Orthoptera: Tettigoniidae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
To the Mid-Cretaceous
Biosis: Biological Systems (2020) 1(1): 33-38 https://doi.org/10.37819/biosis.001.01.0049 ORIGINAL RESEARCH A New Genus of Crickets (Orthoptera: Gryllidae) in Mid-Cretaceous Myanmar Amber George Poinar, Jr.a*, You Ning Sub and Alex E. Brownc aDepartment of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA. bAustralian National Insect Collection, CSIRO, Clunies Ross St, Acton, ACT 2601, Canberra, Australia. b629 Euclid Avenue, Berkeley, CA 94708, USA. *Corresponding Author: George Poinar, Jr. Email: [email protected] © The Author(s) 2020 ABSTRACT Crickets (Orthoptera: Grylloidea) are a highly diverse and successful group that due ARTICLE HISTORY to their chirping are often heard more often than they are seen. Their omnivorous diet Received 28 December 2019 allows them to exist in a variety of terrestrial habitats around the world. In some Revised 10 January 2020 environments, cricket populations can build up and become plagues, resulting in Accepted 15 January 2020 significant damage to seedling crops. A new genus and species of cricket, Pherodactylus micromorphus gen. et sp. nov. (Orthoptera: Gryllidae) is described KEYWORDS from mid-Cretaceous Myanmar amber. The new genus is characterized by the Gryllidae following features: head without prominent bristles, pronotum longer than wide, mid-Cretaceous middle of pronotal disk with two distinct large dark “eyespots”, fore leg robust and 3 Myanmar amber apical spurs arranged on inner side of fore leg tibia. Shed portions of a lizard skin comparative morphology adjacent to the specimen reveal possible evidence of attempted predation. Pherodactylus micromorphus cricket Introduction cricket in Myanmar amber. While the specimen is in its last instar, it possesses all of the adult features except Crickets (Orthoptera: Grylloidea) are an extremely those of the reproductive system and is considered worthy diverse and successful group and occur globally except of description for this reason as well as to the rarity of at the Poles. -
UC Riverside UC Riverside Electronic Theses and Dissertations
UC Riverside UC Riverside Electronic Theses and Dissertations Title Supervised and Unsupervised Discovery of Structures in Large Data Archives Permalink https://escholarship.org/uc/item/48b029zq Author Hao, Yuan Publication Date 2014 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE Supervised and Unsupervised Discovery of Structures in Large Data Archives A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science by Yuan Hao March 2014 Dissertation Committee: Dr. Eamonn Keogh, Chairperson Dr. Neal Young Dr. Marek Chrobak Dr. Christian Shelton Copyright by Yuan Hao 2014 The Dissertation of Yuan Hao is approved: Committee Chairperson University of California, Riverside Acknowledgements Many people have helped me during the past couple of years. My greatest and sincerest gratitude goes to my advisor Dr. Eamonn Keogh for his guidance and patience. He brought me on a wonderful journey at University of California, Riverside and I will never forget the past four years, which has allowed me to learn from scratch and consistently improve. My work and even my life were deeply influenced by his enthusiasm, passion, and hard-working attitude in research. Eamonn, thank you for giving me an opportunity to work with you and I will always remember the following lessons I have learned from you: Always try simple ideas first, demonstrate ideas more expressively (through visualization), less tuning of algorithms, and take a more general approach to easily allow others to reproduce/extend your work. I would like to take this opportunity to thank all my committee members as well. -
Insects 2006 (Includes Publications Since the Last List and Some That Were Not Included in the Last List)
