Distribution and Structure of Faunal Assemblages and Their Associated Physical Conditions on the Atlantic Continental Shelf of the British Isles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Taxonomic Study of the Pagurus Forbesii "Complex" (Crustacea
Taxonomic study of the Pagurus forbesii "complex" (Crustacea: Decapoda: Paguridae). Description of Pagurus pseudosculptimanus sp. nov. from Alborán Sea (Southern Spain, Western Mediterranean Sea). GARCÍA MUÑOZ J.E.1, CUESTA J.A.2 & GARCÍA RASO J.E.1* 1 Dept. Biología Animal, Fac. Ciencias, Univ. Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain. 2 Inst. Ciencias Marinas de Andalucía (CSIC), Av. República Saharaui, 2, 11519 Puerto Real, Cádiz, Spain. * Corresponding author - e-mail address: [email protected] ABSTRACT The study of hermit crabs from Alboran Sea has allowed recognition of two different morphological forms under what had been understood as Pagurus forbesii. Based on morphological observations with various species of Pagurus, and molecular studies, a new species is defined and described as P. pseudosculptimanus. An overview on species of Pagurus from the eastern Atlantic and Mediterranean Sea is provided. Key words: Pagurus, new species, Mediterranean, eastern Atlantic. 1 Introduction More than 170 species from around the world are currently assigned to the genus Pagurus Fabricius, 1775 (Lemaitre and Cruz Castaño 2004; Mantelatto et al. 2009; McLaughlin 2003, McLaughlin et al. 2010). This genus is complex because of there is high morphological variability and similarity among some species, and has been divided in groups (e.g. Lemaitre and Cruz Castaño 2004 for eastern Pacific species; Ingle, 1985, for European species) with difficulty (Ayón-Parente and Hendrickx 2012). This difficulty has lead to taxonomic problems, although molecular techniques have been recently used to elucidate some species (Mantelatto et al. 2009; Da Silva et al. 2011). Thirteen species are present in eastern Atlantic (European and the adjacent African waters) (Ingle 1993; Udekem d'Acoz 1999; Froglia, 2010, MarBEL Data System - Türkay 2012, García Raso et al., in press) but only nine of these (the first ones mentioned below) have been cited in the Mediterranean Sea, all of them are present in the study area (Alboran Sea, southern Spain). -
Marine ==- Biology © Springer-Verlag 1988
Marine Biology 98, 39-49 (1988) Marine ==- Biology © Springer-Verlag 1988 Analysis of the structure of decapod crustacean assemblages off the Catalan coast (North-West Mediterranean) P. Abell6, F.J. Valladares and A. Castell6n Institute de Ciencias del Mar, Passeig Nacional s/n, E-08003 Barcelona, Spain Abstract Zariquiey Alvarez 1968, Garcia Raso 1981, 1982, 1984), as well as different biological aspects of the economically We sampled the communities of decapod crustaceans important species (Sarda 1980, Sarda etal. 1981, etc.). inhabiting the depth zone between 3 and 871 m off the More recently, some studies of the species distribution of Catalan coast (North-West Mediterranean) from June the decapod crustacean communities of the North-West 1981 to June 1983. The 185 samples comprised 90 species Mediterranean have been published (Sarda and Palo- differing widely in their depth distributions. Multivariate mera 1981, Castellon and Abello 1983, Carbonell 1984, analysis revealed four distinct faunistic assemblages, (1) Abello 1986). However, the quantitative composition of littoral communities over sandy bottoms, (2) shelf com the decapod crustacean communities of this area remain munities over terrigenous muds, (3) upper-slope com largely unknown, and comparable efforts to those of munities, and (4) lower-slope or bathyal communities. The Arena and Li Greci (1973), Relini (1981), or Tunesi (1986) brachyuran crab Liocarcinus depurator is the most abun are lacking. dant species of the shelf assemblage, although L. vernalis The present -
The Incidence of Carcinonemertes Carcinophila (Kolliker) on Some Decapod Crustaceans from the Scottish West Coast
