Set Theory Background for Probability Defining Sets (A Very Naïve Approach)

Total Page:16

File Type:pdf, Size:1020Kb

Set Theory Background for Probability Defining Sets (A Very Naïve Approach) Set theory background for probability Defining sets (a very naïve approach) A set is a collection of distinct objects. The objects within a set may be arbitrary, with the order of objects within them having no significance. Here are several examples, demonstrating the above properties: 2,3,5,7,11,13,17,19 (the set of all prime numbers smaller than 20) , , , , , ,′′ The brackets … surround the objects that belong to a certain set. Objects are separated by commas. Note that: 1,2,3 1,3,2 (there is no ordering of objects within a set) 1,2,3,3 1,2,3 (sets contain one copy of each distinct object) Working with sets 1. Membership If an object is a member of a set we write: ∈. If an object is not a member of a set we write: ∉. 2. Subsets Assume that we have a set and another set , such that every element in is also a member of . Then we can write: ⊆. We say that is a subset of . Formally, we can write: ∀∈∈ (any that is a member of is a member of ) No need to worry: we will usually not encounter this formal logic notation. Notice that the sets of , may actually be equal. If they are not, there must be some member of that is not a member of . In this case we can write: ⊂ i.e. is a true subset of , or in logic notation: ∀ ∈ ∈ ∧∃∈∈ (any that is in is in AND there exists a in that is not in ). 3. Set equality Sets , are equal if and only if ⊆ and ⊆. 4. Abbreviated representation of sets and some common sets We can use 3 dots to represent a continued or an infinite list with some apparent rule: 1,2,3, … , Set of integers in the range 1‐N. 1,2,3, … Set of all natural numbers (integers > 0). 0,1,2,3, … Set of all non‐negative integers … , 2, 1,0,1,2, … Set of all integers We can define a set in abbreviated form by defining a rule: ℚ :,∈,0 Set of all rational numbers. Other common sets are the set of real numbers (this includes all rational numbers plus many others, such as , √2,,…) and the set of complex numbers , which can be defined simply as follows: :,∈,√1. 5. Venn diagrams It is convenient to depict sets by circles with individual objects marked as dots within them (not all objects need be marked). For example: A B This implies that ⊂. Fig. 1 We can have more complicated interactions between pairs (and larger collections) of sets. For example: The overlap area (brown) includes objects A B that are members of both and of . The green and red areas include correspondingly objects that are solely in A or in B but not in both. We now come to operators that deal with such interactions between sets. Fig. 2 6. Set operators The union of two sets , is a new set, containing all the objects from both sets. We write the union this way: ∪. A formal definition would be: ∪: ∈ ∈ . Example: 2,3,5,8, 1,5,9. Then ∪ 1,2,3,5,8,9. The number of elements in C is at least as large as the number of objects in the largest of the sets A,B. The intersection of two sets , is a new set, containing only objects that are both in A and in B. ∩, or ∩:∈ ∈. For the above example, ∩5. 7. Cardinality Cardinality is a term that we can usually replace with size. For finite sets, these terms are interchangeable. The notation for cardinality are straight vertical lines surrounding the set in question. Examples: |1,2,3| 3. |: 20 | 8. || ∞ (actually, this is an inaccurate statement… is the notation for this kind of countable infinity.) 8. Universal sets Sometimes we are interested only in sets that are all subsets of a certain “universal” set (sometimes also referred to as the space). Let’s consider as an example sets that are all subsets of the natural number set . : ∈ is one such subset of . Within this universal set, we can define the complement set ∁ (in some texts denoted by ′ or ) as follows: ∁ ∈ ∉. For the above example, the set ∁ is the set of all non‐prime integers. The Venn diagram would make sense if we imagine all sets discussed being contained within a space, marked usually by a rectangle: PC P Fig. 3 The relative complement is an asymmetric operator between two sets: ∖ ≡ : ∈ ∉ . For 2,3,5,8, 1,5,9, ∖ 2,3,8. 9. The empty set The empty set, denoted by ∅, is a set without any objects (i.e. for any object , ∉ ∅). Notice (or try to show!) that: For any set , ∅⊂. For any set , ∅∪. For any set , ∅∩∅. 