant marker that refects diferences between health and disease status also in terms of gut-brain axis communication. Studies show that children with autism spectrum disorder (ASD) often have a mix of gut microbes that is distinct from the neurotypical children. Various assays are being used for microbiota investigation and were considered to be universal. However, newer studies showed that protocol for preparing DNA sequencing libraries is a key factor infuencing results of microbiota investigation. The choice of DNA amplifcation primers seems to be the crucial for the outcome of analysis. In our study, we have tested 3 primer sets to investigate diferences in outcome of sequencing analysis of microbiota in children with ASD. We found out that primers detected diferent portion of bacteria in samples especially at phylum level; signifcantly higher abundance of Bacteroides and lower Firmicutes were detected using 515f/806r compared to 27f/1492r and 27f*/1495f primers. So, the question is whether a gold standard of Firmicutes/Bacteroidetes ratio is a valuable and reliable universal marker, since two primer sets towards 16S rRNA can provide opposite information. Moreover, signifcantly higher relative abundance of Proteobacteria was detected using 27f/1492r. The beta diversity of sample groups difered remarkably and so the number of observed bacterial genera. An advent of massively parallel sequencing (MPS) technologies has revolutionized an investigating of human microbiota1.
    [Show full text]
  • 1 Microbial Transformations of Organic Chemicals in Produced Fluid From
    Microbial transformations of organic chemicals in produced fluid from hydraulically fractured natural-gas wells Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Morgan V. Evans Graduate Program in Environmental Science The Ohio State University 2019 Dissertation Committee Professor Paula Mouser, Advisor Professor Gil Bohrer, Co-Advisor Professor Matthew Sullivan, Member Professor Ilham El-Monier, Member Professor Natalie Hull, Member 1 Copyrighted by Morgan Volker Evans 2019 2 Abstract Hydraulic fracturing and horizontal drilling technologies have greatly improved the production of oil and natural-gas from previously inaccessible non-permeable rock formations. Fluids comprised of water, chemicals, and proppant (e.g., sand) are injected at high pressures during hydraulic fracturing, and these fluids mix with formation porewaters and return to the surface with the hydrocarbon resource. Despite the addition of biocides during operations and the brine-level salinities of the formation porewaters, microorganisms have been identified in input, flowback (days to weeks after hydraulic fracturing occurs), and produced fluids (months to years after hydraulic fracturing occurs). Microorganisms in the hydraulically fractured system may have deleterious effects on well infrastructure and hydrocarbon recovery efficiency. The reduction of oxidized sulfur compounds (e.g., sulfate, thiosulfate) to sulfide has been associated with both well corrosion and souring of natural-gas, and proliferation of microorganisms during operations may lead to biomass clogging of the newly created fractures in the shale formation culminating in reduced hydrocarbon recovery. Consequently, it is important to elucidate microbial metabolisms in the hydraulically fractured ecosystem.
    [Show full text]
  • Diderm Firmicutes Challenge the Gram-Positive/Gram-Negative Divide Daniela Megrian, Najwa Taib, Jerzy Witwinowski, Christophe Beloin, Simonetta Gribaldo
    One or two membranes? Diderm Firmicutes challenge the Gram-positive/Gram-negative divide Daniela Megrian, Najwa Taib, Jerzy Witwinowski, Christophe Beloin, Simonetta Gribaldo To cite this version: Daniela Megrian, Najwa Taib, Jerzy Witwinowski, Christophe Beloin, Simonetta Gribaldo. One or two membranes? Diderm Firmicutes challenge the Gram-positive/Gram-negative divide. Molecular Microbiology, Wiley, 2020, 10.1111/MMI.14469. pasteur-02505848 HAL Id: pasteur-02505848 https://hal-pasteur.archives-ouvertes.fr/pasteur-02505848 Submitted on 11 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License DR. SIMONETTA GRIBALDO (Orcid ID : 0000-0002-7662-021X) Article type : MicroReview One or two membranes? Diderm Firmicutes challenge the Gram-positive/Gram-negative divide Daniela Megrian1,2, Najwa Taib1,3, Jerzy Witwinowski1, Christophe Beloin4, and Simonetta Gribaldo1* 1 Institut Pasteur, Department of Microbiology, Unit Evolutionary Biology of the Microbial Cell,
    [Show full text]
  • Qinghai Lake
    MIAMI UNIVERSITY The Graduate School CERTIFICATE FOR APPROVING THE DISSERTATION We hereby approve the Dissertation of Hongchen Jiang Candidate for the Degree Doctor of Philosophy ________________________________________________________ Dr. Hailiang Dong, Director ________________________________________________________ Dr. Chuanlun Zhang, Reader ________________________________________________________ Dr. Yildirim Dilek, Reader ________________________________________________________ Dr. Jonathan Levy, Reader ________________________________________________________ Dr. Q. Quinn Li, Graduate School Representative ABSTRACT GEOMICROBIOLOGICAL STUDIES OF SALINE LAKES ON THE TIBETAN PLATEAU, NW CHINA: LINKING GEOLOGICAL AND MICROBIAL PROCESSES By Hongchen Jiang Lakes constitute an important part of the global ecosystem as habitats in these environments play an important role in biogeochemical cycles of life-essential elements. The cycles of carbon, nitrogen and sulfur in these ecosystems are intimately linked to global phenomena such as climate change. Microorganisms are at the base of the food chain in these environments and drive the cycling of carbon and nitrogen in water columns and the sediments. Despite many studies on microbial ecology of lake ecosystems, significant gaps exist in our knowledge of how microbial and geological processes interact with each other. In this dissertation, I have studied the ecology and biogeochemistry of lakes on the Tibetan Plateau, NW China. The Tibetan lakes are pristine and stable with multiple environmental gradients (among which are salinity, pH, and ammonia concentration). These characteristics allow an assessment of mutual interactions of microorganisms and geochemical conditions in these lakes. Two lakes were chosen for this project: Lake Chaka and Qinghai Lake. These two lakes have contrasting salinity and pH: slightly saline (12 g/L) and alkaline (9.3) for Qinghai Lake and hypersaline (325 g/L) but neutral pH (7.4) for Chaka Lake.
