X-15 Research Results with a Selected Bibliography

Total Page:16

File Type:pdf, Size:1020Kb

X-15 Research Results with a Selected Bibliography NASA RESEARCH RESULTS X-1s ith a Selected Bibliography 4 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA SP-60 RESEARCH RESULTS X-15 With a Selected Bibliography By Wendell H. Stillwell AND SP CS AC TI E U A A D N M O I N R E I S A T L R A A T N I O O I Scientific and Technical Information Division N 1 9 6 5 T A N U.S.A. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. FOR SALE BY THE SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE, WASHINGTON, D.C., 20402-PRICE 55 CENTS Foreword N A PERIOD of a little more than sixty years since the first I flight of the Wright Brothers, man’s exploration of three-dimen- sional space above the surface of the Earth has extended beyond the atmosphere. Spectacular and exciting events in this dramatic quest have been well publicized. Behind these milestones of practical flight have been less publicized achievements in scientific research, making such progress possible. Although the X–15 has had its share of newsworthy milestones, its contributions to scientific research have been a more essential and more meaningful part of the program from its inception. This semi-technical summary of the X–15 program is directed toward the less publicized aspects of its achievements. The year 1964 marks the tenth anniversary of the inception of the X–15 flight-research program, the fifth year since the first X–15 flight. When the program was first approved, its objectives were clearly stated in terms of aerodynamic heating, speed, altitude, sta- bility-and-control research, and bioastronautics. Although these objectives have been essentially accomplished, it now appears that the three X–15’s may be flown for perhaps another five years, in a new role as test beds for fresh experiments utilizing the X–15 per- formance, which still offers more than twice the speed and three times the altitude capability of any other aircraft now in existence. Even though the program has been most successful in terms of achieving its planned objectives and is continuing to play an impor- tant role in aerospace research, many notable benefits have been of a different nature—more intangible and somewhat unforeseen at the time the X–15 program was approved. In the early years of our nation’s space program, which has been based to a large extent on the unmanned-missile technology that had been developed over the five years prior to Project Mercury, the X–15 has kept in proper perspective the role of the pilot in future manned space programs. It has pointed the way to simplified operational concepts that should iii X–15 RESEARCH RESULTS provide a high degree of redundancy and increased chance of suc- cess in these future missions. All of the people in industry and in government who have had to face the problems of design and of building the hardware and making it work have gained experience of great value to the more recent programs now reaching flight phase and to future aeronautical and space endeavors of this country. The X–15 program and Project Mercury have represented a par- allel, two-pronged approach to solving some of the problems of manned space flight. While Mercury was demonstrating man’s capability to function effectively in space, the X–15 was demon- strating man’s ability to control a high-performance vehicle in a near-space environment. At the same time, considerable new knowl- edge was obtained on the techniques and problems associated with lifting reentry. Already the lessons learned are being applied to our new manned space programs. The pilot is playing a much greater role in these programs. Certainly the problem of launching the lunar-excursion module from the surface of the Moon through the sole efforts of its two-man crew must appear more practical and feasible in the light of the repeated launchings of the X–15 through the efforts of its pilot and the launch operator on the carrier B–52 than would be the case if it were compared only with the elaborate launch proce- dures and large numbers of people, buried safely in blockhouses, that typify all other launch operations to date. Future space programs may well include a lifting reentry and a more conventional landing on Earth, in the fashion demonstrated by the X–15. Edwards, California PAUL F. BIKLE, Director November 1, 1964 NASA Flight Research Center iv Contents CHAPTER PAGE Foreword iii Chronology vi 1 The Role of the X–15 1 2 The First Hypersonic Airplane 9 3 Developing a Concept 17 4 Flight Research 33 5 Aerodynamic Characteristics of Supersonic- Hypersonic Flight 47 6 A Hypersonic Structure 59 7 The Dynamics of Flight 71 8 Man-Machine Integration 83 9 A Flying Laboratory 95 Bibliography 103 Index 117 Chronology June 1952 NACA Committee on February 1956 Reaction Motors, Aerodynamics recommends increase in Inc., awarded development contract research dealing with flight to Mach for XLR–99 rocket engine. 