Appendix a Review of Probability Theory

Total Page:16

File Type:pdf, Size:1020Kb

Appendix a Review of Probability Theory Appendix A Review of Probability Theory A.1 Introduction: What Is Probability? What’s in a word? The words “probably” and “probability” are used commonly in everyday speech. We all know how to interpret expressions such as “It will proba- bly rain tomorrow,” or “Careless smoking probably caused that fire,” although the meanings are not particularly precise. The common usage of “probability” has to do with how closely a given statement resembles truth. Note that in common usage, it may be impossible to verify whether the statement is true or not; that is, the truth may not be knowable. Informally, we use the terms “probable” and “probability” to express a likelihood or chance of truth. While these common usages of the term “probability” are effective in communi- cating ideas, from a mathematical point of view, they lack the precision and stan- dardization of terminology to be particularly functional. Thus scientists and math- ematicians have developed various theories of probability to address the needs of scientific analysis and decision making. We will use a particular theory that has its origins in the early twentieth century and is now (by far) the most widely used theory of probability. This theory provides a formal structure (entities, definitions, axioms, etc.) that allows us to use other well-developed mathematical concepts (limits, sums, averages, etc.) in a way that remains consistent with our understanding of physi- cal principals. All theories have limitations. Our theory of probability, for instance, will not help us answer questions like, “What is the probability that individual X is guilty of a crime?” or “What is the probability that pigs will fly?” Fortunately, a well-developed theory has well-defined limitations, and we should be able to identify when we have overstepped the bounds of scientific validity. As we discuss these concepts, keep in mind that it is “probably” inevitable that we will at times encounter conflicts between the colloquial meanings of words and their formal mathematical definitions. These conflicts are natural and are no cause for alarm! © Springer International Publishing Switzerland 2016 325 M. Sánchez-Silva and G.-A. Klutke, Reliability and Life-Cycle Analysis of Deteriorating Systems, Springer Series in Reliability Engineering, DOI 10.1007/978-3-319-20946-3 326 Appendix A: Review of Probability Theory A.2 Random Experiments and Probability Spaces: The Building Blocks of Probability Our theory of probability begins with the concept of a random experiment. The idea is that we intend to perform an experiment that results in (precisely) one of a group of outcomes. We use the term random experiment because we cannot be certain in advance about the outcome. That is, we can identify all possible outcomes of the experiment, but we do not know in advance which particular outcome will occur. The experiment is assumed to be repeatable, in the sense that we could recreate the exact conditions of the experiment. If we repeat the experiment, however, we are not guaranteed that the same outcome will occur. To effectively describe the random experiment, we must be able to: (i) identify its outcomes, (ii) characterize the information available to us about the outcome of the experiment, and (iii) quantify the likelihood that the experiment results in a particular incident. In mathematical terminology, a random experiment will be identified with (actually, is equivalent to) a probability space. A probability space consists of three entities: a sample space (we will call it ), an event space (we’ll call it F ), and a probability measure (we’ll call it P). Let us discuss each of these entities in turn. A.2.1 Sample Space Formally, we define the sample space to be the collection of all possible outcomes. Elements of the sample space are distinct and exhaustive (i.e., on any given perfor- mance of the experiment, one and only one outcome occurs), and we can think of the sample space as a set of distinct points. The sample space may be discrete (countable or denumerable) or continuous (uncountable or nondenumerable), likewise, it may be finite or infinite. Example A.1 The experiment consists of tossing a coin three times consecutively. Assuming that we do not allow the possibility of a coin landing on its side (H heads or T Tails), the sample space can be identified as {(HHH), (HHT), (HTH), (THH), (HTT), (THT), (TTH), (TTT)}. The sample space is discrete and finite. Example A.2 The experiment consists of two players (A and B) playing hands of poker for $1 per hand. Each player begins with $5, and the game continues until one of the players is bankrupt. Here the sample space can be identified as all sequences of the elements A and B such that the number of one letter does not exceed the number of the other letter by more than 5. The sample space is discrete and infinite. Example A.3 The experiment consists of measuring the diameter of every 5th steel cylinder that leaves a manufacturing line. The sample space consists of sequences of real numbers; it is continuous and infinite. Appendix A: Review of Probability Theory 327 To reiterate, a sample space is a set of outcomes; it obeys the typical rules that obtain with sets (unions, intersections, complements, differences, etc.). A.2.2 Event Space The second element of a probability space is a collection of so-called events F . Events themselves consist of particular groups of outcomes. Thus the set of