    [Show full text]
  • Swanson and Simmons 2013
    2013 LANL-CO ACRSP LCO-ACP-20 Juliet Swanson Karen Simmons UPDATE ON MICROBIAL CHARACTERIZATION OF WIPP GROUNDWATERS LA-UR 13-20623 Update on Microbial Characterization of LCO-ACP-20; Rev. 0-AC1 WIPP Groundwaters and Halite Page 2 of 18 ACRONYMS and ABBREVIATIONS 16S rRNA 16S subunit of ribosomal RNA Aer aerobic CFB Cytophaga-Flavobacteria-Bacteroidetes CRA Compliance Recertification Application Dir direct (i.e., DNA extracted directly from sample without prior cultivation) DNA deoxyribonucleic acid IC ion chromatography ICP-MS inductively-coupled plasma-mass spectrometry LCO-ACP Los Alamos National Laboratory—Carlsbad Operations-Actinide Chemistry Program IR iron-reducing (incubation to enrich iron-reducing organisms) M moles per liter Meth methanogenic (incubation to enrich methanogenic organisms) MOPS 3-(N-morpholino)propanesulfonic acid (buffer) NaCl sodium chloride NR nitrate-reducing (incubation to enrich nitrate-reducing organisms) OTU operational taxonomic unit SR sulfate-reducing (incubation to enrich sulfate-reducing organisms) SRB sulfate-reducing Bacteria TEA terminal electron acceptor TOC total organic carbon Tr transitional WIPP Waste Isolation Pilot Plant WQSP WIPP Water Quality Sampling Program Update on Microbial Characterization of LCO-ACP-20; Rev. 0-AC1 WIPP Groundwaters and Halite Page 3 of 18 TABLE OF CONTENTS List of Figures and Tables p. 4 Executive Summary p. 5 Introduction p. 6 Overview p. 6 Groundwaters p. 6 Materials and Methods p. 7 Results p. 7 Chemistry p. 7 Direct Counts p. 7 Microbial Growth in Incubations p. 8 Plated Cultures and Isolates p. 8 DNA Sequence Analysis of Clone Libraries p. 8 Discussion p. 11 Chemistry p. 11 Microbial Community Structure of WQSP-3 p.
    [Show full text]
  • Large Scale Function-Based Genome Prospecting for Industrial Traits Applied to 1,3-Propanediol Production
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.25.457110; this version posted August 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Large scale function-based genome prospecting for industrial traits applied to 1,3-propanediol production. Jasper J. Koehorst ID 1*, , Nikolaos Strepis ID 1,2*, Sanne de Graaf1, Alfons J. M. Stams ID 2,3, Diana Z. Sousa ID 2, and Peter J. Schaap ID 1 1Laboratory of Systems and Synthetic Biology | Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, the Netherlands 2Laboratory of Microbiology | Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, the Netherlands 3Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal Due to the success of next-generation sequencing, there has been normally used. However, over larger phylogenetic distances, a vast build-up of microbial genomes in the public reposito- strategies that use sequence-based clustering algorithms are ries. FAIR genome prospecting of this huge genomic potential hampered by accumulation of evolutionary signals, lateral for biotechnological benefiting, require new efficient and flexible gene transfer, gene fusion/fission events and domain expan- methods. In this study, Semantic Web technologies are applied sions (5). Furthermore, when applied at larger scales, such to develop a function-based genome mining approach that fol- strategies suffer from high computational time and mem- lows a knowledge and discovery in database (KDD) protocol.
