Spinal Cord • Spinal Cord Meninges • Sectional Anatomy of the Spinal Cord • Spinal Nerves • Reflexes • Development of the Spinal Cord Spinal Cord—Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Spinal Cord • Spinal Cord Meninges • Sectional Anatomy of the Spinal Cord • Spinal Nerves • Reflexes • Development of the Spinal Cord Spinal Cord—Introduction Chapter 16 Outline • Gross Anatomy of the Spinal Cord • Spinal Cord Meninges • Sectional Anatomy of the Spinal Cord • Spinal Nerves • Reflexes • Development of the Spinal Cord Spinal Cord—Introduction The spinal cord provides a vital link between the brain and the rest of the body. The spinal cord and its attached spinal nerves serve two important functions: 1. a pathway for sensory and motor impulses 2. responsible for reflexes, which are the quickest reactions to a stimulus Gross Anatomy of the Spinal Cord • Length: 42–45 cm, 16–18 inches • Roughly cylindrical, slightly flattened posteriorly and anteriorly • Two longitudinal depressions on external surface: – _______ median sulcus on posterior surface – _______ median fissure on anterior surface Gross Anatomy of the Spinal Cord Parts of the spinal cord: 1. _______ 2. _______ 3. _______ 4. _______ 5. Coccygeal Gross Anatomy of the Spinal Cord Figure 16.1 Gross Anatomy of the Spinal Cord Gross Anatomy of the Spinal Cord The diameter of the spinal cord changes along its length because the amount of gray matter and white matter and the function of the cord vary in different regions. • The _______ enlargement is located in the inferior cervical part of the spinal cord and innervates the upper limbs. • The _______ enlargement extends through the lumbar and sacral parts of the spinal cord and innervates the lower limbs. Gross Anatomy of the Spinal Cord • The spinal cord is shorter than the vertebral canal that houses it. • The tapering inferior end of the spinal cord is called the _______ _______ and is the official “end” of the spinal cord proper (usually at the level of the first lumbar vertebra). Gross Anatomy of the Spinal Cord • Inferior to the conus medullaris, groups of axons called the _______ _______ project from the spinal cord. • Within the cauda equina is the filum terminale, which is a thin strand of pia mater that helps anchor the conus medullaris to the coccyx. Gross Anatomy of the Spinal Cord The spinal cord is associated with 31 pairs of spinal nerves that connect the CNS to muscles, receptors and glands. Each side contains: • 8 cervical nerves (C1–C8). • 12 thoracic nerves (T1–T12). • 5 lumbar nerves (L1–L5). • 5 sacral nerves (S1–S5) • 1 coccygeal nerve (Co1) Spinal Cord Meninges • The spinal cord is protected and encapsulated by spinal cord _______, which are continuous with the cranial meninges. • Some of the spaces between some of the meninges have clinical significance. Spinal Meninges and Structure of the Spinal Cord Figure 16.2 Spinal Cord Meninges _______ space: • lies between the dura mater and periosteum covering the inner walls of the vertebra • houses areolar connective tissue, blood vessels, and adipose connective tissue _______ mater: • most external of the meninges • fuses with the connective layers that surround the spinal nerves Spinal Cord Meninges • Narrow subdural space separates dura mater from arachnoid; a potential space • _______ mater is deep to the dura mater and the subdural space • _______ space is a real space filled with cerebral spinal fluid Spinal Cord Meninges _______ mater: • innermost meningeal layer that adheres directly to the spinal cord • delicate layer composed of elastic and collagen fibers and supports some of the blood vessels supplying the spinal cord • has paired, lateral triangular extensions called denticulate ligaments, which suspend and anchor the spinal cord laterally to the dura mater Sectional Anatomy of the Spinal Cord The spinal cord is partitioned into an inner gray matter region and an outer white matter region: • Gray matter—dendrites and cell bodies of