events is a collection of subsets of the sample space. Events can be thought of as characteristics of outcomes that can be identified once the experiment has been performed; that is, they are the “information scale” at which we can view the results of an experiment. In many, but not all, experiments, we can identify individual outcomes of an experi- ment; in some experiments we can identify only certain characteristics of individual outcomes. Thus the event space characterizes the information that we have available to us about the outcomes of a random experiment; it is the mesh or filter through which we can view the outcomes. Some terminology: we say that “an event has occurred” if the outcome that occurred is contained in that event. The specification of the event space is not completely arbitrary; in order to main- tain consistency, we need to instill some structure (rules) on the event space. The structure makes perfect intuitive sense. First, if we are able to observe that a partic- ular group of outcomes occurred, we should be able to observe that the same group of outcomes did not occur. This means that if a set of outcomes F is in the event space, then the set of outcomes F (the complement of F) is also in the event space. Secondly, if we are able to determine if a set of outcomes F1 occurred, and we are able to determine if a group of outcomes F2 occurred, then we should be able to determine if either F1 or F2 occurred. That is, if F1 and F2 are in the event space, then F1 ∪ F2 must be in the event space. Finally, we must be able to observe that some outcome occurred; that is, itself must be an event. Note that since is in the event space, so is φ, the empty set (also called the impossible event). With these rules for the event space, the smallest event space that we can work with is F ={,φ}. Example A.4 Suppose the random experiment is as in ExampleA.1, and suppose that we are able to observe the outcome of each individual coin toss. Then the event space consists of all subsets of the sample space (the power set of the sample space). Example A.5 Now suppose the random experiment is as in ExampleA.1, except that we are able to observe only the outcome of the last toss. Then the event space consists of ,φ, and the sets {(HHH), (HTH), (THH), (TTH)} and {(HHT), (HTT), (THT), (TTT)}. Note that an event can be determined either by listing its elements or by stating a condition that its elements must satisfy; e.g., if the sample space of our experiment is as in ExampleA.1,theset{(HHT), (HTH), (THH), (HTT)} and the statement “two heads occurred” determine the same event. 328 Appendix A: Review of Probability Theory A.2.3 Probability Measure The final element of our probability space is an assignment of probabilities for each event in the event space. Such an assignment is described by a function P that assigns a value to each event. This value represents our belief in the likelihood that the experiment will result in an event’s occurrence. The choice of this function quantifies our knowledge of the randomness of the experiment. It is important to remember that a probability measure lives on (assigns values to) events rather than outcomes,but remember, also, that there are certain situations where individual outcomes can also be events; such events are called atomic events. Definition 55 A sample space of a random experiment is the set of all possible outcomes of the experiment. Definition 56 An event space F of a random experiment is a collection of subsets of the sample space that satisfy • is in F • If F is in F , then F is in F • If F1 and F2 are in F , then F1 ∪ F2 is in F . Definition 57 A probability measure P for a random experiment is a function that assigns a numerical value to each event in an event space such that • If F is an event, 0 ≤ P(F) ≤ 1.
Recommended publications
  • Probability and Statistics Lecture Notes
    Probability and Statistics Lecture Notes Antonio Jiménez-Martínez Chapter 1 Probability spaces In this chapter we introduce the theoretical structures that will allow us to assign proba- bilities in a wide range of probability problems. 1.1. Examples of random phenomena Science attempts to formulate general laws on the basis of observation and experiment. The simplest and most used scheme of such laws is: if a set of conditions B is satisfied =) event A occurs. Examples of such laws are the law of gravity, the law of conservation of mass, and many other instances in chemistry, physics, biology... If event A occurs inevitably whenever the set of conditions B is satisfied, we say that A is certain or sure (under the set of conditions B). If A can never occur whenever B is satisfied, we say that A is impossible (under the set of conditions B). If A may or may not occur whenever B is satisfied, then A is said to be a random phenomenon. Random phenomena is our subject matter. Unlike certain and impossible events, the presence of randomness implies that the set of conditions B do not reflect all the necessary and sufficient conditions for the event A to occur. It might seem them impossible to make any worthwhile statements about random phenomena. However, experience has shown that many random phenomena exhibit a statistical regularity that makes them subject to study. For such random phenomena it is possible to estimate the chance of occurrence of the random event. This estimate can be obtained from laws, called probabilistic or stochastic, with the form: if a set of conditions B is satisfied event A occurs m times =) repeatedly n times out of the n repetitions.
