How to Identify Hemp, Cannabis Sativa L. (And Lookalike) Plants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cannabis – a Complex and Rapidly Evolving Landscape
CANNABIS – A COMPLEX AND RAPIDLY EVOLVING LANDSCAPE Abstract ABOUT THE AUTHOR The humble Cannabis sativa plant, cultivated for millennia for its psychoactive properties and more, is today considered one of the most controversial and complex plants in the world. Starting in the early to mid-20th century, much of its use became recreational, but by the early 1970s discoveries began to emerge around its potential medical efficacies. This article will discuss current knowledge of how cannabis engages with the brain and the endocannabinoid system (ECS) and provide an overview of the new market landscapes brought about by changes in governing laws Dr. Georgiana Willwerth-Pascutiu and regulations, which are affecting usage by our current and potential [email protected] customers. It will also explore the additional hazards, concerns, and Georgiana Willwerth-Pascutiu is Vice President, Global Medical Director considerations of cannabis use in countries where it remains illegal. at RGA. She is board certified in Insurance Medicine by the American Introduction Academy of Insurance Medicine (AAIM) and specialized in internal medicine, Naturally occurring psychoactive substances have been part of human life nephrology and ultrasonography. for millennia. One of the most frequently utilized plant sources of these Dr. Willwerth-Pascutiu is also a past substances, Cannabis sativa, is also the best-known worldwide. For the president of the Canadian Life Insurance Medical Officers Association (CLIMOA) past half-century, scientific and medical interest in its many compounds, and currently chairs its scientific known as cannabinoids, has been increasing. Today, the two best-known, committee. She is a frequent presenter and has contributed several articles to delta-9 tetrahydrocannabinol (THC), its psychoactive chemical, and insurance industry publications. -
Biocultural Behavior and Traditional Practices on The
Caldasia 42(1):70-84 | Enero-junio 2020 CALDASIA http://www.revistas.unal.edu.co/index.php/cal Fundada en 1940 ISSN 0366-5232 (impreso) ISSN 2357-3759 (en línea) ETHNOBOTANY Biocultural behavior and traditional practices on the use of species of Euphorbiaceae in rural home gardens of the Semiarid Region of Piauí State (NE, Brazil) Comportamiento biocultural y prácticas tradicionales sobre el uso de especies de Euphorbiaceae en huertos familiares en región semiárida del estado de Piauí (NE, Brasil) Jorge Izaquiel Alves de Siqueira 1* | Irlaine Rodrigues Vieira 1 | Edna Maria Ferreira Chaves 2 | Olga Lucía Sanabria-Diago 3 | Jesus Rodrigues Lemos 1 • Received: 21/nov/2018 Citation: Siqueira JIA, Vieira IR, Chaves EMF, Sanabria-Diago OL, Lemos JR. 2020. Biocultural behavior and • Accepted: 07/jun/2019 traditional practices on the use of species of Euphorbiaceae in rural home gardens of the Semiarid Region of • Published online: 26/agu/2019 Piauí State (NE, Brazil). Caldasia 42(1):70–84. doi: https://dx.doi.org/10.15446/caldasia.v42n1.76202. ABSTRACT In this article, we investigate the biocultural behavior regarding the use of species of the Euphorbiaceae in the Franco community, Cocal, Piauí State, located in the Semiarid Region of Brazil. For the study, we performed 19 interviews with the home gardens maintainers based on semi-structured interviews, and calculate the Use Value (UV) for each species mentioned by the interviewees. In addition, the im- portance of socioeconomic factors in this type of biocultural behavior was evaluated. Seven species of the Euphorbiaceae with biocultural emphasis were mentioned, distributed across four genera, which are cultivated for various purposes, including food, medicine, fuel, animal fodder, commercial sale, cultural uses, and others. -
A Review on Cannabis Sativa: Its Compounds and Their Effects