OPHELIA 30 (3): 225-233 (September 1989) THE INCIDENCE OF CARCINONEMERTES CARCINOPHILA (KOLLIKER) ON SOME DECAPOD CRUSTACEANS FROM THE SCOTTISH WEST COAST C. A. Comely & A. D. Ansell Dunstaffnage Marine Laboratory, P. O. Box no. 3, Oban, Argyll, Scotland ABSTRACT From May 1985 until June 1987, decapod crustaceans in the Firth of Lome were caught monthly by creeling. Ovigerous animals were preserved, and the gills and egg masses examined for evidence of infestation by the nemertean parasite Carcinonemertes carcinophila. Samples of the gills from male and non-ovigerous female crabs were also retained, and examined for the encysted juvenile stage. In the early months of 1989, a few ovigerous Carcinus maenas obtained by diving were examined. Ovigerous Liocarcinuspuber and L. depurator were caught in small numbers, and both were infest ed with the parasite. In L. depurator the gills were heavily infested with the encysted juveniles, but few worms were found in the egg mass, 7 being the highest number in a single crab. In L. puber up to 25 worms were found in an individual crab, but the number of cysts in the gills was low. Only one ovigerous C. maenas was obtained by creeling; the egg mass contained only a few nemertines, and very few cysts were found on the gills. However, of the few shore crabs obtained by diving, one had the highest number of free-living worms found on an egg mass (42), but again very few cysts were found on the gills. Examination of the gills from male and non-ovigerous female crabs confirmed that C. -
SNH Commissioned Report 940: Biological Analysis of Underwater
Scottish Natural Heritage Commissioned Report No. 940 Biological analysis of underwater video and infaunal data from surveys of the Moray Firth SAC COMMISSIONED REPORT Commissioned Report No. 940 Biological analysis of underwater video and infaunal data from surveys of the Moray Firth SAC For further information on this report please contact: Morven Carruthers Scottish Natural Heritage Great Glen House INVERNESS IV3 8NW Telephone: 01463 725018 E-mail: [email protected] This report should be quoted as: Moore, C.G. 2016. Biological analysis of underwater video and infaunal data from surveys of the Moray Firth SAC. Scottish Natural Heritage Commissioned Report No. 940. This report, or any part of it, should not be reproduced without the permission of Scottish Natural Heritage. This permission will not be withheld unreasonably. The views expressed by the author(s) of this report should not be taken as the views and policies of Scottish Natural Heritage. © Scottish Natural Heritage 2016. COMMISSIONED REPORT Summary Biological analysis of underwater video and infaunal data from surveys of the Moray Firth SAC Commissioned Report No. 940 Project No: 15846 Contractor: Dr Colin Moore Year of publication: 2016 Keywords Benthos; Moray Firth; SAC; video; grab; infauna; biotope. Background The aim of the current work was to increase understanding of the marine benthic habitats within the Moray Firth SAC through analysis of seabed video and still imagery collected at 30 sites in 2015 and by reanalysis of video footage from 228 sites and infaunal grab data from 30 sites collected in 2004. Main findings For each survey site the physical nature of the habitat and the species assemblage is described, together with ascription of the biotope. -
The American Slipper Limpet Crepidula Fornicata (L.) in the Northern Wadden Sea 70 Years After Its Introduction
Helgol Mar Res (2003) 57:27–33 DOI 10.1007/s10152-002-0119-x ORIGINAL ARTICLE D. W. Thieltges · M. Strasser · K. Reise The American slipper limpet Crepidula fornicata (L.) in the northern Wadden Sea 70 years after its introduction Received: 14 December 2001 / Accepted: 15 August 2001 / Published online: 25 September 2002 © Springer-Verlag and AWI 2002 Abstract In 1934 the American slipper limpet 1997). In the centre of its European distributional range Crepidula fornicata (L.) was first recorded in the north- a population explosion has been observed on the Atlantic ern Wadden Sea in the Sylt-Rømø basin, presumably im- coast of France, southern England and the southern ported with Dutch oysters in the preceding years. The Netherlands. This is well documented (reviewed by present account is the first investigation of the Crepidula Blanchard 1997) and sparked a variety of studies