    [Show full text]
  • The Probability Set-Up.Pdf
    CHAPTER 2 The probability set-up 2.1. Basic theory of probability We will have a sample space, denoted by S (sometimes Ω) that consists of all possible outcomes. For example, if we roll two dice, the sample space would be all possible pairs made up of the numbers one through six. An event is a subset of S. Another example is to toss a coin 2 times, and let S = fHH;HT;TH;TT g; or to let S be the possible orders in which 5 horses nish in a horse race; or S the possible prices of some stock at closing time today; or S = [0; 1); the age at which someone dies; or S the points in a circle, the possible places a dart can hit. We should also keep in mind that the same setting can be described using dierent sample set. For example, in two solutions in Example 1.30 we used two dierent sample sets. 2.1.1. Sets. We start by describing elementary operations on sets. By a set we mean a collection of distinct objects called elements of the set, and we consider a set as an object in its own right. Set operations Suppose S is a set. We say that A ⊂ S, that is, A is a subset of S if every element in A is contained in S; A [ B is the union of sets A ⊂ S and B ⊂ S and denotes the points of S that are in A or B or both; A \ B is the intersection of sets A ⊂ S and B ⊂ S and is the set of points that are in both A and B; ; denotes the empty set; Ac is the complement of A, that is, the points in S that are not in A.
    [Show full text]
  • The Open Handbook of Formal Epistemology
    THEOPENHANDBOOKOFFORMALEPISTEMOLOGY Richard Pettigrew &Jonathan Weisberg,Eds. THEOPENHANDBOOKOFFORMAL EPISTEMOLOGY Richard Pettigrew &Jonathan Weisberg,Eds. Published open access by PhilPapers, 2019 All entries copyright © their respective authors and licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. LISTOFCONTRIBUTORS R. A. Briggs Stanford University Michael Caie University of Toronto Kenny Easwaran Texas A&M University Konstantin Genin University of Toronto Franz Huber University of Toronto Jason Konek University of Bristol Hanti Lin University of California, Davis Anna Mahtani London School of Economics Johanna Thoma London School of Economics Michael G. Titelbaum University of Wisconsin, Madison Sylvia Wenmackers Katholieke Universiteit Leuven iii For our teachers Overall, and ultimately, mathematical methods are necessary for philosophical progress. — Hannes Leitgeb There is no mathematical substitute for philosophy. — Saul Kripke PREFACE In formal epistemology, we use mathematical methods to explore the questions of epistemology and rational choice. What can we know? What should we believe and how strongly? How should we act based on our beliefs and values? We begin by modelling phenomena like knowledge, belief, and desire using mathematical machinery, just as a biologist might model the fluc- tuations of a pair of competing populations, or a physicist might model the turbulence of a fluid passing through a small aperture. Then, we ex- plore, discover, and justify the laws governing those phenomena, using the precision that mathematical machinery affords. For example, we might represent a person by the strengths of their beliefs, and we might measure these using real numbers, which we call credences. Having done this, we might ask what the norms are that govern that person when we represent them in that way.
    [Show full text]
  • 1 Probabilities
    1 Probabilities 1.1 Experiments with randomness We will use the term experiment in a very general way to refer to some process that produces a random outcome. Examples: (Ask class for some first) Here are some discrete examples: • roll a die • flip a coin • flip a coin until we get heads And here are some continuous examples: • height of a U of A student • random number in [0, 1] • the time it takes until a radioactive substance undergoes a decay These examples share the following common features: There is a proce- dure or natural phenomena called the experiment. It has a set of possible outcomes. There is a way to assign probabilities to sets of possible outcomes. We will call this a probability measure. 1.2 Outcomes and events Definition 1. An experiment is a well defined procedure or sequence of procedures that produces an outcome. The set of possible outcomes is called the sample space. We will typically denote an individual outcome by ω and the sample space by Ω. Definition 2. An event is a subset of the sample space. This definition will be changed when we come to the definition ofa σ-field. The next thing to define is a probability measure. Before we can do this properly we need some more structure, so for now we just make an informal definition. A probability measure is a function on the collection of events 1 that assign a number between 0 and 1 to each event and satisfies certain properties. NB: A probability measure is not a function on Ω.