Insects 2006 (includes publications since the last list and some that were not included in the last list) Compiled by P. Hansen Arthur, B. J. & Hoy, R. R. (2006). The ability of the parasitoid fly Ormia ochracea to distinguish sounds in the vertical plane. J. Acoust. Soc. Am., 120, 1546-1549. Bailey, W., MacLeay, C. & Gordon, T. (2006). Acoustic mimicry and disruptive alternative calling tactics in an Australian bushcricket (Caedicia: Phaneropterinae: Tettigoniidae: Orthoptera): does mating influence male calling tactic? Phys. Entomol., 31, 201-210. Barber, J. R. & Conner, W. E. (2006). Tiger moth responses to a simulated bat attack: timing and duty cycle. J. Exp. Biol., 209, 2637-2650. Bateman, P. W. & Fleming, P. A. (2006). Sex, intimidation and severed limbs: the effect of simulated predator attack and limb autotomy on calling and emergence behaviour in the field cricket Gryllus bimaculatus. Behav. Ecol. Sociobiol., 59, 674-681. Bateman, P. W., Verburgt, L. & Ferguson, J. W. H. (2005). Exposure to male song increases rate of egg development in the cricket Gryllodes sigillatus. Afr. Zool., 40, 323-326. Bates, D. L. & Fenton, M. B. (1990). Aposematism or startle? Predators learn their reponses to the defences of prey. Can. J. Zool., 68, 49-52. Berg, A. & Greenfield, M. D. (2005). Sexual selection in insect choruses: Influences of call power and relative timing. J. Insect Behav., 18, 59-75. Bernal, X. E., Rand, A. S. & Ryan, M. J. (2006). Acoustic preferences and localization performance of blood-sucking flies (Corethrella Coquillett) to tungara frog calls. Behav. Ecol., 17, 709-715. Bertram, S. M. & Bowen, M. -
Insects and Molluscs, According to the Procedures Outlined Below
Bush Blitz – ACT Expedition 26 Nov – 6 Dec 2018 ACT Expedition Bush Blitz Hemiptera, Hymenoptera, Lepidoptera, Orthoptera, Terrestrial molluscs 26 Nov – 6 Dec 2018 Submitted: 5 April 2019 Debbie Jennings and Olivia Evangelista Nomenclature and taxonomy used in this report is consistent with: The Australian Faunal Directory (AFD) http://www.environment.gov.au/biodiversity/abrs/online-resources/fauna/afd/home Page 1 of 43 Bush Blitz – ACT Expedition 26 Nov – 6 Dec 2018 Contents Contents .................................................................................................................................. 2 List of contributors ................................................................................................................... 3 Abstract ................................................................................................................................... 4 1. Introduction ...................................................................................................................... 4 2. Methods .......................................................................................................................... 6 2.1 Site selection ............................................................................................................. 6 2.2 Survey techniques ..................................................................................................... 6 2.2.1 Methods used at standard survey sites ................................................................... 7 2.3 Identifying -
Phylum ARTHROPODA ORTHOPTERA
Phylum ARTHROPODA ORTHOPTERA Baetica ustulata (Rambur, 1838). Ephippiger ustulata Rambur, 1838. "F. Ent.". Andal. II (3), Dec., p. 52. Baetica Bolivar, 1903. "Bull. Mus.". Paris, 9, p.227. Phylum ARTHROPODA. Subphylum UNIRAMIA. Clase: INSECTA. Orden: ORTHOPTERA. Suborden: ENSIFERA. Superfamilia: TETTIGONIOIDEA. Familia: TETTIGONIIDAE. Subfamilia: EPHIPPIGERINAE. Nombre vulgar: desconocido por nosotros. Género monoespecífico. STATUS Convenio de Berna II. UICN-V. Directiva hábitats. España: rara (5). DISTRIBUCION Distribución mediterránea montana: rango Penibético, Sierra Nevada (Granada) (2-4,7- 9). UTM (2) 30SVG60, 30SVF69. (7) 30SVG60, 30SVG40, 30SVF69, 30SVF79. BIOLOGIA Especie carnívora y detritívora, muy especializada al hábitat alpino (3). Presenta actividad diurna. No parece mostrar una alta especialización en la dieta, recurriendo a un alimento alternativo. Especialización reproductiva (5). MAPA 80 HABITAT Forma alpina: especie que vive en cumbres altas, en suelo desnudo o bajo piedras y rocas, en áreas desoladas, desprovistas de vegetación, a veces cerca de la línea de nieves perpetuas (1); en pastizales xéricos; desde los 2.500 a 3.400 m. de altitud. Es