10 and to altitudes from 12 to 50 miles. December 1956 X–15 mock-up com- Also recommends that NACA endeavor pleted. to define problems associated with September 1957 Design configura- space flights at speeds up to the velocity tion set. Construction starts. of escape from Earth’s gravity. October 1958 Factory rollout of No. 1 July 1952 NACA Executive Com- airplane. mittee adopts recommendations of June 8, 1959 First glide flight, No. 1 Committee on Aerodynamics. airplane. September 1952 Preliminary stud- September 17, 1959 First powered ies of research on space flight and asso- flight, No. 2 airplane. ciated problems begun. November 15, 1960 First flight with February 1954 NACA Research XLR–99 engine. Airplane Projects panel meeting dis- February 7, 1961 Last flight with cusses need for a new research airplane interim rocket engine. to study hypersonic and space flight. March 7, 1961 First flight to Mach 4. March 1954 Laboratories request- June 23, 1961 First flight to Mach 5. ed to submit views on most important October 11, 1961 First flight above research objectives and design require- 200 000 ft. ments of a new research airplane. November 9, 1961 First flight to May 1954 NACA teams establish Mach 6. characteristics of a new research air- December 20, 1961 First flight of plane, which subsequently becomes the No. 3 airplane. X–15. July 17, 1962 First flight above July 1954 Proposal for new research 300 000 ft. airplane presented to the Air Force November 9, 1962 No. 2 airplane and Navy. damaged during emergency landing. December 1954 Memorandum of June 27, 1963 50th flight over Mach understanding for a “Joint Project for 4. a New High-Speed Research Airplane” January 28, 1964 100th flight in signed by representatives of the Air series. Force, Navy, and NACA. June 25, 1964 First flight of rebuilt December 1954 Invitations issued No. 2 airplane. by the Air Force to contractors to par- August 12, 1964 50th flight over ticipate in the X–15 design competi- Mach 5. tion. August 14, 1964 75th flight over September 1955 North American Mach 4. Aviation, Inc., selected to develop three October 15, 1964 50th flight by No. 1 X–15 research airplanes. airplane; 119th flight in program. vi C H A P T E R 1 The Role of the X–15 OT SINCE THE WRIGHT BROTHERS solved the basic Nproblems of sustained, controlled flight has there been such an assault upon our atmosphere as during the first years of the space age. Man extended and speeded up his travels within the vast ocean of air surrounding the Earth until he achieved flight outside its confines. This remarkable accomplishment was the culmination of a long history of effort to harness the force of that air so that he could explore the three-dimensional ocean of atmosphere in which he lives. That history had shown him that before he could explore his ethereal ocean, he must first explore the more restrictive world of aerodynamic forces. Knowledge about this world came as man developed theories and experimental techniques that helped him understand the complex reaction of air upon a vehicle moving through it. One of the earliest theories came from Leonardo da Vinci, who sought to explain the flight of birds. It was Sir Isaac Newton who, among his many achievements, first put a possible explanation for aerodynamic forces into mathematical form. Later, crude experiments began to pro- vide measurable answers to supplement the theories of airflow. Sometimes the theories failed to stand up in the light of experimental evidence. Often both theory and experiment gave incomplete answers. But man learned to apply this knowledge. Whenever enough theory was available to answer some questions and enough experi- mental evidence was at hand to answer others, he has advanced in flight, often past his full understanding of how he did it. While the Wright Brothers had learned many answers before their first flight, men were still trying to discover all the theories that explained it 2 X–15 RESEARCH RESULTS long after it was history. Every pioneering flight stimulated the building of other airplanes, and further theoretical and experimental studies. From all of these efforts has come the detailed under- standing of the aerodynamics of flight so necessary as the firm foun- dation upon which aviation progress has been built. Nowhere is the durability of this foundation more evident than in the most advanced airplane in the world, the X–15 rocket airplane. For the mathematical theory that Newton published in 1726—long discounted because it couldn’t be applied to airflow at low speeds— is now used to help understand the aerodynamic forces encountered by the X–15 at speeds of 4000 miles per hour.