on the population since its early spread on the former oyster ecological and economic impacts of Crepidula. The eco- beds was studied in 1948. A field survey in 2000 re- logical impacts of Crepidula are manifold, and include vealed the greatest abundance of Crepidula in the inter- the following: tidal/subtidal transition zone on mussel (Mytilus edulis) (1) Accumulation of pseudofaeces and of fine sediment beds. Here, average abundance and biomass was 141 m–2 through the filtration activity of Crepidula and indi- and 30 g organic dry weight per square metre, respec- viduals protruding in stacks into the water column. tively. On tidal flats with regular and extended periods of This was reported to cause changes in sediments and emersion as well as in the subtidal with swift currents in near-bottom currents (Ehrhold et al. -
(Marmara Sea) and Ecological Characteristics of Their Habitats
RESEARCH ARTICLE Eur J Biol 2017; 76(1): 20-5 Decapod Crustaceans in the Marmara Island (Marmara Sea) and Ecological Characteristics of Their Habitats Begum Ayfer, Husamettin Balkis, Aysegul Mulayim* Istanbul University, Faculty of Science, Department of Biology, Istanbul, Turkey Please cite this article as: Ayfer B, Balkis H, Mulayim A. Decapod Crustaceans in the Marmara Island (Marmara Sea) and Ecological Characteristics of Their Habitats. Eur J Biol 2017; 76(1): 20-5. ABSTRACT We have performed series of analyses to identify decapod crustaceans inhabiting the littoral zone of the Marmara Island and to study specific ecological characteristics of the habitat. Samples of decapod crustaceans species were collected from 12 stations (6 onshore, 6 offshore) on May 12-17, 2008 and November 17-22, 2008. A total of 17 species and 1199 specimens of decapod crustaceans were recorded. Eigth species (A. lacazei, N. norvegicus, P. bluteli, P. longimana, P. platycheles, D. pugilator, D. personata and L. vernalis) have been reported in the littoral zone of Marmara Island for the first time in this study. Also our study also sheds light on some ecological properties (temperature, salinity, dissolved oxygen) of the habitats of the species from the littoral zone of the Marmara Island. Keywords: Ecology, decapoda, crustacea, Marmara Island, The Sea of Marmara INTRODUCTION The first study at the island was carried out by Ostrou- moff (3,4) followed by studies by Okuş (5), Yüksek (6) The Archipelago in the Sea of Marmara consisting of and Balkıs (7). small and large islands located southwest of the Sea of Marmara and the northwest of the Kapıdağ Peninsula MATERIALS AND METHODS are referred to as the Islands of Marmara. -
Pagurus Bernhardus)
MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Hermit crab (Pagurus bernhardus) MarLIN – Marine Life Information Network Marine Evidence–based Sensitivity Assessment (MarESA) Review Emily Wilson 2007-07-03 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1169]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Wilson, E. 2007. Pagurus bernhardus Hermit crab. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1169.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2007-07-03 Hermit crab (Pagurus bernhardus) - Marine Life Information Network See online review for distribution map Pagurus bernhardus on shell gravel. Distribution data supplied by the Ocean Photographer: Paul Naylor Biogeographic Information System (OBIS). -
Discovery of Sabellaria Spinulosa Reefs in an Intensively fished Area of the Dutch Continental Shelf, North Sea T ⁎ Karin J
Journal of Sea Research 144 (2019) 85–94 Contents lists available at ScienceDirect Journal of Sea Research journal homepage: www.elsevier.com/locate/seares Discovery of Sabellaria spinulosa reefs in an intensively fished area of the Dutch Continental Shelf, North Sea T ⁎ Karin J. van der Reijdena, , Leo Koopb, Sarah O'Flynnc, Silvia Garciad, Oscar Bose, Christiaan van Sluisf, David J. Maaholmd, Peter M.J. Hermang,h, Dick G. Simonsb, Han Olffa, Tom Ysebaertc,e, Mirjam Snellenb, Laura L. Goversa,i, Adriaan D. Rijnsdorpe,j, Ricardo Aguilard a Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700 CC Groningen, the Netherlands b Acoustics Group, Delft University of