una especie geófila especialmente con las condiciones meteorológicas adversas (5). POBLACION El área sobre la que el taxón se distribuye es muy pequeño. El tamaño poblacional es mediano. Las poblaciones están restringidas a zonas montañosas y se sospechan estables (6). La distribución está bien conocida y su presencia es predecible en todo su rango. Los factores que actúan en su distribución y población son desconocidos o cuestionables (5). AMENAZAS Dada la distribución tan restringida y la fragilidad del biotopo montano, todos aquellos factores que puedan alterar mínimamente su hábitat constituyen graves amenazas. Actúa especialmente de esta forma la presión turística. -
List of Insect Species Which May Be Tallgrass Prairie Specialists
Conservation Biology Research Grants Program Division of Ecological Services © Minnesota Department of Natural Resources List of Insect Species which May Be Tallgrass Prairie Specialists Final Report to the USFWS Cooperating Agencies July 1, 1996 Catherine Reed Entomology Department 219 Hodson Hall University of Minnesota St. Paul MN 55108 phone 612-624-3423 e-mail [email protected] This study was funded in part by a grant from the USFWS and Cooperating Agencies. Table of Contents Summary.................................................................................................. 2 Introduction...............................................................................................2 Methods.....................................................................................................3 Results.....................................................................................................4 Discussion and Evaluation................................................................................................26 Recommendations....................................................................................29 References..............................................................................................33 Summary Approximately 728 insect and allied species and subspecies were considered to be possible prairie specialists based on any of the following criteria: defined as prairie specialists by authorities; required prairie plant species or genera as their adult or larval food; were obligate predators, parasites -
Managing Weta Damage to Vines Through an Understanding of Their Food, Habitat Preferences, and the Policy Environment
Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Managing weta damage to vines through an understanding of their food, habitat preferences, and the policy environment A thesis submitted in partial fulfilment of the requirements for the Degree of Master of Applied Science at Lincoln University by Michael John Smith Lincoln University 2014 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Master of Applied Science. Abstract Managing weta damage to vines through an understanding of their food, habitat preferences, and the policy environment by Michael John Smith Insects cause major crop losses in New Zealand horticulture production, through either direct plant damage or by vectoring disease Pugh (2013). As a result, they are one of the greatest risks to NZ producing high quality horticulture crops (Gurnsey et al. 2005). The main method employed to reduce pest damage in NZ horticulture crops is the application of synthetic pesticides (Gurnsey et al. 2005). However, there are a number of negative consequences associated with pesticide use, including non–target animal death (Casida & Quistad 1998) and customer dissatisfaction. -
Draft Carpathian Red List of Forest Habitats