neurons, unmyelinated axons, and glial cells • White matter—myelinated axons Gray and White Components of Spinal Cord Figure 16.3 Gray and White Components of Spinal Cord Figure 16.3 Location and Distribution of Gray Matter Gray Matter: • Centrally located in spinal cord • Sectioned shape resembles butterfly Subdivided into: • _______ Horns • _______ Horns • _______ Horns • Gray Commissure Location and Distribution of Gray Matter • _______ horns house the cell bodies of somatic motor neurons, which innervate skeletal muscle • _______ horns: – found in the T1–L2 parts of the spinal cord only – contain cell bodies of autonomic motor neurons, which innervate cardiac muscle, smooth muscle, and glands Location and Distribution of Gray Matter • The _______ horns contain axons of sensory neurons and cell bodies of interneurons. • The _______ commissure contains unmyelinated axons and serves as a communication route between the right and left side. • The gray commissure houses a narrow _______ _______. Location and Distribution of Gray Matter • Within the gray matter are functional groups of neuron cell bodies called _______ : – Sensory nuclei in the posterior horns contain interneuron cell bodies of: – _______ sensory nuclei – _______ sensory nuclei – Motor nuclei in the anterior horns contain somatic motor nuclei – Autonomic motor nuclei are in the lateral horns Neuron Pathways and Nuclei Locations Figure 16.4 Location and Distribution of White Matter The white matter of the spinal cord is external to the gray matter and is partitioned into three regions, each called a _______ : • posterior funiculus • lateral funiculus • anterior funiculus – interconnected by the white commissure The axons within each funiculus are organized into tracts. Spinal Nerves • 31 pairs • Made up of motor and sensory axons • Contain connective tissue wrappings called endoneurium, perineurium, and epineurium Spinal Nerves • Multiple anterior rootlets arise from the spinal cord and merge to form a single anterior root. • Anterior roots contain motor axons only. • The cell bodies of the motor axons arise from cell bodies in the anterior and lateral horns of the spinal cord. Spinal Nerves • Multiple posterior rootlets are derived from a single posterior root. • Posterior roots contain sensory axons only. • The cell bodies of the sensory axons arise from cell bodies in the posterior root ganglion, which is attached to the posterior root. Spinal Nerves • Each anterior root and its corresponding posterior root unite within the intervertebral foramen to become a spinal nerve. • A spinal nerve contains both motor and sensory axons. Spinal Nerves • Spinal nerves are numbered according to the location of the intervertebral canal. • In the cervical region the first seven pairs of spinal nerves (C1–C7) exit the intervertebral foramen above the vertebra of the same number. • The eighth pair of cervical spinal nerves (C8) exit above the first thoracic vertebra. • The remaining pairs of spinal nerves exit below the vertebra of the same number. Spinal Nerves • Because the spinal cord is shorter than the vertebral canal, the roots of the lumbar and sacral spinal nerves travel inferiorly to reach their respective intervertebral foramen. Spinal Nerve Distribution • After leaving the intervertebral foramen, a typical spinal nerve splits into branches termed rami. • The _______ ramus is the smaller of the two main branches and innervates the deep muscles of the back and the skin of the back. • The _______ ramus is the larger of the two main branches and innervates the anterior and lateral portions of the trunk and the upper and lower limbs. Spinal Nerve Distribution • The anterior ramus splits into multiple other branches. • Many of the anterior rami go on to form nerve plexuses. • Additional rami, the rami communicantes, extend between the spinal nerve and the sympathetic trunk ganglion. Spinal Nerve Branches Figure 16.5 Dermatomes • A _______ is a specific segment of skin supplied