10. Sets of sets Sets can include arbitrary objects, including other sets1. In many cases, once given a set , we would be interested in generating a new set, that contains as its objects some or all of the subsets of . Let’s start with an example. Assume that 1,2,3,4,5,6,7,8,9,10. Now let’s imagine all possible pairs of numbers from S. Each pair is a subset of S itself. For example, 2,6 ⊂ . How many such pairs do we have? Notice that since we are interested in a set containing two elements from S, the order of the elements doesn’t matter. We have 10 ways of choosing the object in the pair, and then 9 ways of choosing the second from the remaining objects. Since every pair was wrongly counted twice in this process (, ,), we must divide the result by 2 to get the number of unique pairs: 10 ⋅ 9/2 45. We can imagine a new set, T, whose members are all the sets of pairs from S: , : , ∈ . Notice that S and T have no objects in common. This is because the objects in T are all sets themselves, while the objects in S are integers. To make things clear: . . 1 We will ignore the difficulties that may generate. Just as a teaser, consider Russell’s beautiful paradox. Imagine that we define a rule for set S ‐ S includes all sets that do not include themselves. Does the set S include S as one of its objects? 11. The power set Given a set we can construct a set that contains all subsets of . For example, for the set 1,2,3,4, the power set is: ∅, , 1, 2, 3, 4, 1,2, 2,3, 3,4, 1,3, 2,4, 1,4, 1,2,3, 2,3,4, 1,2,4, 1,3,4. Notice that the numbers 1‐4 themselves are NOT objects of , only the subsets 1, 2, 3, 4 are! Notice that || 162 2||. Try to show (or provide an intuition) why for any finite set with cardinality N (i.e. || ), the cardinality of the power set is || 2. 12. Cartesian products Given the sets , , we can generate a new set , : ∈, ∈. is a set containing as its objects ordered sequences of elements. The fact that the objects of are sequqnces is denoted by the regular brackets surrounding the comma‐separated list. In the above example, the first element in each sequence is an object from , while the second element in each sequence is an object from . For example, we can think of all points in the two‐dimensional real space as the Cartesian product ,:,∈. Because the elements of are sequences, , , if and only if . Cartesian products are very useful for conceptualizing repeated experiments. For example, consider a coin toss, where the possible outcomes are ,. Then all possible results of 3 consecutive coin tosses are contained in the set : ,,: ∈ ,,, , , , ,,, , , , , , , , , , , , , , , The cardinality of the resulting set is the product of the generating sets. In the above example, || || ∙ || ∙ || || 8. 13. Algebra of sets – some basic laws A relatively comprehensive list of set theory laws can be found here: http://en.wikipedia.org/wiki/Algebra_of_sets Skipping the trivial ones (e.g. ∩,∪,…), here are some important ones which you can try to prove: Distributive laws: ∪∩ ∪∩∪ ∩∪ ∩∪∩ De Morgan’s laws: ∪ ∁ ∁ ∩∁ ∩ ∁ ∁ ∪∁ Laws pertaining to complements: ∖⋂∁ ∖∁ ∁ ∪ (The basic technique for proving equalities in set theory is to take a member of the set defined on each side of the equal sign, and show that it must also be a member of the set defined on the other side. Thus, both sets are shown to contain one other and must be equal.) Exercises (difficult exercise marked by *): 1. Prove that within the universal space , for every ⊂, ∁|| ||. 2. Prove that for any two sets , , |∪| || || |∩|. 3. Show that for any two sets , , ∖ ∪ ∖ ∪∖⋂. 4. (*) Prove the inclusion‐exclusion principle: For any choice of sets ,,…,, | ∪ ∪…∪| ∑| | ∑ ∩∑ ∩ ∩⋯1 | ∩…∩| ∑ ∑ (can be written in shorthand as: ⋃ 1 ⋯⋂ o Notice that for 2, this is just exercise 2. Combinatorics for probability Probability theory deals with both continuous and discrete distributions. Discrete distributions are those in which the outcomes can be counted, e.g. the number of phone calls arriving within a certain time interval, the result of a dice toss, etc. In the case of discrete distributions, many questions in probability boil down to questions of counting the number of possible outcomes. For example, assume we toss two dice, and want to know the probability that the sum is 5. Assuming the dice are fair, all outcomes are equally probable. There are 6∙636 different outcomes. From these, the following pairs of values lead to a sum of 5: (1,4),(2,3),(3,2),(4,1). Notice that (1,4) and (4,1) are unique different outcomes (just imagine the two dice have different colours).