Technology, 2629 HS Delft, the Netherlands c NIOZ Royal Netherlands Institute for Sea Research, Department of Estuarine & Delta Systems, Utrecht University, P.O. Box 140, 4400 AC Yerseke, the Netherlands d OCEANA Europe, Gran Via 59, 28013 Madrid, Spain e Wageningen Marine Research, P.O. Box 68, 1970 AB IJmuiden, the Netherlands f The North Sea Foundation, P.O. Box 1578, 3500 BN Utrecht, the Netherlands g DELTARES, P.O. Box 177, 2600 MH Delft, the Netherlands h Delft University of Technology, Hydraulic Engineering, 2629 HS Delft, the Netherlands i NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, Utrecht University, PO Box 59, 1790 AB Den Burg, the Netherlands j Aquaculture and Fisheries Group, Wageningen University, P.O. Box 338, 6700 AH Wageningen, the Netherlands ARTICLE INFO ABSTRACT Keywords: The tube-building polychaete Sabellaria spinulosa (Ross worm) can form conspicuous biogenic reefs that stabilize Biogenic Reef the seabed and increase biodiversity by providing a habitat for a multitude of other species. -
Influence of Morphometry and Biomechanics on Diet Selection in Three Portunid Crabs
MARINE ECOLOGY PROGRESS SERIES Vol. 137: 111-121, 1996 Published June 27 Mar Ecol Prog Ser Influence of morphometry and biomechanics on diet selection in three portunid crabs Juan Freire*, M. Paz Sampedro, Eduardo Gonzalez-Gurriaran Departamento de Bioloxia Animal, Bioloxia Vexetal e Ecoloxia, Universidade da Coruna, Campus da Zapateira sln, E-15071 A Coruna, Spain ABSTRACT: r\/lorphometrlc and biomechanical characteristics [size, mechanical advantages (MAs), muscle mass ratio (MR)] of the chel~pedsof Necora puber, Ljocarclnus depurator and Liocarcjnus arcuatus (Crustacea,Decapoda, Portunidae) were analyzed to investigate their relation to diet selection patterns observed from gut content analysis of crabs from the Ria de Arousa (Galicia, NW Spain). The size of the chelipeds relative to body size is similar in the 3 species, but there are important differences In biomechanlcal parameters. Both males and females demonstrate an interspecific morphometric gradient where there is an inverse relationship between IMA and MR of the chelipeds. The prey con- sumed by portunids in the Ka de Arousa was classified according to its mobility and presence of a hard exoskeleton. The diet ot L. depurator had a high morphological diversity as the functional structure of the chelipeds is more versatile than in the othcr species. Chelipeds of L depurator are highly mobile because the MAs are relatively low, but the decrease in force produced is compensated by a relative increase in muscle mass. L. arcuatus has a lower h4R but the highest MA, hence the force produced depends more on the design of the chelipeds. These characteristics give rise to appendages with little mobility, which is reflected in a diet made up mainly of sedentary prey wlthout an exoskeleton. -
Humane Slaughter of Edible Decapod Crustaceans
animals Review Humane Slaughter of Edible Decapod Crustaceans Francesca Conte 1 , Eva Voslarova 2,* , Vladimir Vecerek 2, Robert William Elwood 3 , Paolo Coluccio 4, Michela Pugliese 1 and Annamaria Passantino 1 1 Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 981 68 Messina, Italy; [email protected] (F.C.); [email protected] (M.P.); [email protected] (A.P.) 2 Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic; [email protected] 3 School of Biological Sciences, Queen’s University, Belfast BT9 5DL, UK; [email protected] 4 Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence-Viale Pieraccini, 6-50139 Firenze, Italy; paolo.coluccio@unifi.it * Correspondence: [email protected] Simple Summary: Decapods respond to noxious stimuli in ways that are consistent with the experi- ence of pain; thus, we accept the need to provide a legal framework for their protection when they are used for human food. We review the main methods used to slaughter the major decapod crustaceans, highlighting problems posed by each method for animal welfare. The aim is to identify methods that are the least likely to cause suffering. These methods can then be recommended, whereas other methods that are more likely to cause suffering may be banned. We thus request changes in the legal status of this group of animals, to protect them from slaughter techniques that are not viewed as being acceptable. Abstract: Vast numbers of crustaceans are produced by aquaculture and caught in fisheries to Citation: Conte, F.; Voslarova, E.; meet the increasing demand for seafood and freshwater crustaceans. -