by a single spinal nerve. • All spinal nerves except C1 innervate a segment of skin. • The dermatome map follows a segmental pattern along the body. Dermatome Maps Figure 16.6 Dermatomes • The dermatome map can be important because anesthesia (numbness) in one or more of the segments could indicate potential spinal nerve damage. • Dermatomes are also involved in _______ _______ _______, where a pain in a dermatome may arise from an organ nowhere near the dermatome. Nerve Plexuses A _______ _______ is a network of interweaving anterior rami of spinal nerves. • The anterior rami of most spinal nerves form nerve plexuses on both sides of the body. • The plexuses split into multiple named nerves that innervate body structures. • The principle plexuses are the: cervical plexuses, brachial plexuses, lumbar plexuses, and sacral plexuses. Intercostal Nerves • The anterior rami of spinal nerves T1–T11 are called _______ nerves because they travel in the intercostal spaces between adjacent ribs. • Spinal nerve T12 is called a _______ nerve, because it arises below the ribs. • With the exception of spinal nerve T1, the intercostal nerves do not form plexuses. Intercostal Nerves • T1 forms part of the _______ plexus. • T2 innervates the intercostal muscles of the second intercostal space and is sensory for the _______ and _______ surface of the arm. • T3–T6 innervate the _______ muscles and are sensory for the anterior chest wall. • T7–T12 innervate the intercostal muscles, the _______ muscles, and the overlying skin. Intercostal Nerves Figure 16.7 Cervical Plexus • Formed by anterior rami of spinal nerves C1–C4 • Branches of the cervical plexus innervate anterior neck muscles and the skin of the neck and head and shoulders. • The _______ nerve originated primarily from C4 and some contributing axons of C3 and C5. – travels through the thoracic cavity to innervate the diaphragm Cervical Plexus Figure 16.8 Cervical Plexus Brachial Plexus
Recommended publications
  • Piriformis Syndrome Is Overdiagnosed 11 Robert A
    American Association of Neuromuscular & Electrodiagnostic Medicine AANEM CROSSFIRE: CONTROVERSIES IN NEUROMUSCULAR AND ELECTRODIAGNOSTIC MEDICINE Loren M. Fishman, MD, B.Phil Robert A.Werner, MD, MS Scott J. Primack, DO Willam S. Pease, MD Ernest W. Johnson, MD Lawrence R. Robinson, MD 2005 AANEM COURSE F AANEM 52ND Annual Scientific Meeting Monterey, California CROSSFIRE: Controversies in Neuromuscular and Electrodiagnostic Medicine Loren M. Fishman, MD, B.Phil Robert A.Werner, MD, MS Scott J. Primack, DO Willam S. Pease, MD Ernest W. Johnson, MD Lawrence R. Robinson, MD 2005 COURSE F AANEM 52nd Annual Scientific Meeting Monterey, California AANEM Copyright © September 2005 American Association of Neuromuscular & Electrodiagnostic Medicine 421 First Avenue SW, Suite 300 East Rochester, MN 55902 PRINTED BY JOHNSON PRINTING COMPANY, INC. ii CROSSFIRE: Controversies in Neuromuscular and Electrodiagnostic Medicine Faculty Loren M. Fishman, MD, B.Phil Scott J. Primack, DO Assistant Clinical Professor Co-director Department of Physical Medicine and Rehabilitation Colorado Rehabilitation and Occupational Medicine Columbia College of Physicians and Surgeons Denver, Colorado New York City, New York Dr. Primack completed his residency at the Rehabilitation Institute of Dr. Fishman is a specialist in low back pain and sciatica, electrodiagnosis, Chicago in 1992. He then spent 6 months with Dr. Larry Mack at the functional assessment, and cognitive rehabilitation. Over the last 20 years, University of Washington. Dr. Mack, in conjunction with the Shoulder he has lectured frequently and contributed over 55 publications. His most and Elbow Service at the University of Washington, performed some of the recent work, Relief is in the Stretch: End Back Pain Through Yoga, and the original research utilizing musculoskeletal ultrasound in order to diagnose earlier book, Back Talk, both written with Carol Ardman, were published shoulder pathology.