Recommended publications
  • 2.1 the Algebra of Sets
    Chapter 2 I Abstract Algebra 83 part of abstract algebra, sets are fundamental to all areas of mathematics and we need to establish a precise language for sets. We also explore operations on sets and relations between sets, developing an “algebra of sets” that strongly resembles aspects of the algebra of sentential logic. In addition, as we discussed in chapter 1, a fundamental goal in mathematics is crafting articulate, thorough, convincing, and insightful arguments for the truth of mathematical statements. We continue the development of theorem-proving and proof-writing skills in the context of basic set theory. After exploring the algebra of sets, we study two number systems denoted Zn and U(n) that are closely related to the integers. Our approach is based on a widely used strategy of mathematicians: we work with specific examples and look for general patterns. This study leads to the definition of modified addition and multiplication operations on certain finite subsets of the integers. We isolate key axioms, or properties, that are satisfied by these and many other number systems and then examine number systems that share the “group” properties of the integers. Finally, we consider an application of this mathematics to check digit schemes, which have become increasingly important for the success of business and telecommunications in our technologically based society. Through the study of these topics, we engage in a thorough introduction to abstract algebra from the perspective of the mathematician— working with specific examples to identify key abstract properties common to diverse and interesting mathematical systems. 2.1 The Algebra of Sets Intuitively, a set is a “collection” of objects known as “elements.” But in the early 1900’s, a radical transformation occurred in mathematicians’ understanding of sets when the British philosopher Bertrand Russell identified a fundamental paradox inherent in this intuitive notion of a set (this paradox is discussed in exercises 66–70 at the end of this section).
    [Show full text]
  • Probability and Statistics Lecture Notes
    Probability and Statistics Lecture Notes Antonio Jiménez-Martínez Chapter 1 Probability spaces In this chapter we introduce the theoretical structures that will allow us to assign proba- bilities in a wide range of probability problems. 1.1. Examples of random phenomena Science attempts to formulate general laws on the basis of observation and experiment. The simplest and most used scheme of such laws is: if a set of conditions B is satisfied =) event A occurs. Examples of such laws are the law of gravity, the law of conservation of mass, and many other instances in chemistry, physics, biology... If event A occurs inevitably whenever the set of conditions B is satisfied, we say that A is certain or sure (under the set of conditions B). If A can never occur whenever B is satisfied, we say that A is impossible (under the set of conditions B). If A may or may not occur whenever B is satisfied, then A is said to be a random phenomenon. Random phenomena is our subject matter. Unlike certain and impossible events, the presence of randomness implies that the set of conditions B do not reflect all the necessary and sufficient conditions for the event A to occur. It might seem them impossible to make any worthwhile statements about random phenomena. However, experience has shown that many random phenomena exhibit a statistical regularity that makes them subject to study. For such random phenomena it is possible to estimate the chance of occurrence of the random event. This estimate can be obtained from laws, called probabilistic or stochastic, with the form: if a set of conditions B is satisfied event A occurs m times =) repeatedly n times out of the n repetitions.