    [Show full text]
  • Microbiology of Oilfield Gy Ecosystems
    Microbiology of oilfield ecosystems Bernard Ollivier IRD Marseille, France Oil well gggeological section Gaz Oil Water Characteristics of oil reservoirs • « Closed » ecosystems • Depth (up to 4000 m; up to several hundreth bars) • Temperature in situ : 30 to 180 °C • Water Salinities : 0 up to saturation (34% salt) ¾Importance of anaerobic microorganisms in oilfield waters 1 μm The best samplings are ¾Cores, but precautions need to be taken when drillinggpg or sampling ¾Oil waters should be collected from oilwell heads where nothing has been already injected. Kindl y provid e d by M. Mago t Studying the anaerobes Anaerobiosis : Methods -Medium pppreparation using a N2 flux. -Hunggqate’s technique -The anaerobic glove box Physico-chemical limitations to the development of microflora in oil reservoirs in situ oil biodegradation in situ oil biodegradation has never been observed in oil reservoirs where temperature is over 82°C Microbial populations in oil reservoirs 250 200 150 100 50 0 0 20 40 60 80 100 120 Tempp()erature (C) Figure kindly provided by M. Magot in situ oil biodegradation Thermophilic to hyperthermophilic Bacteria or Archaea ??? have participated to oil biodegradation Combination of high temperature and high salinity are drastic for microbial life underneath Electron acceptors available in oil field ecosystems 4 H2 + CO2 ---> CH4 + 2 H2O Methanobacterium Methanococcus CO2 + 4 H2 + 2 CO2 ---> Acetate + H + 2 H2O Acetanaerobium 4H4 H2 +H+ H2SO4 --->H> H2S+4HS + 4 H2O DlfiDesulfacinum Desulfotomaculum 2 SO4 - VFA + x H2SO4 --> y H2S + z H2O Desulfotomaculum Archaeoglobus Electron acceptors available in oil field ecosystems ?? 2- - 4H2 + S2O3 --> 2H2S + H2O + 2OH Thermotoga Desulfotomaculum Archaeoglobus 2- S2O3 Oxydation of organic matter Thermoanaerobacter coupldled to red ucti on of fhi thiosulf ate Thermo toga Electron acceptors available in oil field ecosystems ?? - Shllfhewanella putrefaciens Fe3+ - Deferribacter thermophilus - Thermotoga spp.
    [Show full text]
  • Metabolic Capability of a Predominant Halanaerobium Sp. in Hydraulically Fractured Gas Wells and Its Implication in Pipeline Corrosion
    fmicb-07-00988 June 22, 2016 Time: 11:27 # 1 ORIGINAL RESEARCH published: 22 June 2016 doi: 10.3389/fmicb.2016.00988 Metabolic Capability of a Predominant Halanaerobium sp. in Hydraulically Fractured Gas Wells and Its Implication in Pipeline Corrosion Renxing Liang, Irene A. Davidova, Christopher R. Marks, Blake W. Stamps, Brian H. Harriman, Bradley S. Stevenson, Kathleen E. Duncan and Joseph M. Suflita* Department of Microbiology and Plant Biology and OU Biocorrosion Center, University of Oklahoma, Norman, OK, USA Microbial activity associated with produced water from hydraulic fracturing operations can lead to gas souring and corrosion of carbon-steel equipment. We examined the microbial ecology of produced water and the prospective role of the prevalent Edited by: microorganisms in corrosion in a gas production field in the Barnett Shale. The John Joseph Kilbane, Illinois Institute of Technology microbial community was mainly composed of halophilic, sulfidogenic bacteria within and Intertek Westport Technology the order Halanaerobiales, which reflected the geochemical conditions of highly saline Center, USA 2− 2− − water containing sulfur species (S2O3 , SO4 , and HS ). A predominant, halophilic Reviewed by: John Stolz, bacterium (strain DL-01) was subsequently isolated and identified as belonging to the Duquesne University, USA genus Halanaerobium. The isolate could degrade guar gum, a polysaccharide polymer Romy Chakraborty, used in fracture fluids, to produce acetate and sulfide in a 10% NaCl medium at 37◦C Lawrence Berkeley National Laboratory, USA when thiosulfate was available. To mitigate potential deleterious effects of sulfide and *Correspondence: acetate, a quaternary ammonium compound was found to be an efficient biocide in Joseph M.