    [Show full text]
  • Sensory Conduction in Medial and Lateral Plantar Nerves
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.51.2.188 on 1 February 1988. Downloaded from Journal ofNeurology, Neurosurgery, and Psychiatry 1988;51:188-191 Sensory conduction in medial and lateral plantar nerves S N PONSFORD From the Department of Clinical Neurophysiology, Walsgrave Hospital, Coventry, UK SUMMARY A simple and reliable method of recording medial and lateral plantar nerve sensory action potentials is described. Potentials are recorded with surface electrodes at the ankle using surface electrodes stimulating orthodromically at the sole. The normal values obtained are higher in amplitude than those obtained by the method described by Guiloff and Sherratt and are detectable in older subjects aged over 80 years. The procedure is valuable in the diagnosis of early peripheral neuropathy, mononeuritig multiplex; tarsal tunnel syndrome and in differentiation between pre and post ganglionic L5 SI lesions. The value of medial plantar sensory action potential EL53051 applied to the sole just lateral to the first meta-guest. Protected by copyright. (SAP) recording in the diagnosis of peripheral neuro- tarsal, the anode level with metatarsophalangeal joint, the pathy and investigation of root or individual nerve cathode thus overlying the first common digital nerve sub- lesions involving the leg or foot was clearly estab- serving contiguous surfaces ofthe great and second toes. For the lateral plantar, the stimulator was placed between the lished by Guiloff and Sherratt.1 However, their fourth and fifth metatarsals, the anode-again level with the method of stimulating at the big toe and recording at metatarsophalangeal joint, overlying the fourth common the ankle gives potentials of relatively small ampli- digital nerve supplying contiguous surfaces of the fourth and tude (mean amplitude 2-3 pv, range 0-8- 1).
    [Show full text]
  • Lower Extremity Focal Neuropathies
    LOWER EXTREMITY FOCAL NEUROPATHIES Lower Extremity Focal Neuropathies Arturo A. Leis, MD S.H. Subramony, MD Vettaikorumakankav Vedanarayanan, MD, MBBS Mark A. Ross, MD AANEM 59th Annual Meeting Orlando, Florida Copyright © September 2012 American Association of Neuromuscular & Electrodiagnostic Medicine 2621 Superior Drive NW Rochester, MN 55901 Printed by Johnson Printing Company, Inc. 1 Please be aware that some of the medical devices or pharmaceuticals discussed in this handout may not be cleared by the FDA or cleared by the FDA for the specific use described by the authors and are “off-label” (i.e., a use not described on the product’s label). “Off-label” devices or pharmaceuticals may be used if, in the judgment of the treating physician, such use is medically indicated to treat a patient’s condition. Information regarding the FDA clearance status of a particular device or pharmaceutical may be obtained by reading the product’s package labeling, by contacting a sales representative or legal counsel of the manufacturer of the device or pharmaceutical, or by contacting the FDA at 1-800-638-2041. 2 LOWER EXTREMITY FOCAL NEUROPATHIES Lower Extremity Focal Neuropathies Table of Contents Course Committees & Course Objectives 4 Faculty 5 Basic and Special Nerve Conduction Studies of the Lower Limbs 7 Arturo A. Leis, MD Common Peroneal Neuropathy and Foot Drop 19 S.H. Subramony, MD Mononeuropathies Affecting Tibial Nerve and its Branches 23 Vettaikorumakankav Vedanarayanan, MD, MBBS Femoral, Obturator, and Lateral Femoral Cutaneous Neuropathies 27 Mark A. Ross, MD CME Questions 33 No one involved in the planning of this CME activity had any relevant financial relationships to disclose.