CARPATHIAN RED LIST OF FOREST HABITATS AND SPECIES CARPATHIAN LIST OF INVASIVE ALIEN SPECIES (DRAFT) PUBLISHED BY THE STATE NATURE CONSERVANCY OF THE SLOVAK REPUBLIC 2014 zzbornik_cervenebornik_cervene zzoznamy.inddoznamy.indd 1 227.8.20147.8.2014 222:36:052:36:05 © Štátna ochrana prírody Slovenskej republiky, 2014 Editor: Ján Kadlečík Available from: Štátna ochrana prírody SR Tajovského 28B 974 01 Banská Bystrica Slovakia ISBN 978-80-89310-81-4 Program švajčiarsko-slovenskej spolupráce Swiss-Slovak Cooperation Programme Slovenská republika This publication was elaborated within BioREGIO Carpathians project supported by South East Europe Programme and was fi nanced by a Swiss-Slovak project supported by the Swiss Contribution to the enlarged European Union and Carpathian Wetlands Initiative. zzbornik_cervenebornik_cervene zzoznamy.inddoznamy.indd 2 115.9.20145.9.2014 223:10:123:10:12 Table of contents Draft Red Lists of Threatened Carpathian Habitats and Species and Carpathian List of Invasive Alien Species . 5 Draft Carpathian Red List of Forest Habitats . 20 Red List of Vascular Plants of the Carpathians . 44 Draft Carpathian Red List of Molluscs (Mollusca) . 106 Red List of Spiders (Araneae) of the Carpathian Mts. 118 Draft Red List of Dragonfl ies (Odonata) of the Carpathians . 172 Red List of Grasshoppers, Bush-crickets and Crickets (Orthoptera) of the Carpathian Mountains . 186 Draft Red List of Butterfl ies (Lepidoptera: Papilionoidea) of the Carpathian Mts. 200 Draft Carpathian Red List of Fish and Lamprey Species . 203 Draft Carpathian Red List of Threatened Amphibians (Lissamphibia) . 209 Draft Carpathian Red List of Threatened Reptiles (Reptilia) . 214 Draft Carpathian Red List of Birds (Aves). 217 Draft Carpathian Red List of Threatened Mammals (Mammalia) . -
The Taxonomy of Utah Orthoptera
Great Basin Naturalist Volume 14 Number 3 – Number 4 Article 1 12-30-1954 The taxonomy of Utah Orthoptera Andrew H. Barnum Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Barnum, Andrew H. (1954) "The taxonomy of Utah Orthoptera," Great Basin Naturalist: Vol. 14 : No. 3 , Article 1. Available at: https://scholarsarchive.byu.edu/gbn/vol14/iss3/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. IMUS.COMP.ZSOL iU6 1 195^ The Great Basin Naturalist harvard Published by the HWIilIijM i Department of Zoology and Entomology Brigham Young University, Provo, Utah Volum e XIV DECEMBER 30, 1954 Nos. 3 & 4 THE TAXONOMY OF UTAH ORTHOPTERA^ ANDREW H. BARNUM- Grand Junction, Colorado INTRODUCTION During the years of 1950 to 1952 a study of the taxonomy and distribution of the Utah Orthoptera was made at the Brigham Young University by the author under the direction of Dr. Vasco M. Tan- ner. This resulted in a listing of the species found in the State. Taxonomic keys were made and compiled covering these species. Distributional notes where available were made with the brief des- criptions of the species. The work was based on the material in the entomological col- lection of the Brigham Young University, with additional records obtained from the collection of the Utah State Agricultural College. -
Phylogeny of Ensifera (Hexapoda: Orthoptera) Using Three Ribosomal Loci, with Implications for the Evolution of Acoustic Communication
Molecular Phylogenetics and Evolution 38 (2006) 510–530 www.elsevier.com/locate/ympev Phylogeny of Ensifera (Hexapoda: Orthoptera) using three ribosomal loci, with implications for the evolution of acoustic communication M.C. Jost a,*, K.L. Shaw b a Department of Organismic and Evolutionary Biology, Harvard University, USA b Department of Biology, University of Maryland, College Park, MD, USA Received 9 May 2005; revised 27 September 2005; accepted 4 October 2005 Available online 16 November 2005 Abstract Representatives of the Orthopteran suborder Ensifera (crickets, katydids, and related insects) are well known for acoustic signals pro- duced in the contexts of courtship and mate recognition. We present a phylogenetic estimate of Ensifera for a sample of 51 taxonomically diverse exemplars, using sequences from 18S, 28S, and 16S rRNA. The results support a monophyletic Ensifera, monophyly of most ensiferan families, and the superfamily Gryllacridoidea which would include Stenopelmatidae, Anostostomatidae, Gryllacrididae, and Lezina. Schizodactylidae was recovered as the sister lineage to Grylloidea, and both Rhaphidophoridae and Tettigoniidae were found to be more closely related to Grylloidea than has been suggested by prior studies. The ambidextrously stridulating haglid Cyphoderris was found to be basal (or sister) to a clade that contains both Grylloidea and Tettigoniidae. Tree comparison tests with the concatenated molecular data found our phylogeny to be significantly better at explaining our data than three recent phylogenetic hypotheses based on morphological characters. A high degree of conflict exists between the molecular and morphological data, possibly indicating that much homoplasy is present in Ensifera, particularly in acoustic structures. In contrast to prior evolutionary hypotheses based on most parsi- monious ancestral state reconstructions, we propose that tegminal stridulation and tibial tympana are ancestral to Ensifera and were lost multiple times, especially within the Gryllidae. -