    [Show full text]
  • The Probability Set-Up.Pdf
    CHAPTER 2 The probability set-up 2.1. Basic theory of probability We will have a sample space, denoted by S (sometimes Ω) that consists of all possible outcomes. For example, if we roll two dice, the sample space would be all possible pairs made up of the numbers one through six. An event is a subset of S. Another example is to toss a coin 2 times, and let S = fHH;HT;TH;TT g; or to let S be the possible orders in which 5 horses nish in a horse race; or S the possible prices of some stock at closing time today; or S = [0; 1); the age at which someone dies; or S the points in a circle, the possible places a dart can hit. We should also keep in mind that the same setting can be described using dierent sample set. For example, in two solutions in Example 1.30 we used two dierent sample sets. 2.1.1. Sets. We start by describing elementary operations on sets. By a set we mean a collection of distinct objects called elements of the set, and we consider a set as an object in its own right. Set operations Suppose S is a set. We say that A ⊂ S, that is, A is a subset of S if every element in A is contained in S; A [ B is the union of sets A ⊂ S and B ⊂ S and denotes the points of S that are in A or B or both; A \ B is the intersection of sets A ⊂ S and B ⊂ S and is the set of points that are in both A and B; ; denotes the empty set; Ac is the complement of A, that is, the points in S that are not in A.
    [Show full text]
  • An Elementary Approach to Boolean Algebra
    Eastern Illinois University The Keep Plan B Papers Student Theses & Publications 6-1-1961 An Elementary Approach to Boolean Algebra Ruth Queary Follow this and additional works at: https://thekeep.eiu.edu/plan_b Recommended Citation Queary, Ruth, "An Elementary Approach to Boolean Algebra" (1961). Plan B Papers. 142. https://thekeep.eiu.edu/plan_b/142 This Dissertation/Thesis is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Plan B Papers by an authorized administrator of The Keep. For more information, please contact [email protected]. r AN ELEr.:ENTARY APPRCACH TC BCCLF.AN ALGEBRA RUTH QUEAHY L _J AN ELE1~1ENTARY APPRCACH TC BC CLEAN ALGEBRA Submitted to the I<:athematics Department of EASTERN ILLINCIS UNIVERSITY as partial fulfillment for the degree of !•:ASTER CF SCIENCE IN EJUCATION. Date :---"'f~~-----/_,_ffo--..i.-/ _ RUTH QUEARY JUNE 1961 PURPOSE AND PLAN The purpose of this paper is to provide an elementary approach to Boolean algebra. It is designed to give an idea of what is meant by a Boclean algebra and to supply the necessary background material. The only prerequisite for this unit is one year of high school algebra and an open mind so that new concepts will be considered reason­ able even though they nay conflict with preconceived ideas. A mathematical science when put in final form consists of a set of undefined terms and unproved propositions called postulates, in terrrs of which all other concepts are defined, and from which all other propositions are proved.
    [Show full text]
  • 1 Probabilities
    1 Probabilities 1.1 Experiments with randomness We will use the term experiment in a very general way to refer to some process that produces a random outcome. Examples: (Ask class for some first) Here are some discrete examples: • roll a die • flip a coin • flip a coin until we get heads And here are some continuous examples: • height of a U of A student • random number in [0, 1] • the time it takes until a radioactive substance undergoes a decay These examples share the following common features: There is a proce- dure or natural phenomena called the experiment. It has a set of possible outcomes. There is a way to assign probabilities to sets of possible outcomes. We will call this a probability measure. 1.2 Outcomes and events Definition 1. An experiment is a well defined procedure or sequence of procedures that produces an outcome. The set of possible outcomes is called the sample space. We will typically denote an individual outcome by ω and the sample space by Ω. Definition 2. An event is a subset of the sample space. This definition will be changed when we come to the definition ofa σ-field. The next thing to define is a probability measure. Before we can do this properly we need some more structure, so for now we just make an informal definition. A probability measure is a function on the collection of events 1 that assign a number between 0 and 1 to each event and satisfies certain properties. NB: A probability measure is not a function on Ω.