    [Show full text]
  • Spinal Cord (Sp Cd) and Nerves NERVOUS SYSTEM Functions of Nervous System
    Spinal Cord (sp cd) and Nerves NERVOUS SYSTEM Functions of Nervous System 1. Collect sensory input 2. Integrate sensory input 3. Motor output Organization of Nervous System • Central Nervous System (CNS) = brain and spinal cord • Peripheral Nervous System (PNS) = nerves CNS PNS Peripheral Nervous System skin muscle Pg 344 Spinal Nerves (31 pairs) • Each pair of nerves located in particular segment (cervical, thoracic, lumbar, etc.) • Each nerve pair is numbered for the vertebra sitting above it (i.e. nerves exit below vertebrae) – 8 pairs of cervical spinal nerves; *C1-C8 – 12 pairs of thoracic spinal nerves; T1-T12 – 5 pairs of lumbar spinal nerves; L1-L5 – 5 pairs of sacral spinal nerves; S1-S5 – 1 pair of coccygeal spinal nerves; C0 Spinal Cord Segments Pg 393 Central Nervous System Pg 361 • Brain and Spinal Cord • Occupy Dorsal Cavity Meninges of Brain and Spinal Cord • Pia mater (deep) – delicate –highly vascular – adheres to brain/sp cd tissue • Arachnoid mater (middle) – impermeable layer = barrier – raised off pia mater by rootlets •Spinal Dura Mater(most superficial) – single dural sheath • Subarachnoid Space – between arachnoid and pia mater –contains CSF • Epidural Space – Between dura mater and vertebra – Contains fat and veins Pg 394 Spinal Cord (sp cd) • Passes inferiorly through foramen magnum into vertebral canal • 31 pairs of spinal nerves branch off spinal cord through intervertebral foramen • Spinal cord made of a core of gray matter surrounded by white matter Pg 393 Spinal Cord Growth •Runs from Medulla Oblongata to
    [Show full text]
  • Physiology and Pathophysiology 2018/2019 Dental Medicine Examination Synopsis in Physiology
    Medical University of Varna Department of Physiology and Pathophysiology 2018/2019 Dental medicine Examination Synopsis in Physiology Theoretical exam 1. Homeostasis. Control systems of the body – characteristics. Negative feedback mechanism. 2. Cell membranes. Transport of substances through cell membranes. 3. Membrane potential. Resting membrane potential of nerves. 4. Nerve action potential. Propagation of the action potential. Conduction velocity. 5. Signal transmission in nerve fibers. Excitation - the process of eliciting the action potential. Threshold for excitation, refractory period. Inhibition of excitability. 6. Organization and functions of the nervous system. Types of synapses. Electrical synapses. 7. Characteristics of transmission in chemical synapses. 8. Synaptic transmitters. Membrane receptors. 9. Generation of postsynaptic potentials. Generation of action potentials in the axon. Neuronal inhibition - types. Neuroglia. 10. Characteristics of postsynaptic potentials. Spatial and temporal summation in neurons. "Facilitation" of neurons. Characteristics of synaptic transmission. 10. Transmission and processing of signals in neuronal circuits. Convergence, divergence, reverberating circuits. Reflexes - types. 11. Organization of the autonomic nervous system. Location of autonomic ganglia. Characteristics of sympathetic and parasympathetic function - transmitters. 12. Characteristics of sympathetic and parasympathetic function - receptors. 13. Sympathetic or parasympathetic tone. Denervation effects. Autonomic reflexes.
    [Show full text]
  • Neuropsychiatry Block Stretch Reflex and Golgi Tendon Reflex
    NeuroPsychiatry Block Stretch reflex and Golgi Tendon Reflex By Prof. Faten zakareia Physiology Department , College of Medicine , King Saud University 2017 Email: Faten@ksu.edu.sa Ext:52736 NeuroPsychiatryBlock Motor Functions of the Spinal Cord, The cord Reflexes Chapter 55 (Guyton & Hall) -Reference book/Ganong review of medical physiology • Objectives: Upon completion of this lecture, students are expected to : - Describe the stretch reflex and ts icomponents - Describe the structure and function of the muscle spindle - Differentiate between primary and secondary afferent fibres of muscle spindle, Intrafusal nuclear bag &nuclear chain fibers - Differentiate between the Dynamic gamma efferent and Trail endings discharge and their functional role - Differentiate between static and dynamic stretch reflex& damping mechanism - Describe