    [Show full text]
  • Propensities and Probabilities
    ARTICLE IN PRESS Studies in History and Philosophy of Modern Physics 38 (2007) 593–625 www.elsevier.com/locate/shpsb Propensities and probabilities Nuel Belnap 1028-A Cathedral of Learning, University of Pittsburgh, Pittsburgh, PA 15260, USA Received 19 May 2006; accepted 6 September 2006 Abstract Popper’s introduction of ‘‘propensity’’ was intended to provide a solid conceptual foundation for objective single-case probabilities. By considering the partly opposed contributions of Humphreys and Miller and Salmon, it is argued that when properly understood, propensities can in fact be understood as objective single-case causal probabilities of transitions between concrete events. The chief claim is that propensities are well-explicated by describing how they fit into the existing formal theory of branching space-times, which is simultaneously indeterministic and causal. Several problematic examples, some commonsense and some quantum-mechanical, are used to make clear the advantages of invoking branching space-times theory in coming to understand propensities. r 2007 Elsevier Ltd. All rights reserved. Keywords: Propensities; Probabilities; Space-times; Originating causes; Indeterminism; Branching histories 1. Introduction You are flipping a fair coin fairly. You ascribe a probability to a single case by asserting The probability that heads will occur on this very next flip is about 50%. ð1Þ The rough idea of a single-case probability seems clear enough when one is told that the contrast is with either generalizations or frequencies attributed to populations asserted while you are flipping a fair coin fairly, such as In the long run; the probability of heads occurring among flips is about 50%. ð2Þ E-mail address: [email protected] 1355-2198/$ - see front matter r 2007 Elsevier Ltd.
    [Show full text]
  • Topic 1: Basic Probability Definition of Sets
    Topic 1: Basic probability ² Review of sets ² Sample space and probability measure ² Probability axioms ² Basic probability laws ² Conditional probability ² Bayes' rules ² Independence ² Counting ES150 { Harvard SEAS 1 De¯nition of Sets ² A set S is a collection of objects, which are the elements of the set. { The number of elements in a set S can be ¯nite S = fx1; x2; : : : ; xng or in¯nite but countable S = fx1; x2; : : :g or uncountably in¯nite. { S can also contain elements with a certain property S = fx j x satis¯es P g ² S is a subset of T if every element of S also belongs to T S ½ T or T S If S ½ T and T ½ S then S = T . ² The universal set ­ is the set of all objects within a context. We then consider all sets S ½ ­. ES150 { Harvard SEAS 2 Set Operations and Properties ² Set operations { Complement Ac: set of all elements not in A { Union A \ B: set of all elements in A or B or both { Intersection A [ B: set of all elements common in both A and B { Di®erence A ¡ B: set containing all elements in A but not in B. ² Properties of set operations { Commutative: A \ B = B \ A and A [ B = B [ A. (But A ¡ B 6= B ¡ A). { Associative: (A \ B) \ C = A \ (B \ C) = A \ B \ C. (also for [) { Distributive: A \ (B [ C) = (A \ B) [ (A \ C) A [ (B \ C) = (A [ B) \ (A [ C) { DeMorgan's laws: (A \ B)c = Ac [ Bc (A [ B)c = Ac \ Bc ES150 { Harvard SEAS 3 Elements of probability theory A probabilistic model includes ² The sample space ­ of an experiment { set of all possible outcomes { ¯nite or in¯nite { discrete or continuous { possibly multi-dimensional ² An event A is a set of outcomes { a subset of the sample space, A ½ ­.