Int. J. Pharm. Sci. Rev. Res., 53(2), November - December 2018; Article No. 12, Pages: 59-63 ISSN 0976 – 044X Review Article A Review on Cannabis sativa: Its Compounds and Their Effects Ranju Rajput, *Dr. Krishan Kumar Department of Food and Biotechnology, Jayoti Vidyapeeth Women’s University, Jaipur, Rajasthan, India. *Corresponding author’s E-mail: [email protected] Received: 01-11-2018; Revised: 25-11-2018; Accepted: 10-12-2018. ABSTRACT Our society often considered the use of cannabis is an under-reported activity. Cannabis is used to relieve neuropathic and chronic pain. Cannabis, produced from the Cannabis sativa plant, have been used in three forms: herbal cannabis, the dried leaves and flowering tops The resin of the cannabis is the pressed secretions of the plant, known as ‘hashish’ or ‘charash. Cannabis sativa is an herbaceous species originated from Central Asia. It has been used in medicine and as a source of textile fiber since ancient times. The cannabis sativa is a fast growing plant attracted the people’s interest because of its multi-purpose applications. It is a rich source of photochemical, cellulose and woody fibers. The more interest is also due to its metabolites which show potent bioactivities on human health. In this review, the phytochemicals is discussed by putting a special emphasis on molecules including cannabinoids, terpenes and phenolic compounds. Cannabinoids are represented as the most studied group of compounds, because of their wide range of pharmaceutical effects in humans, including psychotropic activities. This article aims to update the current knowledge and evidence of using cannabis and its derivatives with a view to the sociolegal context and perspectives for future research. -
Leaf Anatomy of Cassava (Manihot Esculenta Crantz. Cv. IAC-12) After Herbicides Application to Control Weeds in Minas Gerais, Br
Ecofisiología Vegetal y Producción de Cultivos / Plant Ecophysiology and Crop Production Acta Agron. (2017) 66 (3) p 385 -390 ISSN 0120-2812 | e-ISSN 2323-0118 https://doi.org/10.15446/acag.v66n3.56055 Leaf anatomy of cassava (Manihot esculenta Crantz. cv. IAC-12) after herbicides application to control weeds in Minas Gerais, Brazil Anatomia foliar da mandioca (Manihot esculenta Crantz. cv. IAC-12) após aplicação de herbicidas para controlar as plantas daninhas em Minas Gerais, Brasil Daniel Valadão Silva1, Cassia Michelle Cabral2, Sarah Stéphane Diamantina da Costa2, Matheus de Freitas Souza3*, Evander Alves Ferreira2, Renan Rodrigues Braga3, Gustavo Antônio Mendes Pereira2 and José Barbosa dos Santos2 1Departamento de produção agrícola. Universidade Federal Rural do Semi-Árido- UFERSA, Brasil. 2Departamento de Agronomia- Universidade Federal dos Vales do Jequitinhonha e Mucuri- UFVJM, Brasil. 3Programa de Manejo Integrado de Plantas Daninhas. Universidade Federal de Viçosa, Brasil. Author for correspondence: [email protected] Rec.: 05.03.2016 Accep.: 20.08.2016 Abstract Micro-morphological changes precede the appearance of visible damage after herbicide application and are essential in providing data for the safe recommendation in chemical management of weeds. Therefore, the aim of this research was to verify the anatomical changes of leaf tissue caused by application of herbicides in cassava (Manihot esculenta Crantz.cv. IAC-12). A greenhouse experiment was conducted with post-emergence herbicides treatments as follows: nicossulfuron (60 g a.i ha-1), fluazifop (250 g a.i ha-1), fomesafem (250 g a.i ha-1), metribuzin (480 g a.i ha-1), oxyfluorfen (720 g a.i ha-1) and the mixture fluazifop + fomesafen (200 + 250 g a.i ha-1), and an untreated control, respectively. -
FL0107:Layout 1.Qxd