muscle tone and its abnormalities - Disscuss spinal and supraspinal regulation of the stretch reflex - Describe the components of the inverse stretch reflex (golgi tendon reflex)and its function THE STRETCH REFLEX REFLEX STRETCH (MYOTACTIC) REFLEX https://musom.marshall.edu/anatomy/grosshom/allppt/pdf/Spinalreflexes.pdf CLINICAL TEST | RAPID STRETCH OF MUSCLE (TAP ON MUSCLE TENDON) STIMULUS RESPONSE STRETCHED MUSCLE CONTRACT RAPIDLY (I.E. KNEE JERK) SENSORY MUSCLE SPINDLE PRIMARY RECEPTOR SYNAPSES MONOSYNAPTIC INVOLVED EFFECTS ON CONTRACTS (+) SAME MUSCLE AND SYNERGISTIC MUSCLES MUSCLE OTHER EFFECTS RELAXES (-) ANTAGONISTIC MUSCLE FUNCTION AIDS IN MAINTAINING POSTURE, AVOID MUSCLE RUPTURE,COUNTERS SUDDEN
    [Show full text]
  • Tibial Nerve Block: Supramalleolar Or Retromalleolar Approach? a Randomized Trial in 110 Participants
    International Journal of Environmental Research and Public Health Article Tibial Nerve Block: Supramalleolar or Retromalleolar Approach? A Randomized Trial in 110 Participants María Benimeli-Fenollar 1,* , José M. Montiel-Company 2 , José M. Almerich-Silla 2 , Rosa Cibrián 3 and Cecili Macián-Romero 1 1 Department of Nursing, University of Valencia, c/Jaume Roig s/n, 46010 Valencia, Spain; cecili.macian@uv.es 2 Department of Stomatology, University of Valencia, c/Gascó Oliag, 1, 46010 Valencia, Spain; jose.maria.montiel@uv.es (J.M.M.-C.); jose.m.almerich@uv.es (J.M.A.-S.) 3 Department of Physiology, University of Valencia, c/Blasco Ibánez, 15, 46010 Valencia, Spain; rosa.m.cibrian@uv.es * Correspondence: maria.benimeli@uv.es Received: 26 April 2020; Accepted: 23 May 2020; Published: 29 May 2020 Abstract: Of the five nerves that innervate the foot, the one in which anesthetic blocking presents the greatest difficulty is the tibial nerve. The aim of this clinical trial was to establish a protocol for two tibial nerve block anesthetic techniques to later compare the anesthetic efficiency of retromalleolar blocking and supramalleolar blocking in order to ascertain whether the supramalleolar approach achieved a higher effective blocking rate. A total of 110 tibial nerve blocks were performed. Location of the injection site was based on a prior ultrasound assessment of the tibial nerve. The block administered was 3 mL of 2% mepivacaine. The two anesthetic techniques under study provided very similar clinical results. The tibial nerve success rate was 81.8% for the retromalleolar technique and 78.2% for the supramalleolar technique.
    [Show full text]
  • Neuroanatomy for Nerve Conduction Studies
    Neuroanatomy for Nerve Conduction Studies Kimberley Butler, R.NCS.T, CNIM, R. EP T. Jerry Morris, BS, MS, R.NCS.T. Kevin R. Scott, MD, MA Zach Simmons, MD AANEM 57th Annual Meeting Québec City, Québec, Canada Copyright © October 2010 American Association of Neuromuscular & Electrodiagnostic Medicine 2621 Superior Drive NW Rochester, MN 55901 Printed by Johnson Printing Company, Inc. AANEM Course Neuroanatomy for Nerve Conduction Studies iii Neuroanatomy for Nerve Conduction Studies Contents CME Information iv Faculty v The Spinal Accessory Nerve and the Less Commonly Studied Nerves of the Limbs 1 Zachary Simmons, MD Ulnar and Radial Nerves 13 Kevin R. Scott, MD The Tibial and the Common Peroneal Nerves 21 Kimberley B. Butler, R.NCS.T., R. EP T., CNIM Median Nerves and Nerves of the Face 27 Jerry Morris, MS, R.NCS.T. iv Course Description This course is designed to provide an introduction to anatomy of the major nerves used for nerve conduction studies, with emphasis on the surface land- marks used for the performance of such studies. Location and pathophysiology of common lesions of these nerves are reviewed, and electrodiagnostic methods for localization are discussed. This course is designed to be useful for technologists, but also useful and informative for physicians who perform their own nerve conduction studies, or who supervise technologists in the performance of such studies and who perform needle EMG examinations.. Intended Audience This course is intended for Neurologists, Physiatrists, and others who practice neuromuscular, musculoskeletal, and electrodiagnostic medicine with the intent to improve the quality of medical care to patients with muscle and nerve disorders.