    [Show full text]
  • Probability Theory Review 1 Basic Notions: Sample Space, Events
    Fall 2018 Probability Theory Review Aleksandar Nikolov 1 Basic Notions: Sample Space, Events 1 A probability space (Ω; P) consists of a finite or countable set Ω called the sample space, and the P probability function P :Ω ! R such that for all ! 2 Ω, P(!) ≥ 0 and !2Ω P(!) = 1. We call an element ! 2 Ω a sample point, or outcome, or simple event. You should think of a sample space as modeling some random \experiment": Ω contains all possible outcomes of the experiment, and P(!) gives the probability that we are going to get outcome !. Note that we never speak of probabilities except in relation to a sample space. At this point we give a few examples: 1. Consider a random experiment in which we toss a single fair coin. The two possible outcomes are that the coin comes up heads (H) or tails (T), and each of these outcomes is equally likely. 1 Then the probability space is (Ω; P), where Ω = fH; T g and P(H) = P(T ) = 2 . 2. Consider a random experiment in which we toss a single coin, but the coin lands heads with 2 probability 3 . Then, once again the sample space is Ω = fH; T g but the probability function 2 1 is different: P(H) = 3 , P(T ) = 3 . 3. Consider a random experiment in which we toss a fair coin three times, and each toss is independent of the others. The coin can come up heads all three times, or come up heads twice and then tails, etc.
    [Show full text]
  • Probabilities, Random Variables and Distributions A
    Probabilities, Random Variables and Distributions A Contents A.1 EventsandProbabilities................................ 318 A.1.1 Conditional Probabilities and Independence . ............. 318 A.1.2 Bayes’Theorem............................... 319 A.2 Random Variables . ................................. 319 A.2.1 Discrete Random Variables ......................... 319 A.2.2 Continuous Random Variables ....................... 320 A.2.3 TheChangeofVariablesFormula...................... 321 A.2.4 MultivariateNormalDistributions..................... 323 A.3 Expectation,VarianceandCovariance........................ 324 A.3.1 Expectation................................. 324 A.3.2 Variance................................... 325 A.3.3 Moments................................... 325 A.3.4 Conditional Expectation and Variance ................... 325 A.3.5 Covariance.................................. 326 A.3.6 Correlation.................................. 327 A.3.7 Jensen’sInequality............................. 328 A.3.8 Kullback–LeiblerDiscrepancyandInformationInequality......... 329 A.4 Convergence of Random Variables . 329 A.4.1 Modes of Convergence . 329 A.4.2 Continuous Mapping and Slutsky’s Theorem . 330 A.4.3 LawofLargeNumbers........................... 330 A.4.4 CentralLimitTheorem........................... 331 A.4.5 DeltaMethod................................ 331 A.5 ProbabilityDistributions............................... 332 A.5.1 UnivariateDiscreteDistributions...................... 333 A.5.2 Univariate Continuous Distributions . 335
    [Show full text]
  • (Introduction to Probability at an Advanced Level) - All Lecture Notes
    Fall 2018 Statistics 201A (Introduction to Probability at an advanced level) - All Lecture Notes Aditya Guntuboyina August 15, 2020 Contents 0.1 Sample spaces, Events, Probability.................................5 0.2 Conditional Probability and Independence.............................6 0.3 Random Variables..........................................7 1 Random Variables, Expectation and Variance8 1.1 Expectations of Random Variables.................................9 1.2 Variance................................................ 10 2 Independence of Random Variables 11 3 Common Distributions 11 3.1 Ber(p) Distribution......................................... 11 3.2 Bin(n; p) Distribution........................................ 11 3.3 Poisson Distribution......................................... 12 4 Covariance, Correlation and Regression 14 5 Correlation and Regression 16 6 Back to Common Distributions 16 6.1 Geometric Distribution........................................ 16 6.2 Negative Binomial Distribution................................... 17 7 Continuous Distributions 17 7.1 Normal or Gaussian Distribution.................................. 17 1 7.2 Uniform Distribution......................................... 18 7.3 The Exponential Density...................................... 18 7.4 The Gamma Density......................................... 18 8 Variable Transformations 19 9 Distribution Functions and the Quantile Transform 20 10 Joint Densities 22 11 Joint Densities under Transformations 23 11.1 Detour to Convolutions......................................