Recommended publications
  • Module 1: Hypersonic Atmosphere Lecture1: Characteristics of Hypersonic Atmosphere
    NPTEL –Aerospace Module 1: Hypersonic Atmosphere Lecture1: Characteristics of Hypersonic Atmosphere 1.1 Introduction Hypersonic flight has special traits, some of which are seen in every hypersonic flight. Presence of these particular features during a flight is highly dependant on type of trajectory, configuration etc. In short it is the mission requirement which decides the nature of hypersonic atmosphere encountered by the flight vehicle. Some missions are designed for high deceleration in outer atmosphere during reentry. Hence, those flight vehicles experience longer flight duration at high angle of attacks due to which blunt nosed configuration are generally preferred for such aircrafts. On the contrary, some missions are centered on low flight duration with major deceleration closer to earth surface hence these vehicles have sharp nose and low angle of attack flights. Reentry flight path of hypersonic vehicle is thus governed by the parameters called as ballistic parameter and lifting parameter. These parameters are obtained by applying momentum conservation equation in the direction of the flight path and normal to it. Velocity-altitude map of the flight is thus made from the knowledge of these governing flight parameters, weight and surface area. Ballistic parameter is considered for non lifting reentry flights like flight path of Apollo capsule, however lifting parameter is considered for lifting reentry trajectories like that of space shuttle. Therefore hypersonic flight vehicles are classified in four different types based on the design constraints imposed from mission specifications. 1. Reentry Vehicles (RV): These vehicles are typically launched using rocket propulsion system. Reentry of these vehicles is controlled by control surfaces.
    [Show full text]
  • Notes on Earth Atmospheric Entry for Mars Sample Return Missions
    NASA/TP–2006-213486 Notes on Earth Atmospheric Entry for Mars Sample Return Missions Thomas Rivell Ames Research Center, Moffett Field, California September 2006 The NASA STI Program Office . in Profile Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. Collected advancement of aeronautics and space science. The papers from scientific and technical confer- NASA Scientific and Technical Information (STI) ences, symposia, seminars, or other meetings Program Office plays a key part in helping NASA sponsored or cosponsored by NASA. maintain this important role. • SPECIAL PUBLICATION. Scientific, technical, The NASA STI Program Office is operated by or historical information from NASA programs, Langley Research Center, the Lead Center for projects, and missions, often concerned with NASA’s scientific and technical information. The subjects having substantial public interest. NASA STI Program Office provides access to the NASA STI Database, the largest collection of • TECHNICAL TRANSLATION. English- aeronautical and space science STI in the world. language translations of foreign scientific and The Program Office is also NASA’s institutional technical material pertinent to NASA’s mission. mechanism for disseminating the results of its research and development activities. These results Specialized services that complement the STI are published by NASA in the NASA STI Report Program Office’s diverse offerings include creating Series, which includes the following report types: custom thesauri, building customized databases, organizing and publishing research results . even • TECHNICAL PUBLICATION. Reports of providing videos. completed research or a major significant phase of research that present the results of NASA For more information about the NASA STI programs and include extensive data or theoreti- Program Office, see the following: cal analysis.