    [Show full text]
  • Biomechanical Analysis of the Spinal Cord in Brown-Séquard Syndrome
    1184 EXPERIMENTAL AND THERAPEUTIC MEDICINE 6: 1184-1188, 2013 Biomechanical analysis of the spinal cord in Brown-Séquard syndrome NORIHIRO NISHIDA1, TSUKASA KANCHIKU1, YOSHIHIKO KATO1, YASUAKI IMAJO1, SYUNICHI KAWANO2 and TOSHIHIKO TAGUCHI1 1Department of Orthopaedic Surgery, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505; 2Faculty of Engineering, Yamaguchi University, Yamaguchi 755-8611, Japan Received April 23, 2013; Accepted August 6, 2013 DOI: 10.3892/etm.2013.1286 Abstract. Complete Brown-Séquard syndrome (BSS) rosis (1). There have also been a few reports of BSS associated resulting from chronic compression is rare and the majority with intradural spinal cord herniation or disc herniation (2,3). of patients present with incomplete BSS. In the present study, Furthermore, complete BSS due to chronic compression is we investigated why the number of cases of complete BSS rare and most patients present with an incomplete form of this due to chronic compression is limited. A 3-dimensional finite condition (4). element method (3D-FEM) spinal cord model was used in this In the present study, a 3-dimensional finite element method study. Anterior compression was applied to 25, 37.5, 50, 62.5 (3D-FEM) was used to analyze the stress distribution of the and 75% of the length of the transverse diameter of the spinal spinal cord under various compression levels corresponding to cord. The degrees of static compression were 10, 20 and 30% five different lengths of the transverse diameter. Three levels of the anteroposterior (AP) diameter of the spinal cord. When of static compression corresponding to 10, 20 and 30% of the compression was applied to >62.5 or <37.5% of the length anteroposterior (AP) diameter were used for each of these five of the transverse diameter of the spinal cord, no increases in conditions.
    [Show full text]
  • Spinal Reflexes Marte Rydland a Reflex Is a Protective Response to Stimulus That Does Not Require Conciousness Reflexes
    Spinal reflexes Marte Rydland A reflex is a protective response to stimulus that does not require conciousness Reflexes Elements of a reflex arc: 1. Receptor 2. Afferent pathway 3. Integration center 4. Efferent pathway 5. Effector Types of reflexes 1. Stretch reflex → Protects from overstretching 2. Golgi tendon reflex → Protects from over contracting 3. Withdrawal reflex → Protects from potentially harmful stimuli Muscle fibers Types of muscle fibers Extrafusal fibers Intrafusal fibers ▪ Outer layer ▪ Encapsulated in sheaths to form ▪ Provide the force for muscle muscle spindle contraction ▪ Innervated by ɣ-motoneurons ▪ Most of skeletal muscle ▪ Smaller than extrafusal fibers ▪ Innervated by ⍺-motoneurons ▪ Too small to generate force ▪ Attach to tendons ▪ Sensory receptors: Detect the stretch of a muscle Intrafusal fibers – Muscle spindle Nuclear bag fibers Nuclear chain fibers • Have nuclei collected in a "bag" • Have nuclei arranged in series region • Are more numerous than nuclear • Onset of stretch bag fibers • Dynamic changes = LENTGH & • Sustained stretch VELOCITY • Static changes = LENGTH • Annulospiraling endings • Flower spray endings • Innervated by group Ia afferents • Innervated by group Ia + II SLOW afferents RAPID RAPID Renshaw inhibition • Inhibitory interneurons • Between LMN/AMN’s • Negative feedback loop • Removes “noise” • Prevents hyperactive muscle contraction How to move a limb? • Antagonizing muscles must do the opposite • Flexors vs. extensors • Reciprocal innervation • Inhibiting interneurons 1. Stretch reflex (myotatic reflex) Stimulus: stretching of the muscle 1. Intrafusal fiber 2. Type Ia sensory fiber (afferent nerve) 3. Monosynaptic 4. α motor neurons (efferent nerve) 5. Extrafusal muscle fibers = Agonist muscle contracts = Antagonist relaxes Knee jerk reflex 2. Golgi tendon reflex (inverse stretch) Stimulus: contraction of the muscle 1.