Michael D. Greenfield
Animal Choruses Emerge from Receiver Psychology (A Tale of Two Synchronies) Michael D. Greenfield Univ. St. Étienne (ENES), France Univ. Kansas (Ecol & Evol Biol), USA Labex CeMEB Mediterranean Center for Environment and Biodiversity What is an animal chorus ? (It’s about time) Temporal adjustments in broadcasting at three levels of precision : a b (an evening chorus) c d individual e 12 18 24 6 12 h - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (collective singing * leader - - - - - - - - - - - - - - - - - - - - - - - - - - - - bouts) - - - - - - - - - - - - - - - - - - - - - - 0 5 10 15 min 90° phase angle (regular rhythm - - - - - - and precise phase - - - - - - relationships) 0 1 2 3 sec 0 5 10 Time (sec) Physalaemus pustulosus (Túngara frog; Anura: Leptodactylidae); 5 Male Chorus Physalaemus pustulosus (Túngara frog; Anura: Leptodactylidae); 5 Male Chorus A B C Individual D E -2 0 2 4 6 8 10 Time (sec) Frogs have rules + - 0 15 30 45 60 Time (sec) Magicicada cassini (Cicadidae); Periodical Cicada (17-year) Synchronous Chorus; Brood IV; June 1998; Douglas Co., Kansas Pteroptyx tener (Lampyridae); Synchronous fireflies of the Indo-Malayan Region Kumari Nallabumar 2002 Strogatz & Stewart 1993 Uca annulipes (Crustacea: Ocypodidae); Western Indo-Pacific; Synchronized waving Stefano Cannicci Synchronized courtship in fiddler crabs; Backwell et al. 1998 Utetheisa ornatrix (Lepidoptera : Arctiidae) Specialized rhythmic chorusing : potential adaptive features * Retention of species-specific rhythm or call envelope -- -- -
ARTICULATA 2009 24 (1/2): 79–108 FAUNISTIK New Records and a New
Deutschen Gesellschaft für Orthopterologie e.V.; download http://www.dgfo-articulata.de/ ARTICULATA 2009 24 (1/2): 79108 FAUNISTIK New records and a new synonym of Orthoptera from Bulgaria Dragan P. Chobanov Abstract After a revision of available Orthoptera collections in Bulgaria, 9 species with one subspecies are added and 15 species and one subspecies are omitted from the list of Bulgarian fauna. A supplement to the description and a diagnosis of Iso- phya pavelii Brunner von Wattenwyl (= Isophya rammei Peshev, syn.n.) is presented. Full reference and distributional data for Bulgaria are given for 31 taxa. Oscillograms and frequency spectra of the songs of Barbitistes constrictus, Isophya pavelii and I. rectipennis are presented. Zusammenfassung Im Rahmen einer Durchsicht der verfügbaren Orthopterensammlungen in Bzlgarien wurden in die Gesamtliste der bulgarischen Fauna insgesamt neun Arten und eine Unterart neu aufgenommen sowie 15 Arten und eine Unterart von der Liste gestrichen. In der vorleigenden Arbeit werden von 31 Taxa die Refe- renz- und Verbreitungsdaten aus Bulgarien aufgelistet. Für Isophya pavelii Brun- ner von Wattenwyl (= Isophya rammei Peshev, syn.n.) erfolgt eine Ergänzung der Artbeschreibung und Differenzialdiagnose. Die Stridulationen von Barbitistes constrictus, Isophya pavelii und Isophya rectipennis werden als Frequenzspek- tren und Oszillogramme dargestellt. Introduction After a nearly 20-years break in the active studies on Orthoptera of Bulgaria, in the last years few works were published (POPOV et al. 2001, CHOBANOV 2003, ANDREEVA 2003, HELLER &LEHMANN 2004, POPOV &CHOBANOV 2004, POPOV 2007, ÇIPLAK et al. 2007) adding new faunistic and taxonomic data on the order in this country. POPOV (2007), incorporating all the published information on Or- thoptera from Bulgaria up to date, including some unpublished data, counted 239 taxa for the country (221 species and 18 subspecies).