    [Show full text]
  • Performances of a Small Hypersonic Airplane (Hyplane)
    Politecnico di Torino Porto Institutional Repository [Proceeding] PERFORMANCES OF A SMALL HYPERSONIC AIRPLANE (HYPLANE) Original Citation: Savino R.; Russo G.; D’Oriano V.; Visone M.; Battipede M.; Gili P. (2014). PERFORMANCES OF A SMALL HYPERSONIC AIRPLANE (HYPLANE). In: 65th International Astronautical Congress„ Toronto, Canada, 29 September - 3 October 2014. pp. 1-13 Availability: This version is available at : http://porto.polito.it/2591763/ since: February 2015 Publisher: International Astronautical Federation (IAF) Terms of use: This article is made available under terms and conditions applicable to Open Access Policy Article ("Public - All rights reserved") , as described at http://porto.polito.it/terms_and_conditions. html Porto, the institutional repository of the Politecnico di Torino, is provided by the University Library and the IT-Services. The aim is to enable open access to all the world. Please share with us how this access benefits you. Your story matters. (Article begins on next page) 65th International Astronautical Congress, Toronto, Canada. Copyright ©2014 by the Authors. Published by the IAF, with permission and released to the IAF to publish in all forms. IAC-14-D2.4 PERFORMANCES OF A SMALL HYPERSONIC AIRPLANE (HYPLANE) Raffaele Savino Department of Industrial Engineering, University of Naples “Federico II”, Italy Gennaro Russo Trans-Tech srl and Space Renaissance Italia, Italy Vera D’Oriano*, Michele Visone Blue Engineering, Italy Manuela Battipede, Piero Gili Department of Mechanical and Aerospace Engineering, Polytechnic of Turin, Italy In the present work a preliminary performance study regarding a small hypersonic airplane named HyPlane is presented. It is designed for long duration sub-orbital space tourism missions, in the frame of the Space Renaissance (SR) Italia Space Tourism Program.
    [Show full text]
  • Aerothermodynamic Analysis of a Mars Sample Return Earth-Entry Vehicle" (2018)
    Old Dominion University ODU Digital Commons Mechanical & Aerospace Engineering Theses & Dissertations Mechanical & Aerospace Engineering Summer 2018 Aerothermodynamic Analysis of a Mars Sample Return Earth- Entry Vehicle Daniel A. Boyd Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/mae_etds Part of the Aerodynamics and Fluid Mechanics Commons, Space Vehicles Commons, and the Thermodynamics Commons Recommended Citation Boyd, Daniel A.. "Aerothermodynamic Analysis of a Mars Sample Return Earth-Entry Vehicle" (2018). Master of Science (MS), Thesis, Mechanical & Aerospace Engineering, Old Dominion University, DOI: 10.25777/xhmz-ax21 https://digitalcommons.odu.edu/mae_etds/43 This Thesis is brought to you for free and open access by the Mechanical & Aerospace Engineering at ODU Digital Commons. It has been accepted for inclusion in Mechanical & Aerospace Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. AEROTHERMODYNAMIC ANALYSIS OF A MARS SAMPLE RETURN EARTH-ENTRY VEHICLE by Daniel A. Boyd B.S. May 2008, Virginia Military Institute M.A. August 2015, Webster University A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE AEROSPACE ENGINEERING OLD DOMINION UNIVERSITY August 2018 Approved by: __________________________ Robert L. Ash (Director) __________________________ Oktay Baysal (Member) __________________________ Jamshid A. Samareh (Member) __________________________ Shizhi Qian (Member) ABSTRACT AEROTHERMODYNAMIC ANALYSIS OF A MARS SAMPLE RETURN EARTH-ENTRY VEHICLE Daniel A. Boyd Old Dominion University, 2018 Director: Dr. Robert L. Ash Because of the severe quarantine constraints that must be imposed on any returned extraterrestrial samples, the Mars sample return Earth-entry vehicle must remain intact through sample recovery.
    [Show full text]
  • FAA Order 8130.2H, February 4, 2015
    U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADM INISTRATION ORDER 8130.2H 02/04/2015 National Policy SUBJ: Airworthiness Certification of Products and Articles This order establishes procedures for accomplishing original and recurrent airworthiness certification ofaircraft and related products and articles. The procedures contained in this order apply to Federal Aviation Administration (FAA) manufacturing aviation safety inspectors (ASI), to FAA airworthiness AS Is, and to private persons or organizations delegated authority to issue airworthiness certificates and related approvals. Suggestions for improvement of this order may be submitted using the FAA Office of Aviation Safety (AVS) directive feedback system at http://avsdfs.avs.faa.gov/default.aspx, or FAA Form 1320-19, Directive Feedback Information, found in appendix I to this order. D G!JD Cf1 · ~ David Hempe Manager, Design, Manufacturing, & Airworthiness Division Aircraft Certification Service Distribution: Electronic Initiated By: AIR-1 00 02/04/2015 8130.2H Table of Contents Paragraph Page Chapter 1. Introduction 100. Purpose of This Order .............................................................................. 1-1 101. Audience .................................................................................................. 1-1 102. Where Can I Find This Order .................................................................. 1-1 103. Explanation of Policy Changes ................................................................ 1-1 104. Cancellation ............................................................................................