Hermit Crab Is a Small Hermit Crabs in the Families Paguridae and Diogenidae Are All Crustacean Found in Ocean Aquatic Marine Crabs
4 These crabs inhabit the local shoreline Pagurus bernhardus year Pagurus prideaux round. Class: Malacotraca Order: Decapoda Family: Paguridae Genus: Pagurus Pagurus bernhardus Distribution The hermit crab is a small Hermit crabs in the families Paguridae and Diogenidae are all crustacean found in ocean aquatic marine crabs. The family Paguridae on its own contains waters worldwide. Many several hundred different species. This species P. bernhardus is species are known from known to occur from Spitsbergen, Iceland and the Murman Sea only one or a few localities, throughout the boreal North American and European coasts and many are known world and in the Mediterranean Sea. It is common in Nova Scotian wide. New species are coastal waters. This is one of two known species occurring occurring. locally at Burntcoat Head. The other species is P. prideaux. It is similar in appearance and has somewhat the same distribution. Habitat They live along coasts in Although hermit crabs do venture into deeper waters, they are most types of sea beds, more commonly found in coastal waters where there is more including rocky and shell food and places to hide. Smaller individuals live in shallower bottoms, in sea grass beds, waters than larger individuals. A few species are land based. and sandy or silty Female terrestrial hermit crabs must return to the sea to breed. sediments, but excluding Larvae live mainly in pools and may be found under objects muddy bottoms. such as rocks and seaweed. Food It consumes microscopic bivalves, scraps of dead animals, The hermit crab is an microbes, and detritus. They are also able to filter organic omnivorous scavenger, particles from the water and will even graze on periphyton (a feeding on a wide variety of type of algae). -
Why Protect Decapod Crustaceans Used As Models in Biomedical Research and in Ecotoxicology? Ethical and Legislative Considerations
animals Article Why Protect Decapod Crustaceans Used as Models in Biomedical Research and in Ecotoxicology? Ethical and Legislative Considerations Annamaria Passantino 1,* , Robert William Elwood 2 and Paolo Coluccio 3 1 Department of Veterinary Sciences, University of Messina-Polo Universitario Annunziata, 98168 Messina, Italy 2 School of Biological Sciences, Queen’s University, Belfast BT9 5DL, Northern Ireland, UK; [email protected] 3 Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy; paolo.coluccio@unifi.it * Correspondence: [email protected] Simple Summary: Current European legislation that protects animals used for scientific purposes excludes decapod crustaceans (for example, lobster, crab and crayfish) on the grounds that they are non-sentient and, therefore, incapable of suffering. However, recent work suggests that this view requires substantial revision. Our current understanding of the nervous systems and behavior of decapods suggests an urgent need to amend and update all relevant legislation. This paper examines recent experiments that suggest sentience and how that work has changed current opinion. It reflects on the use of decapods as models in biomedical research and in ecotoxicology, and it recommends that these animals should be included in the European protection legislation. Abstract: Decapod crustaceans are widely used as experimental models, due to their biology, their sensitivity to pollutants and/or their convenience of collection and use. Decapods have been Citation: Passantino, A.; Elwood, viewed as being non-sentient, and are not covered by current legislation from the European Par- R.W.; Coluccio, P. Why Protect liament. However, recent studies suggest it is likely that they experience pain and may have the Decapod Crustaceans Used as capacity to suffer.