Hyper Igm Syndromes Ramsay Fuleihan, MD, Ann & Robert H

Total Page:16

File Type:pdf, Size:1020Kb

Hyper Igm Syndromes Ramsay Fuleihan, MD, Ann & Robert H Immune Deficiency Foundation Patient & Family Handbook For Primary Immunodeficiency Diseases Chapter 5 Immune Deficiency Foundation Patient & Family Handbook For Primary Immunodeficiency Diseases 6th Edition The development of this publication was supported by Shire, now Takeda. 110 West Road, Suite 300 Towson, MD 21204 800.296.4433 www.primaryimmune.org [email protected] Chapter 5 Hyper IgM Syndromes Ramsay Fuleihan, MD, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA The Hyper-IgM Syndromes (HIGM) are rare inherited primary immunodeficiency diseases (PI) characterized by decreased blood levels of immunoglobulin G (IgG) and normal or elevated levels of IgM. Most individuals with HIGM are susceptible to recurrent and severe infections including opportunistic infections, which are infections by organisms that do not normally infect healthy individuals, and are susceptible to an increased risk of cancer. A number of different genetic defects can cause HIGM. The most common form is inherited as an X-linked disease affecting boys. The other forms of HIGM are inherited as autosomal recessive traits affecting both boys and girls. (See Inheritance Chapter.) Overview individuals surviving beyond the third or fourth decade of life. In recent years, hematopoietic stem When B cells, which are the cells that make cell transplantation (bone marrow, peripheral blood antibodies, develop, the first type of antibody they stem cells or umbilical cord blood stem cells) has make is IgM. IgM is responsible for the immune been performed successfully in individuals with the system’s initial response to an infection. Once X-linked form of XHIGM. (See Hematopoietic Stem healthy B cells make IgM, they can receive signals Cell Transplantation Chapter.) from T cells that tell them to switch from making IgM to IgG, IgA, or IgE depending on which type is needed to continue to fight infection. B cells from Immunobiology individuals with HIGM are unable to switch from People with HIGM have an inability to switch from the production of antibodies of the IgM type to the production of antibodies of the IgM type to antibodies of the IgG, IgA, or IgE type due to several antibodies of the IgG, IgA, or IgE types. As a different genetic defects in the signaling pathways result, individuals with this disease have absent or between T cells and B cells. As a result, people with decreased levels of IgG, IgA, and IgE but normal or this disease have decreased levels of IgG, IgA, and elevated levels of IgM in their blood. B cells, the cells IgE but normal or elevated levels of IgM in their that make antibodies, can produce IgM antibodies blood. These different types of antibodies perform on their own, but they require interactive help from different functions and are all important in fighting T cells in order to switch from IgM to IgG, IgA or infections. (See The Immune System and Primary IgE. HIGM syndromes result from a variety of genetic Immunodeficiency Diseases Chapter.) Since most defects that affect this interaction between individuals with HIGM are identified early and usually T cells and B cells, as well as cell signaling events do not have elevated IgM levels, the name HIGM that occur within B cells that are necessary for is not always accurate. Nevertheless, HIGM is used antibody switching. to denote that these diseases are characterized by the inability to switch antibody type--the B cells can The most common form of HIGM results from a only make IgM. Depending on the genetic defect defect or deficiency of a protein that is found on causing HIGM, individuals may also be susceptible the surface of activated T cells. The affected protein to opportunistic infections [such as Pneumocystic is called CD40 ligand because it binds (ligates) to jirovecii (carinii)], cryptosporidium, certain forms of a protein on B cells called CD40. The interaction cancer, and autoimmune disease. Therefore, HIGM between CD40 and CD40 ligand signals the B cell are severe immunodeficiency diseases and in the to switch from production of IgM to other types of past have a guarded long-term outcome with few antibodies like IgG or IgA. IDF Patient & Family Handbook 23 Some individuals with HIGM due to CD40 ligand Clinical Presentation deficiency have normal IgA levels, and the mechanism for this is not clear. It appears to occur Most individuals with HIGM develop clinical via a CD40 ligand independent pathway. CD40 symptoms during their first or second year of life. ligand is made by a gene on the X chromosome. The most common problem in all forms of HIGM Therefore, this form of PI is inherited as an X-linked is an increased susceptibility to infection including recessive trait. X-linked recessive trait means that recurrent upper and lower respiratory tract infections. mothers can be carriers and boys are affected if The most frequent serious infective agents are they inherit the affected X chromosome from their bacteria, but viral illnesses are also more frequent mother. (See Inheritance Chapter.) CD40 