    [Show full text]
  • Modelling a Hypersonic Single Expansion Ramp Nozzle of a Hypersonic Aircraft Through Parametric Studies
    energies Article Modelling a Hypersonic Single Expansion Ramp Nozzle of a Hypersonic Aircraft through Parametric Studies Andrew Ridgway, Ashish Alex Sam * and Apostolos Pesyridis College of Engineering, Design and Physical Sciences, Brunel University London, London UB8 3PH, UK; [email protected] (A.R.); [email protected] (A.P.) * Correspondence: [email protected]; Tel.: +44-1895-267-901 Received: 26 September 2018; Accepted: 7 December 2018; Published: 10 December 2018 Abstract: This paper aims to contribute to developing a potential combined cycle air-breathing engine integrated into an aircraft design, capable of performing flight profiles on a commercial scale. This study specifically focuses on the single expansion ramp nozzle (SERN) and aircraft-engine integration with an emphasis on the combined cycle engine integration into the conceptual aircraft design. A parametric study using computational fluid dynamics (CFD) have been employed to analyze the sensitivity of the SERN’s performance parameters with changing geometry and operating conditions. The SERN adapted to the different operating conditions and was able to retain its performance throughout the altitude simulated. The expansion ramp shape, angle, exit area, and cowl shape influenced the thrust substantially. The internal nozzle expansion and expansion ramp had a significant effect on the lift and moment performance. An optimized SERN was assembled into a scramjet and was subject to various nozzle inflow conditions, to which combustion flow from twin strut injectors produced the best thrust performance. Side fence studies observed longer and diverging side fences to produce extra thrust compared to small and straight fences. Keywords: scramjet; single expansion ramp nozzle; hypersonic aircraft; combined cycle engines 1.
    [Show full text]
  • Tactical Missile Structures and Materials Technology
    WILLIAM C. CAYWOOD, ROBERT M. RIVELLO, and LOUIS B. WECKESSER TACTICAL MISSILE STRUCTURES AND MATERIALS TECHNOLOGY Significant advances have occurred in missile structures and materials technology since the late 1940's. Some of the advances were the result of improvements in design concepts and material prop­ erties; others were from the development of new materials and fabrication techniques. Rapid strides in computer technology and methods of structural analysis have also played an important role. This article discusses the structural design requirements for the next generation of missiles and reviews the technological advances that will make it possible to meet those requirements. INTRODUCTION Antenna housing The Applied Physics Laboratory's experience in Cowl assembly tactical missile structural design began with the devel­ opment of the rocket-powered Terrier and the ramjet-powered Talos in the late 1940's. The air­ frames for those missiles were designed with conven­ tional aircraft materials, using slide rules, mechanical desk calculators, handbooks, and rule-of-thumb pro­ cedures. To ensure adequate safety margins, conser­ Innerbody fairing vative analytical procedures were pursued, followed Sheet magnesium Innerbody by extensive environmental testing. Simple aluminum forward cone Cast magnesium and steel structures operating at temperatures below Figure 1 - Magnesium components in Talos represented 300°F for Terrier and 600°F for Talos made up the 13 % of the weight of the primary load-carrying structure major portion of the missiles. Terrier was con­ and 10 % of the gross launch weight. structed primarily from machined castings. Talos, shown in Fig. 1 with its central air duct configura­ tion, used sheet metal construction.