S. M. El Naggar & N. Sawady Pollen Morphology of Malvaceae and its taxonomic significance in Yemen Abstract El Naggar, S. M. & Sawady N.: Pollen Morphology of Malvaceae and its taxonomic signifi- cance in Yemen. — Fl. Medit. 18: 431-439. 2008. — ISSN 1120-4052. The pollen morphology of 20 species of Malvaceae growing in Yemen was investigated by light (LM) and scanning electron microscope (SEM). The studied taxa belong to 9 genera and three different tribes. These taxa are: Abelmoschus esculentus, Hibiscus trionum, H. micranthus, H. deflersii, H. palmatus, H. vitifolius, H. rosa-sinensis, H. ovalifolius, Gossypium hirsutum, Thespesia populnea (L.) Solander ex Correa and Senra incana (Cav.) DC. (Hibiscieae); Malva parviflora and Alcea rosea (Malveae); Abutilon fruticosum, A. figarianum, A. bidentatum, A. pannosum, Sida acuta, S. alba and S. ovata (Abutileae). Pollen shape, size, aperture, exine structure and sculpturing as well as the spine characters proved that they are of high taxonom- ic value. Pollen characters with some other morphological characters are discussed in the light of the recent classification of the family in Yemen. Key words: Malvaceae, Morphology, Yemen. Introduction Malvaceae Juss. (s. str.) is a large family of herbs, shrubs and trees; comprising about 110 genera and 2000 species. It is a globally distributed family with primary concentrations of genera in the tropical and subtropical regions (Hutchinson 1967; Fryxell 1975, 1988 & 1998; Heywood 1993; La Duke & Doeby 1995; Mabberley 1997). Due to the high economic value of many taxa of Malvaceae (Gossypium, Hibiscus, Abelmoschus and Malva), several studies of different perspective have been carried out, such as those are: Edlin (1935), Bates and Blanchard (1970), Krebs (1994a, 1994b), Ray (1995 & 1998), Hosni and Araffa (1999), El Naggar (1996, 2001 & 2004), Pefell & al. -
Romanian Journal of Biology1 Plant Biology
ROMANIAN JOURNAL OF BIOLOGY1 PLANT BIOLOGY VOLUMES 59–60 2014–2015 CONTENTS C. MAXIMILIAN, I. HOLOBIUC, L. JIANU, A. BREZEANU, In vitro callus production in the medicinal, rare and endangered species Ecballium elaterium (L.) A. Richard ............................................................................. 3 R. THAPAR KAPOOR, Evaluation of insecticidal potential of root extracts of Rauvolfia tetraphylla against Musca domestica ............................................ 15 M. THIRUPATHI REDDY, K. HARIBABU, M. GANESH, K. CHANDRASEKHAR REDDY, H. BEGUM, J. DILIP BABU, R. S. KRISHNA REDDY, B. PURUSHOTHAMA REDDY, G. NARSHIMULU, Genetic variability for growth, earliness and yield attributes in okra (Abelmoschus esculentus (L.) Moench) ............................ 27 I. VICOL, Chorology of Mycarthopyrenia KEISSL genus in Romania ................... 41 S. M. MOHSIN, R. ISLAM MD, A. ABU NOMAN FARUQ, H.A.C. NISHA, R. S. BORNA, M. N. ISLAM, The genetic variability of Alternaria porri in Bangladesh .............................................................................................. 47 H OLOUMI., F. NASERI, R. SOLTANINEJAD, Comparative study of essential oil chemical constituents of Calotropis procera leaves collected from different natural localities ............................................................................. 59 1 ROM. J. BIOL. – PLANT BIOL., VOLUMEs 59–60, P. 1–68, BUCHAREST, 2014–2015 IN VITRO CALLUS PRODUCTION IN THE MEDICINAL, RARE AND ENDANGERED SPECIES ECBALLIUM ELATERIUM (L.) A. RICHARD CARMEN MAXIMILIAN1*, -
ORNAMENTAL GARDEN PLANTS of the GUIANAS: an Historical Perspective of Selected Garden Plants from Guyana, Surinam and French Guiana
f ORNAMENTAL GARDEN PLANTS OF THE GUIANAS: An Historical Perspective of Selected Garden Plants from Guyana, Surinam and French Guiana Vf•-L - - •• -> 3H. .. h’ - — - ' - - V ' " " - 1« 7-. .. -JZ = IS^ X : TST~ .isf *“**2-rt * * , ' . / * 1 f f r m f l r l. Robert A. DeFilipps D e p a r t m e n t o f B o t a n y Smithsonian Institution, Washington, D.C. \ 1 9 9 2 ORNAMENTAL GARDEN PLANTS OF THE GUIANAS Table of Contents I. Map of the Guianas II. Introduction 1 III. Basic Bibliography 14 IV. Acknowledgements 17 V. Maps of Guyana, Surinam and French Guiana VI. Ornamental Garden Plants of the Guianas Gymnosperms 19 Dicotyledons 24 Monocotyledons 205 VII. Title Page, Maps and Plates Credits 319 VIII. Illustration Credits 321 IX. Common Names Index 345 X. Scientific Names Index 353 XI. Endpiece ORNAMENTAL GARDEN PLANTS OF THE GUIANAS Introduction I. Historical Setting of the Guianan Plant Heritage The Guianas are embedded high in the green shoulder of northern South America, an area once known as the "Wild Coast". They are the only non-Latin American countries in South America, and are situated just