ligand is and severe. also important for other functions carried out by In people with XHIGM and autosomal recessive T cells, so individuals with XHIGM have defective HIGM due to a CD40 defect, a variety of other cellular immunity and thus are also susceptible to microorganisms can also cause serious infections. For opportunistic infections and to some types of cancer. example, Pneumocystis jiroveci (carinii) pneumonia, Other forms of HIGM are inherited as autosomal an opportunistic infection, is relatively common recessive traits and have been observed in both during the first year of life, and its presence may be girls and boys. (See Inheritance Chapter.) One of the first clue that a child has HIGM. these forms results from a defect in CD40 and is Gastrointestinal complaints, most commonly diarrhea clinically identical to XHIGM (the disease with the and malabsorption, also occur commonly in XHIGM defect in CD40 ligand). Other autosomal recessive and CD40 deficiency. One of the major organisms forms of HIGM result from defects in proteins that causing gastrointestinal symptoms in XHIGM is are involved in antibody class switching through the Cryptosporidium. A Cryptosporidium infection may CD40 signaling pathway, these are known as Uracil- cause sclerosing cholangitis—a severe, often fatal, DNA glycosylase (UNG) deficiency and activation- disease of the liver. induced cytidine deaminase (AID) deficiency. Autosomal recessive inherited genetic defects in two Approximately half of the individuals with XHIGM other proteins involved in antibody class switching, or CD40 deficiency develop neutropenia (low count INO80 and MSH6 have also been seen in individuals of granulocyte white blood cells), either transiently with clinical HIGM. or persistently. The cause of the neutropenia is unknown, although most individuals respond to The function of these genes is limited to antibody treatment with colony stimulating factor, G-CSF. switching (after the B cell has received the signal Severe neutropenia is often associated with oral to switch from the interaction of CD40 and CD40 ulcers, inflammation, ulceration of the rectum ligand), so the other T cell functions of CD40 ligand (proctitis), and skin infections. are not affected and these patients are less likely to have opportunistic infections or cancer. Unlike Autoimmune disorders may also occur in individuals individuals with defects in CD40 or CD40 ligand with HIGM especially in those with defects whose B cells cannot receive the signal to switch in AID or UNG. Autoimmune manifestations due to faulty communication with the T cells, B cells may include chronic arthritis, low platelet from individuals with defects in AID or UNG do counts (thrombocytopenia), hemolytic anemia, receive an activating signal, and this may lead to hypothyroidism and kidney disease. the development of enlarged lymph nodes (where B cells and T cells are found). Individuals with AID or Enlargement of the lymph nodes and the spleen is UNG defects may be more susceptible to develop seen frequently in those with autosomal recessive autoimmune disease. HIGM due to defects of AID or UNG. As a result, they often have enlarged tonsils and adenoids that Finally, since switching antibody types in B cells may cause snoring and obstructive sleep apnea. involves breaks and subsequent repair in DNA, defects in genes that are important for DNA repair Finally, the risk for cancer, particularly liver cancer, may also present with HIGM. The main features of is increased in individuals with XHIGM or CD40 these diseases are related to the defect in DNA deficiency. A few individuals with HIGM have repair, but some have immunoglobulin levels developed a rapidly progressive neuroendocrine similar to HIGM. These diseases include Ataxia- carcinoma. Telangiectasia, Nijmegen breakage syndrome, and PMS2 deficiency. 24 Chapter 5: Hyper IgM Syndromes Diagnosis development of long-term consequences of serious infections. XHIGM should be considered in any boy presenting with severe recurrent respiratory infections or an opportunistic infection who has low or absent IgG Treatment and normal or elevated IgM levels with normal T cell Since individuals with all forms of HIGM have a and B cell numbers. The presence of neutropenia severe IgG deficiency, they require immunoglobulin in addition to the above features increases the (Ig) replacement therapy. The Ig replaces the missing likelihood of having XHIGM. IgG and often results in a reduction or normalization Failure to express CD40 ligand on activated T cells of the serum IgM level, if it was elevated. Ig is a characteristic finding. Some express a defective replacement therapy can be given intravenously CD40 ligand protein that may be detected by or subcutaneously. (See Immunoglobulin Therapy the antibody used in the test (falsely normal test Chapter.) result) but will not bind to a soluble form of CD40. Since individuals with XHIGM or CD40 deficiency Confirming the diagnosis of XHIGM depends on the also have a marked susceptibility to Pneumocystis identification of a mutation affecting the CD40 ligand jiroveci (carinii) pneumonia (PJP, or PCP), they gene.