    [Show full text]
  • Central Nervous System. Spinal Cord and Spinal Nerves
    Central nervous system. Spinal cord and spinal nerves 1. Central nervous system – gross subdivisions 2. Spinal cord – embryogenesis and external structure 3. Internal structure of the spinal cord 4. Grey matter – nuclei and laminae 5. White matter – nerve fiber tracts 6. Reflex apparatus of the spinal cord 7. Formation and general organization of the spinal nerves 8. Dorsal and ventral rami of the spinal nerves – plexuses Classification of the nervous system Prof. Dr. Nikolai Lazarov 2 Spinal cord Embryogenesis of the spinal cord origin : neuroectodermal caudal part of the neural tube begin of formation : 3rd week developmental stages: basal plate and alar plate neural plate neural groove neural tube nerve crest closure of posterior neuropore: 4th week histogenesis – zones in the wall: marginal layer white matter intermediate (mantle) layer grey matter ventricular (ependymal) layer central canal Prof. Dr. Nikolai Lazarov 3 Spinal cord Topographic location, size and extent topography and levels – in the vertebral canal fetal life – the entire length of vertebral canal at birth – near the level L3 vertebra adult – upper ⅔ of vertebral canal (L1-L2) average length: ♂ – 45 cm long ♀ – 42-43 cm diameter ~ 1-1.5 cm (out of enlargements) weight ~ 35 g (2% of the CNS) shape – round to oval (cylindrical) terminal part: conus medullaris filum terminale internum (cranial 15 cm) – S2 filum terminale externum (final 5 cm) – Co2 cauda equina – collection of lumbar and sacral spinal nerve roots Prof. Dr. Nikolai Lazarov 4 Spinal cord Macroscopic anatomy – enlargements cervical enlargement, intumescentia cervicalis: spinal segments (C4-Th1) vertebral levels (C4-Th1) provides upper limb innervation (brachial plexus) lumbosacral enlargement, intumescentia lumbosacralis: spinal segments (L2-S3) vertebral levels (Th9-Th12) segmental innervation of lower limb (lumbosacral plexus) Prof.
    [Show full text]
  • Neurology Neurosurgery & Psychiatry
    J7ournal ofNeurology, Neurosurgery, and Psychiatry 1994;57:773-777 773 Journal of NEUROLOGY J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.57.7.773 on 1 July 1994. Downloaded from NEUROSURGERY & PSYCHIATRY Editorial Pathophysiology of spasticity Spasticity is a frequent and often disabling feature of operations, however, may entail damage to areas other neurological disease. It may result in loss of mobility and than area 4, and to the cortical origins of motor systems pain from spasms. The core feature of the spastic state is separate from the pyramidal tract. Excision of the ventral the exaggeration of stretch reflexes, manifest as hyper- precentral gyrus (arm area) involves removal of part of tonus. The stretch reflex threshold is reduced,' and its area 4 and, in addition, the ventral portion of area 6 (the gain may be increased.2 The result is the velocity-depen- premotor area), which occupies the anterior border of the dent increase in resistance of a passively stretched muscle precentral gyrus.21 Removal of the superior part of the or muscle group detected clinically. Often, this is associ- precentral gyrus (leg area) risks damage to the supple- ated with a sudden melting of resistance during stretch, mentary motor area, and fibres leaving it.8 "1 More impor- the clasp-knife phenomenon. In addition, there may be tant therefore may be those cases in whom hemiparesis of other related signs, such as weakness, impairment of fine cortical origin is not accompanied by spasticity.22 One movements of the digits, hyperreflexia, loss of cutaneous such case was recently reported in whom MRI demon- reflexes, Babinski's sign, clonus, spasms and changes in strated a lesion confined to the precentral gyrus.23 posture.
    [Show full text]