    [Show full text]
  • Halanaerobium Saccharolyticum Subsp
    Genome Sequence of Halanaerobium saccharolyticum subsp. saccharolyticum Strain DSM 6643T, a Halophilic Hydrogen-Producing Bacterium Anniina Kivistö,a Antti Larjo,b,c Alessandro Ciranna,a Ville Santala,a Christophe Roos,b Matti Karpa Department of Chemistry and Bioengineering, Tampere University of Technology, Tampere, Finlanda; Department of Signal Processing, Tampere University of Technology, Tampere, Finlandb; Department of Information and Computer Science, Aalto University, Helsinki, Finlandc A.K. and A.L. contributed equally to this article. Halanaerobium saccharolyticum is a halophilic anaerobic fermentative bacterium capable of producing hydrogen, a potential future energy carrier molecule. The high-quality draft genome of H. saccharolyticum subsp. saccharolyticum strain DSM 6643T .consists of 24 contigs for 2,873,865 bp with a G؉C content of 32.3% Received 13 March 2013 Accepted 15 March 2013 Published 2 May 2013 Citation Kivistö A, Larjo A, Ciranna A, Santala V, Roos C, Karp M. 2013. Genome sequence of Halanaerobium saccharolyticum subsp. saccharolyticum strain DSM 6643T,a halophilic hydrogen-producing bacterium. Genome Announc. 1(2):e00187-13. doi:10.1128/genomeA.00187-13. Copyright © 2013 Kivistö et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license. Address correspondence to Anniina Kivistö, anniina.kivisto@tut.fi. alanaerobium saccharolyticum is a halophilic anaerobic fer- B12-dependent route) as putative fermentation products. Four Hmentative bacterium belonging to the order Halanaerobiales [FeFe]-hydrogenases, of which two are putative bifurcating hy- and the family Halanaerobiaceae (1, 2). H. saccharolyticum is drogenases requiring both reduced ferredoxin and NADH, were an interesting bacterium due to its efficient hydrogen (bioen- identified.
    [Show full text]
  • Factors Affecting Bacterial Community Dynamics and Volatile Metabolite Profiles of Thai
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.02.429487; this version posted February 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 1 Factors affecting bacterial community dynamics and volatile metabolite profiles of Thai 2 traditional salt fermented fish 3 Running Title: traditional salt fermented fish 4 5 Rachatida Det-udom1, Sarn Settachaimongkon1, Chuenjit Chancharoonpong2, Porrarath 6 Suphamityotin3, Atchariya Suriya4, Cheunjit Prakitchaiwattana1,5* 7 1Department of Food Technology, Faculty of Science, Chulalongkorn University, Patumwan, 8 Bangkok 10330, Thailand. 9 2Department of Food Technology and Nutrition, Faculty of Natural Resources and Agro- 10 Industry, Kasetsart University, Chalermprakiat Sakon Nakhon Province Campus. 11 3Department of Food Science and Technology, Faculty of Science and Technology. 12 Nakhonratchasima Rajabhat University. 13 4 Department of Food and Services. Faculty of Technology. Udon Thani Rajabhat University 14 5 The Development of Foods and Food Additive from Innovative Microbial Fermentation 15 Research Group, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand. 16 *Corresponding author; Tel: +662-2185515 FAX: +662-2314531 e-mail address: 17 [email protected] 18 Key words: salted fish, traditional fermentation, bacterial community, volatile metabolite, amino 19 acid profile bioRxiv preprint doi: https://doi.org/10.1101/2021.02.02.429487; this version posted February 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 2 20 Abstract 21 Bacterial diversity of the Thai traditional salt fermented fish with roasted rice bran or Pla- 22 ra, in Thai, was investigated using classical and molecular approaches.
    [Show full text]
  • Microbial Influence on the Performance of Subsurface, Salt
    Radioactive Waste Management and Decommissioning 2018 Microbial Influence Microbial Influence on the Performance of Subsurface, Salt-Based Radioactive Waste Repositories Salt-Based Radioactive Waste of Subsurface, Microbial Influence on the Performance on the Performance of Subsurface, Salt-Based Radioactive Waste Repositories An Evaluation Based on Microbial Ecology, Bioenergetics and Projected Repository Conditions Radioactive Waste Management and Decommissioning Microbial Influence on the Performance of Subsurface, Salt-Based Radioactive Waste Repositories An Evaluation Based on Microbial Ecology, Bioenergetics and Projected Repository Conditions © OECD 2018 NEA No. 7387 NUCLEAR ENERGY AGENCY ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT The OECD is a unique forum where the governments of 35 democracies work together to address the economic, social and environmental challenges of globalisation. The OECD is also at the forefront of efforts to understand and to help governments respond to new developments and concerns, such as corporate governance, the information economy and the challenges of an ageing population. The Organisation provides a setting where governments can compare policy experiences, seek answers to common problems, identify good practice and work to co-ordinate domestic and international policies. The OECD member countries are: Australia, Austria, Belgium, Canada, Chile, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Korea, Latvia, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Portugal, Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States. The European Commission takes part in the work of the OECD. OECD Publishing disseminates widely the results of the Organisation’s statistics gathering and research on economic, social and environmental issues, as well as the conventions, guidelines and standards agreed by its members.
    [Show full text]