    [Show full text]
  • Leading the Charge We Put TBM 940 Speedster Through Its Paces for NBAA
    15-21 October 2019 I flightglobal.com FLIGHT TEST Leading the charge We put TBM 940 speedster through its paces for NBAA £3.90 Wow, how? ACES high 42 Questions remain over defunct US Air Force boosts Collins Icelandic carrier’s comeback 13 with ejection seat deal 20 9 770015 371310 FLIGHT TEST Power of one Turboprop-single family has been a market success since launch in 1988, amassing sales of more than 900 units across three variants Daher has delivered a compelling offer for owner-flyers, with a range of enhancements on the TBM 940 providing an edge over the piston-twin segment. We put it through its paces MICHAEL GERZANICS POMPANO BEACH have allowed single-engined designs to make to be efficient. Airspace congestion, however, inroads into the twin-turbine segment. can make reaching optimum altitudes for jets he single-engined turboprop market The growth of the single-engined turbo- problematic, so their real-world range can be is populated by numerous aircraft of prop segment is based on the near-bulletproof shorter. Jets also have higher direct operating varying configurations. In broad reliability and scalability of the PT6 family. costs, however. T strokes, it can be broken down into This paradigm shift from piston-twins to tur- Runway performance and training require- two segments: fast, low-winged aircraft and bine-singles is conceptually on par with ex- ments are also two factors that fuel the single- slower, more spacious high-winged designs. tended twin-engine operations authorisations engined turboprop segment, because runway In the West, these diverse offerings share a all but killing off three- and four-engined civil length for turboprops is shorter than that single critical component – their engine.
    [Show full text]
  • Aerodynamic Heating of Inflatable Aeroshell in Orbital Reentry
    Title Aerodynamic heating of inflatable aeroshell in orbital reentry Author(s) Takahashi, Yusuke; Yamada, Kazuhiko Acta astronautica, 152, 437-448 Citation https://doi.org/10.1016/j.actaastro.2018.08.003 Issue Date 2018-11 Doc URL http://hdl.handle.net/2115/79647 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license Rights http://creativecommons.org/licenses/by-nc-nd/4.0/ Rights(URL) http://creativecommons.org/licenses/by-nc-nd/4.0/ Type article (author version) File Information paper_titans_heatflux.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Aerodynamic Heating of Inflatable Aeroshell in Orbital Reentry Yusuke Takahashi1, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan and Kazuhiko Yamada2 Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan Keywords: Inflatable reentry vehicle, Aerodynamic heating, Hypersonic, Deformation, Coupled analysis Abstract The aerodynamic heating of an inflatable reentry vehicle, which is one of the innova- tive reentry technologies, was numerically investigated using a tightly coupled approach involving computational fluid dynamics and structure analysis. The fundamentals of a high-enthalpy flow around the inflatable reentry vehicle were clarified. It was found that the flow fields in the shock layer formed in front of the vehicle were strongly in a chemical nonequilibrium state owing to its low-ballistic coefficient trajectory. The heat flux tendencies on the surface of the vehicle were comprehensively investigated for various effects of the vehicle shape, surface catalysis, and turbulence via a parametric study of these parameters.
    [Show full text]
  • CF-18 Fighter Demonstration Manual
    FIGHTER DEMONSTRATION MANUAL Version 4.0 Issued under the Authority of Commander 1 Canadian Air Division Custodian: OC FSET March 2019 Endorsed by: Approved by: Recoverable Signature Recoverable Signature X A DComd FG Col Luc Girou... X BGen I.H. Huddleston MGen J.H.C Drouin Deputy Commander Force Generation Commander 1 Canadian Air Division Signed by: GIROUARD, LUC 607 Signed by: BOYLE, SEAN 627 Fighter Demonstration Manual Record of Amendments Amend DATE DETAILS DONE BY # 0 XX Mar 19 Capt Thys R.G.T. This document is issued on the authority of the OC Fighter Standards and Evaluation Team (FSET) and contains information specific to the employment and role of the Fighter Demonstration Team. Inquiries and suggestions for changes shall be forwarded through Special Events Coord and OC FSET for review and submission to SSO Fighters for the approval of the Commander 1 Canadian Air Division. Table of Contents FIGHTER DEMONSTRATION MANUAL .................................................... 