    [Show full text]
  • Propensities and Probabilities
    ARTICLE IN PRESS Studies in History and Philosophy of Modern Physics 38 (2007) 593–625 www.elsevier.com/locate/shpsb Propensities and probabilities Nuel Belnap 1028-A Cathedral of Learning, University of Pittsburgh, Pittsburgh, PA 15260, USA Received 19 May 2006; accepted 6 September 2006 Abstract Popper’s introduction of ‘‘propensity’’ was intended to provide a solid conceptual foundation for objective single-case probabilities. By considering the partly opposed contributions of Humphreys and Miller and Salmon, it is argued that when properly understood, propensities can in fact be understood as objective single-case causal probabilities of transitions between concrete events. The chief claim is that propensities are well-explicated by describing how they fit into the existing formal theory of branching space-times, which is simultaneously indeterministic and causal. Several problematic examples, some commonsense and some quantum-mechanical, are used to make clear the advantages of invoking branching space-times theory in coming to understand propensities. r 2007 Elsevier Ltd. All rights reserved. Keywords: Propensities; Probabilities; Space-times; Originating causes; Indeterminism; Branching histories 1. Introduction You are flipping a fair coin fairly. You ascribe a probability to a single case by asserting The probability that heads will occur on this very next flip is about 50%. ð1Þ The rough idea of a single-case probability seems clear enough when one is told that the contrast is with either generalizations or frequencies attributed to populations asserted while you are flipping a fair coin fairly, such as In the long run; the probability of heads occurring among flips is about 50%. ð2Þ E-mail address: [email protected] 1355-2198/$ - see front matter r 2007 Elsevier Ltd.
    [Show full text]
  • Topic 1: Basic Probability Definition of Sets
    Topic 1: Basic probability ² Review of sets ² Sample space and probability measure ² Probability axioms ² Basic probability laws ² Conditional probability ² Bayes' rules ² Independence ² Counting ES150 { Harvard SEAS 1 De¯nition of Sets ² A set S is a collection of objects, which are the elements of the set. { The number of elements in a set S can be ¯nite S = fx1; x2; : : : ; xng or in¯nite but countable S = fx1; x2; : : :g or uncountably in¯nite. { S can also contain elements with a certain property S = fx j x satis¯es P g ² S is a subset of T if every element of S also belongs to T S ½ T or T S If S ½ T and T ½ S then S = T . ² The universal set ­ is the set of all objects within a context. We then consider all sets S ½ ­. ES150 { Harvard SEAS 2 Set Operations and Properties ² Set operations { Complement Ac: set of all elements not in A { Union A \ B: set of all elements in A or B or both { Intersection A [ B: set of all elements common in both A and B { Di®erence A ¡ B: set containing all elements in A but not in B. ² Properties of set operations { Commutative: A \ B = B \ A and A [ B = B [ A. (But A ¡ B 6= B ¡ A). { Associative: (A \ B) \ C = A \ (B \ C) = A \ B \ C. (also for [) { Distributive: A \ (B [ C) = (A \ B) [ (A \ C) A [ (B \ C) = (A [ B) \ (A [ C) { DeMorgan's laws: (A \ B)c = Ac [ Bc (A [ B)c = Ac \ Bc ES150 { Harvard SEAS 3 Elements of probability theory A probabilistic model includes ² The sample space ­ of an experiment { set of all possible outcomes { ¯nite or in¯nite { discrete or continuous { possibly multi-dimensional ² An event A is a set of outcomes { a subset of the sample space, A ½ ­.