    [Show full text]
  • 1 Probability Measure and Random Variables
    1 Probability measure and random variables 1.1 Probability spaces and measures We will use the term experiment in a very general way to refer to some process that produces a random outcome. Definition 1. The set of possible outcomes is called the sample space. We will typically denote an individual outcome by ω and the sample space by Ω. Set notation: A B, A is a subset of B, means that every element of A is also in B. The union⊂ A B of A and B is the of all elements that are in A or B, including those that∪ are in both. The intersection A B of A and B is the set of all elements that are in both of A and B. ∩ n j=1Aj is the set of elements that are in at least one of the Aj. ∪n j=1Aj is the set of elements that are in all of the Aj. ∩∞ ∞ j=1Aj, j=1Aj are ... Two∩ sets A∪ and B are disjoint if A B = . denotes the empty set, the set with no elements. ∩ ∅ ∅ Complements: The complement of an event A, denoted Ac, is the set of outcomes (in Ω) which are not in A. Note that the book writes it as Ω A. De Morgan’s laws: \ (A B)c = Ac Bc ∪ ∩ (A B)c = Ac Bc ∩ ∪ c c ( Aj) = Aj j j [ \ c c ( Aj) = Aj j j \ [ (1) Definition 2. Let Ω be a sample space. A collection of subsets of Ω is a σ-field if F 1.
    [Show full text]
  • CSE 21 Mathematics for Algorithm and System Analysis
    CSE 21 Mathematics for Algorithm and System Analysis Unit 1: Basic Count and List Section 3: Set (cont’d) Section 4: Probability and Basic Counting CSE21: Lecture 4 1 Quiz Information • The first quiz will be in the first 15 minutes of the next class (Monday) at the same classroom. • You can use textbook and notes during the quiz. • For all the questions, no final number is necessary, arithmetic formula is enough. • Write down your analysis, e.g., applicable theorem(s)/rule(s). We will give partial credit if the analysis is correct but the result is wrong. CSE21: Lecture 4 2 Correction • For set U={1, 2, 3, 4, 5}, A={1, 2, 3}, B={3, 4}, – Set Difference A − B = {1, 2}, B − A ={4} – Symmetric Difference: A ⊕ B = ( A − B)∪(B − A)= {1, 2} ∪{4} = {1, 2, 4} CSE21: Lecture 4 3 Card Hand Illustration • 5 card hand of full house: a pair and a triple • 5 card hand with two pairs CSE21: Lecture 4 4 Review: Binomial Coefficient • Binomial Coefficient: number of subsets of A of size (or cardinality) k: n n! C(n, k) = = k k (! n − k)! CSE21: Lecture 4 5 Review : Deriving Recursions • How to construct the things of a given size by using the same type of things of a smaller size? • Recursion formula of binomial coefficient – C(0,0) = 1, – C(0, k) = 0 for k ≠ 0 and – C(n,k) = C(n−1, k−1)+ C(n−1, k) for n > 0; • It shows how recursion works and tells another way calculating C(n,k) besides the formula n n! C(n, k) = = k k (! n − k)! 6 Learning Outcomes • By the end of this lesson, you should be able to – Calculate set partition number by recursion.
    [Show full text]
  • Probability with Engineering Applications ECE 313 Course Notes
    Probability with Engineering Applications ECE 313 Course Notes Bruce Hajek Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign January 2017 c 2017 by Bruce Hajek All rights reserved. Permission is hereby given to freely print and circulate copies of these notes so long as the notes are left intact and not reproduced for commercial purposes. Email to [email protected], pointing out errors or hard to understand passages or providing comments, is welcome. Contents 1 Foundations 3 1.1 Embracing uncertainty . .3 1.2 Axioms of probability . .6 1.3 Calculating the size of various sets . 10 1.4 Probability experiments with equally likely outcomes . 13 1.5 Sample spaces with infinite cardinality . 15 1.6 Short Answer Questions . 20 1.7 Problems . 21 2 Discrete-type random variables 25 2.1 Random variables and probability mass functions . 25 2.2 The mean and variance of a random variable . 27 2.3 Conditional probabilities . 32 2.4 Independence and the binomial distribution . 34 2.4.1 Mutually independent events . 34 2.4.2 Independent random variables (of discrete-type) . 36 2.4.3 Bernoulli distribution . 37 2.4.4 Binomial distribution . 38 2.5 Geometric distribution . 41 2.6 Bernoulli process and the negative binomial distribution . 43 2.7 The Poisson distribution{a limit of binomial distributions . 45 2.8 Maximum likelihood parameter estimation . 47 2.9 Markov and Chebychev inequalities and confidence intervals . 50 2.10 The law of total probability, and Bayes formula . 53 2.11 Binary hypothesis testing with discrete-type observations .
    [Show full text]