north of the Equator in a configuration with the Amazon River of Brazil to the south and the Orinoco River of Venezuela to the west. The three Guianas comprise, from west to east, the countries of Guyana (area: 83,000 square miles; capital: Georgetown), Surinam (area: 63, 037 square miles; capital: Paramaribo) and French Guiana (area: 34, 740 square miles; capital: Cayenne). Perhaps the earliest physical contact between Europeans and the present-day Guianas occurred in 1500 when the Spanish navigator Vincente Yanez Pinzon, after discovering the Amazon River, sailed northwest and entered the Oyapock River, which is now the eastern boundary of French Guiana. -
15.04.610.270 - Marijuana/Cannabis Commercial Uses
15.04.610.270 - Marijuana/Cannabis Commercial Uses. Commercial Cannabis activities, including but not limited to cultivation, manufacturing, testing, distribution, and retail are subject to the standards and procedures of the Municipal Code, State Law, and the regulations set forth in these Zoning Regulations. A. Applicability. These standards apply to all establishments that are involved in any commercial cannabis activity. B. Definitions1 []. The following words or phrases, whenever used in this section, have the following definitions: 1. A-license. A State license issued for cannabis or cannabis products that are intended for adults 21 years of age and over and who do not possess physician's recommendations. 2. Attending Physician. An individual who possesses a license in good standing to practice medicine or osteopathy issued by the Medical Board of California or the Osteopathic Medical Board of California and who has taken responsibility for an aspect of the medical care, treatment, diagnosis, counseling, or referral of a patient and who has conducted a medical examination of that patient before recording in the patient's medical record the physician's assessment of whether the patient has a serious medical condition and whether the medical use of cannabis is appropriate. 3. Bureau of Cannabis Control ("the Bureau"). The bureau within the California Department of Consumer Affairs created to develop, administer and enforce comprehensive rules for medicinal and adult-use cannabis in California. The Bureau is responsible for the regulation and licensing of all commercial cannabis retail, distribution, testing, microbusinesses and temporary cannabis events in California. 4. California Department of Food and Agriculture — CalCannabis Cultivation Licensing ("the CDFA"). -
Cannabis Terminology 101
Super Animal Care Solutions TECHNICAL BULLETIN Cannabis Terminology 101 Cannabis or Hemp? nabinol). Contrary to what many pot smok- Cannabidiol-CBD Cannabis refers to a broad category of ers may tell you, marijuana is addictive. A naturally occurring constituent/cannabi- plants, including both hemp and marijuana. Even among occasional users, one in 12 can noid of the hemp plant. It is the most abun- Hemp is a specific type of cannabis plant feel withdrawal symptoms if they can’t get dant, non-psychoactive cannabinoid in that contains less than 0.3% THC. high when they want to. Many experts also hemp/cannabis, and reacts primarily with believe marijuana is physically addictive. CB-2 receptors that are generally concen- Cannabis trated in peripheral organs and cells asso- The name given to the plant itself. A total of Medical Cannabis/Medical Marijuana ciated with the immune system. 480 natural components have been found Cannabis used as a physician-recom- within the cannabis plant. There are three mended form of medicine or herbal thera- The Vediol blend delivers a highly purified major types of cannabis (plus multiple hy- py typically higher in THC content – (higher cannabinoid consortium, devoid of THC, brids), distinguished by very different char- than 0.3%) than other species of cannabis. designed for maximum effectiveness. While acteristics and traits they display: no causal link has been established, abun- Tetrahydrocannabinol-THC dant research would suggest non-human • Cannabis sativa delta-9-tetrahydrocannabinol. This is a con- patients may benefit from receiving hemp • Cannabis indica trolled substance. The only thus far identi- derived CBD in support of their endocan- • Cannabis ruderalis fied psychoactive component of cannabis nabinoid system. -