    [Show full text]
  • Probability Theory Review 1 Basic Notions: Sample Space, Events
    Fall 2018 Probability Theory Review Aleksandar Nikolov 1 Basic Notions: Sample Space, Events 1 A probability space (Ω; P) consists of a finite or countable set Ω called the sample space, and the P probability function P :Ω ! R such that for all ! 2 Ω, P(!) ≥ 0 and !2Ω P(!) = 1. We call an element ! 2 Ω a sample point, or outcome, or simple event. You should think of a sample space as modeling some random \experiment": Ω contains all possible outcomes of the experiment, and P(!) gives the probability that we are going to get outcome !. Note that we never speak of probabilities except in relation to a sample space. At this point we give a few examples: 1. Consider a random experiment in which we toss a single fair coin. The two possible outcomes are that the coin comes up heads (H) or tails (T), and each of these outcomes is equally likely. 1 Then the probability space is (Ω; P), where Ω = fH; T g and P(H) = P(T ) = 2 . 2. Consider a random experiment in which we toss a single coin, but the coin lands heads with 2 probability 3 . Then, once again the sample space is Ω = fH; T g but the probability function 2 1 is different: P(H) = 3 , P(T ) = 3 . 3. Consider a random experiment in which we toss a fair coin three times, and each toss is independent of the others. The coin can come up heads all three times, or come up heads twice and then tails, etc.
    [Show full text]
  • 1 Probability Measure and Random Variables
    1 Probability measure and random variables 1.1 Probability spaces and measures We will use the term experiment in a very general way to refer to some process that produces a random outcome. Definition 1. The set of possible outcomes is called the sample space. We will typically denote an individual outcome by ω and the sample space by Ω. Set notation: A B, A is a subset of B, means that every element of A is also in B. The union⊂ A B of A and B is the of all elements that are in A or B, including those that∪ are in both. The intersection A B of A and B is the set of all elements that are in both of A and B. ∩ n j=1Aj is the set of elements that are in at least one of the Aj. ∪n j=1Aj is the set of elements that are in all of the Aj. ∩∞ ∞ j=1Aj, j=1Aj are ... Two∩ sets A∪ and B are disjoint if A B = . denotes the empty set, the set with no elements. ∩ ∅ ∅ Complements: The complement of an event A, denoted Ac, is the set of outcomes (in Ω) which are not in A. Note that the book writes it as Ω A. De Morgan’s laws: \ (A B)c = Ac Bc ∪ ∩ (A B)c = Ac Bc ∩ ∪ c c ( Aj) = Aj j j [ \ c c ( Aj) = Aj j j \ [ (1) Definition 2. Let Ω be a sample space. A collection of subsets of Ω is a σ-field if F 1.
    [Show full text]
  • CSE 21 Mathematics for Algorithm and System Analysis
    CSE 21 Mathematics for Algorithm and System Analysis Unit 1: Basic Count and List Section 3: Set (cont’d) Section 4: Probability and Basic Counting CSE21: Lecture 4 1 Quiz Information • The first quiz will be in the first 15 minutes of the next class (Monday) at the same classroom. • You can use textbook and notes during the quiz. • For all the questions, no final number is necessary, arithmetic formula is enough. • Write down your analysis, e.g., applicable theorem(s)/rule(s). We will give partial credit if the analysis is correct but the result is wrong. CSE21: Lecture 4 2 Correction • For set U={1, 2, 3, 4, 5}, A={1, 2, 3}, B={3, 4}, – Set Difference A − B = {1, 2}, B − A ={4} – Symmetric Difference: A ⊕ B = ( A − B)∪(B − A)= {1, 2} ∪{4} = {1, 2, 4} CSE21: Lecture 4 3 Card Hand Illustration • 5 card hand of full house: a pair and a triple • 5 card hand with two pairs CSE21: Lecture 4 4 Review: Binomial Coefficient • Binomial Coefficient: number of subsets of A of size (or cardinality) k: n n! C(n, k) = = k k (! n − k)! CSE21: Lecture 4 5 Review : Deriving Recursions • How to construct the things of a given size by using the same type of things of a smaller size? • Recursion formula of binomial coefficient – C(0,0) = 1, – C(0, k) = 0 for k ≠ 0 and – C(n,k) = C(n−1, k−1)+ C(n−1, k) for n > 0; • It shows how recursion works and tells another way calculating C(n,k) besides the formula n n! C(n, k) = = k k (! n − k)! 6 Learning Outcomes • By the end of this lesson, you should be able to – Calculate set partition number by recursion.