1 Chapter 1: PREPARATION ........................................................................ 8 101. TEAM SELECTION ........................................................... 8 102. AIRSHOW ROUTINE ........................................................ 9 103. FIGHTER DEMONSTRATION TRAINING ........................ 9 104. ACCEPTANCE SHOW ...................................................... 9 Chapter 2: OPERATIONAL CONSIDERATIONS .................................... 11 201. CONFIGURATION .......................................................... 11
    [Show full text]
  • Scramjet Nozzle Design and Analysis As Applied to a Highly Integrated Hypersonic Research Airplane
    NASA TECHN'ICAL NOTE NASA D-8334 d- . ,d d K a+ 4 c/) 4 z SCRAMJET NOZZLE DESIGN AND ANALYSIS AS APPLIED TO A HIGHLY INTEGRATED HYPERSONIC RESEARCH AIRPLANE Wi'llidm J. Smull, John P. Wehher, and P. J. Johnston i Ldngley Reseurch Center Humpton, Va. 23665 / NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. c. .'NOVEMBER 1976 TECH LIBRARY KAFB, NM I Illill 111 lllll11Il1 lllll lllll lllll IIll ~~ ~~- - 1. Report No. 2. Government Accession No. -. ___r_- --.-= .--. NASA TN D-8334 I ~~ 4. Title and ,Subtitle 5. Report Date November 1976 7. Author(sl 8. Performing Organization Report No. William J. Small, John P. Weidner, L-11003 and P. J. Johnston . ~ ~-.. ~ 10. Work Unit No. 9. Performing Organization Nwne and Address 505-11-31-02 NASA Langley Research Center 11. Contract or Grant No. Hampton, VA 23665 13. Type of Report and Period Covered ,. 12. Sponsoring Agency Name and Address Technical Note National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington, DC 20546 -. I 15. Supplementary Notes -~ 16. Abstract The great potential expected from future air-breathing hypersonic aircraft systems is predicated on the assumption that the propulsion system can be effi- ciently integrated with the airframe. A study of engine-nozzle airframe inte- gration at hypersonic speeds has been conducted by using a high-speed research- aircraft concept as a focus. Recently developed techniques for analysis of scramjet-nozzle exhaust flows provide a realistic analysis of complex forces resulting from the engine-nozzle airframe coupling. Results from these studies show that by properly integrating the engine-nozzle propulsive system with the airframe, efficient, controlled and stable flight results over a wide speed range.
    [Show full text]
  • This Annex to EASA TCDS IM.A.636 Was Created to Publish Selected
    Explanatory Note to TCDS No.: EASA.IM.A.636 – M3000 Date: 06/03/2020 Issue: 03 This annex to EASA TCDS IM.A.636 was created to publish selected special conditions / deviations / equivalent safety findings that are part of the applicable certification basis: CONTENTS B-02 High Speed Characteristics 2 B-52 Human Factor – Integrated Avionics Systems 12 C-03 Speed Margin 18 C-04 Yawing Manoeuvre 21 C-106 Emergency landing dynamic conditions - HIC 22 C-107 Emergency landing dynamic conditions - lumbar loads 24 D-01 Take-off Warning System 26 D-02 Extension and Retraction Systems 27 D-03 Wheels 28 D-04 Brakes and Braking System 29 D-05 Doors / Canopy 32 D-06 Bird Strike 35 D-102 Canopy Fracturing System 36 D-103 Ejection Seats 44 D-105 Emergency Evacuation Provisions 52 D-106 Fire Extinguisher 53 D-107 Cabin Pressure Altitude Warning Indication 54 E-101 Digital Electronic engine/propeller control PMU 55 E-114 Suction Defuel 56 E-115 Single Power Control Lever 57 E-116 Digital Propeller Tachometer and Markings 58 E-117 Digital Propeller Tachometer and Markings 59 F-02 Hydraulic System 60 F-52 Protection from Effects of HIRF 61 F-54 Protection from Effects of Lightning Strike, Indirect Effects 65 F-101 On Board Oxygen Generator System - OBOGS 66 F-103 Electronic Standby Direction Indicator (Compass) 71 F-104 HUD Certification 72 ESF 23.841-01 Cabin rate of climb indicator removal 74 ESF 23.1555 Use of Yellow and Black Emergency Markings 75 Disclaimer – This document is not exhaustive and it will be updated gradually.
    [Show full text]