Download Assessment
Family: Malvaceae Taxon: Abelmoschus manihot Synonym: Abelmoschus mindanaensis Warb. ex Perkins Common Name: manioc hibiscus Abelmoschus pungens (Roxb.) Voigt sunset hibiscus Hibiscus manihot L. bele Hibiscus pungens Roxb. Hibiscus tetraphyllus Roxb. ex Hornem. Questionaire : current 20090513 Assessor: Chuck Chimera Designation: L Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score 1 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 y 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 y 301 Naturalized beyond native range y = 1*multiplier (see y Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see n Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see n Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic -
About the Endocannabinoid System (ECS)
Mana Artisan Botanics Frequently Asked Questions | 1 Frequently Asked Questions About the Endocannabinoid system (ECS) What is the Endocannabinoid What are Endocannabinoids? System, or ECS? Endocannabinoids are endogenous neurotransmitters that Discovered in the late 1980s, the Endocannabinoid System, or are produced by our bodies. They regulate neurotransmission ECS is a biological system found in all mammals, composed and allow for feedback loops. Anandamide and 2-Arachido- of endocannabinoids and cannabinoid receptors. ECS affects noylglycerol (2-AG) are the two primary endocannabinoids. virtually every cell, muscle, organ and tissue in our body, and critical to regulating a wide range of body processes, our What are Phytocannabinoids and nervous system, immune system, digestive system, endocrine how are they different than glands, brain, heart, lungs, kidneys, liver, spleen, bones, mus- Endocannabinoids? cles, blood vessels and cells, lymph cells, and fat cells. Phytocannabinoids are plant derivative compounds (primarily The ECS is believed to have more cellular receptor sites than extracted from cannabis) that mimic the characteristics of the any other receptor system. The widespread distribution of endocannabinoids. THC and Cannabidiol (CBD) are the two these cannabinoid receptors shows just how important the primary phytocannabinoids that mimic the endocannabinoids ECS is to our overall bodily function and health. Anandamide and 2-AG, respectively. Both endocannabinoid and phytocannabinoids, collectively referred to as cannabinoids, -
Sunn Hemp Shines in New England
Sunn Hemp Shines in Massachusetts Sam Corcoran & Masoud Hashemi Foreground: Testing out sunn hemp as mulch and fertilizer for garlic, fall 2017; Background: a field of flowering sunn hemp before winterkill, early November. Sunn hemp is a new, summer crop for us in the Northeast. Despite its name, Sunn hemp (Crotalaria juncea) is not related to the industrial hemp you may be familiar with (Cannabis sativa). The Sunn Hemp plant bears only a mild resemblance to Cannabis, and is actually a legume in the same family as peas and beans. As a legume, Sunn Hemp has a relationship with bacteria that convert atmospheric nitrogen into plant-available nitrogen. It is believed that this tropical crop has been grown for hundreds of years, and it remains popular in India, Bangladesh, and Brazil. Sunn Hemp can be used for for- age, fiber, or as a green manure to provide nitrogen to subsequently planted crops. Modern interest in Sunn Hemp in the U.S. surged in Hawaii in the 80’s. Research spread across the southern U.S. in the 90’s through present, with Mid-Atlantic States also taking a recent research inter- est. Within just the past 2-3 years, a few seed companies have start- ed readily supplying Sunn Hemp throughout the U.S. Four years ago, we tried planting this crop at the UMass Research Farm and discovered we can grow Sunn Hemp, too. Despite our cooler climate, the hot summers in Massachusetts are sufficient for this tropical crop; in the 2016 drought, Sunn Hemp remained high performing while other crops suffered.