    [Show full text]
  • Equivalents to the Axiom of Choice and Their Uses A
    EQUIVALENTS TO THE AXIOM OF CHOICE AND THEIR USES A Thesis Presented to The Faculty of the Department of Mathematics California State University, Los Angeles In Partial Fulfillment of the Requirements for the Degree Master of Science in Mathematics By James Szufu Yang c 2015 James Szufu Yang ALL RIGHTS RESERVED ii The thesis of James Szufu Yang is approved. Mike Krebs, Ph.D. Kristin Webster, Ph.D. Michael Hoffman, Ph.D., Committee Chair Grant Fraser, Ph.D., Department Chair California State University, Los Angeles June 2015 iii ABSTRACT Equivalents to the Axiom of Choice and Their Uses By James Szufu Yang In set theory, the Axiom of Choice (AC) was formulated in 1904 by Ernst Zermelo. It is an addition to the older Zermelo-Fraenkel (ZF) set theory. We call it Zermelo-Fraenkel set theory with the Axiom of Choice and abbreviate it as ZFC. This paper starts with an introduction to the foundations of ZFC set the- ory, which includes the Zermelo-Fraenkel axioms, partially ordered sets (posets), the Cartesian product, the Axiom of Choice, and their related proofs. It then intro- duces several equivalent forms of the Axiom of Choice and proves that they are all equivalent. In the end, equivalents to the Axiom of Choice are used to prove a few fundamental theorems in set theory, linear analysis, and abstract algebra. This paper is concluded by a brief review of the work in it, followed by a few points of interest for further study in mathematics and/or set theory. iv ACKNOWLEDGMENTS Between the two department requirements to complete a master's degree in mathematics − the comprehensive exams and a thesis, I really wanted to experience doing a research and writing a serious academic paper.
    [Show full text]
  • Characterization of Palm Measures Via Bijective Point-Shifts
    The Annals of Probability 2005, Vol. 33, No. 5, 1698–1715 DOI 10.1214/009117905000000224 © Institute of Mathematical Statistics, 2005 CHARACTERIZATION OF PALM MEASURES VIA BIJECTIVE POINT-SHIFTS BY MATTHIAS HEVELING AND GÜNTER LAST Universität Karlsruhe The paper considers a stationary point process N in Rd . A point-map picks a point of N in a measurable way. It is called bijective [Thorisson, H. (2000). Coupling, Stationarity, and Regeneration. Springer, New York] if it is generating (by suitable shifts) a bijective mapping on N. Mecke [Math. Nachr. 65 (1975) 335–344] proved that the Palm measure of N is point- stationary in the sense that it is invariant under bijective point-shifts. Our main result identifies this property as being characteristic for Palm measures. This generalizes a fundamental classical result for point processes on the line (see, e.g., Theorem 11.4 in [Kallenberg, O. (2002). Foundations of Modern Probability, 2nd ed. Springer, New York]) and solves a problem posed in [Thorisson, H. (2000). Coupling, Stationarity, and Regeneration. Springer, New York] and [Ferrari, P. A., Landim, C. and Thorisson, H. (2004). Ann. Inst. H. Poincaré Probab. Statist. 40 141–152]. Our second result guarantees the existence of bijective point-maps that have (almost surely with respect to the Palm measure of N) no fixed points. This answers another question asked by Thorisson. Our final result shows that there is a directed graph with vertex set N that is defined in a translation-invariant way and whose components are almost surely doubly infinite paths. This generalizes and complements one of the main results in [Holroyd, A.
    [Show full text]