Recommended publications
  • IDF Patient & Family Handbook
    Immune Deficiency Foundation Patient & Family Handbook for Primary Immunodeficiency Diseases This book contains general medical information which cannot be applied safely to any individual case. Medical knowledge and practice can change rapidly. Therefore, this book should not be used as a substitute for professional medical advice. FIFTH EDITION COPYRIGHT 1987, 1993, 2001, 2007, 2013 IMMUNE DEFICIENCY FOUNDATION Copyright 2013 by Immune Deficiency Foundation, USA. REPRINT 2015 Readers may redistribute this article to other individuals for non-commercial use, provided that the text, html codes, and this notice remain intact and unaltered in any way. The Immune Deficiency Foundation Patient & Family Handbook may not be resold, reprinted or redistributed for compensation of any kind without prior written permission from the Immune Deficiency Foundation. If you have any questions about permission, please contact: Immune Deficiency Foundation, 110 West Road, Suite 300, Towson, MD 21204, USA; or by telephone at 800-296-4433. Immune Deficiency Foundation Patient & Family Handbook for Primary Immunodeficency Diseases 5th Edition This publication has been made possible through a generous grant from Baxalta Incorporated Immune Deficiency Foundation 110 West Road, Suite 300 Towson, MD 21204 800-296-4433 www.primaryimmune.org [email protected] EDITORS R. Michael Blaese, MD, Executive Editor Francisco A. Bonilla, MD, PhD Immune Deficiency Foundation Boston Children’s Hospital Towson, MD Boston, MA E. Richard Stiehm, MD M. Elizabeth Younger, CPNP, PhD University of California Los Angeles Johns Hopkins Los Angeles, CA Baltimore, MD CONTRIBUTORS Mark Ballow, MD Joseph Bellanti, MD R. Michael Blaese, MD William Blouin, MSN, ARNP, CPNP State University of New York Georgetown University Hospital Immune Deficiency Foundation Miami Children’s Hospital Buffalo, NY Washington, DC Towson, MD Miami, FL Francisco A.
    [Show full text]
  • CDG and Immune Response: from Bedside to Bench and Back Authors
    CDG and immune response: From bedside to bench and back 1,2,3 1,2,3,* 2,3 1,2 Authors: Carlota Pascoal , Rita Francisco , Tiago Ferro , Vanessa dos Reis Ferreira , Jaak Jaeken2,4, Paula A. Videira1,2,3 *The authors equally contributed to this work. 1 Portuguese Association for CDG, Lisboa, Portugal 2 CDG & Allies – Professionals and Patient Associations International Network (CDG & Allies – PPAIN), Caparica, Portugal 3 UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal 4 Center for Metabolic Diseases, UZ and KU Leuven, Leuven, Belgium Word count: 7478 Number of figures: 2 Number of tables: 3 This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/jimd.12126 This article is protected by copyright. All rights reserved. Abstract Glycosylation is an essential biological process that adds structural and functional diversity to cells and molecules, participating in physiological processes such as immunity. The immune response is driven and modulated by protein-attached glycans that mediate cell-cell interactions, pathogen recognition and cell activation. Therefore, abnormal glycosylation can be associated with deranged immune responses. Within human diseases presenting immunological defects are Congenital Disorders of Glycosylation (CDG), a family of around 130 rare and complex genetic diseases. In this review, we have identified 23 CDG with immunological involvement, characterised by an increased propensity to – often life-threatening – infection.
    [Show full text]
  • Patient & Family Handbook
    Immune Deficiency Foundation Patient & Family Handbook For Primary Immunodeficiency Diseases This book contains general medical information which cannot be applied safely to any individual case. Medical knowledge and practice can change rapidly. Therefore, this book should not be used as a substitute for professional medical advice. SIXTH EDITION COPYRIGHT 1987, 1993, 2001, 2007, 2013, 2019 IMMUNE DEFICIENCY FOUNDATION Copyright 2019 by Immune Deficiency Foundation, USA. Readers may redistribute this article to other individuals for non-commercial use, provided that the text, html codes, and this notice remain intact and unaltered in any way. The Immune Deficiency Foundation Patient & Family Handbook may not be resold, reprinted or redistributed for compensation of any kind without prior written permission from the Immune Deficiency Foundation. If you have any questions about permission, please contact: Immune Deficiency Foundation, 110 West Road, Suite 300, Towson, MD 21204, USA; or by telephone at 800-296-4433. Immune Deficiency Foundation Patient & Family Handbook For Primary Immunodeficiency Diseases 6th Edition The development of this publication was supported by Shire, now Takeda. 110 West Road, Suite 300 Towson, MD 21204 800.296.4433 www.primaryimmune.org [email protected] Editors Mark Ballow, MD Jennifer Heimall, MD Elena Perez, MD, PhD M. Elizabeth Younger, Executive Editor Children’s Hospital of Philadelphia Allergy Associates of the CRNP, PhD University of South Florida Palm Beaches Johns Hopkins University Jennifer Leiding,
    [Show full text]
  • Assessment of the Humoral Immune System in Adults with Respiratory Tract Disease
    Assessment of the humoral immune system in adults with respiratory tract disease Diana van Kessel Assesment of the humoral immune system in adults with respiratory tract disease D.A. van Kessel Thesis University Utrecht, the Netherlands ISBN: 978-94-90329-35-8 NUR: 870 Cover illustration: Henk ten Have, Zoelen, the Netherlands Cover design and lay-out: emjee | grafische vormgeving, Varik, the Netherlands Print: Veldhuis Media BV, Raalte, the Netherlands © 2017, D.A. van Kessel All rights are reserved. No part of this publication may be reproduced without written permission of the author. The copyright of articles that already have been published has been transferred to the respective journals. Assessment of the humoral immune system in adults with respiratory tract disease Evaluatie van het humorale afweersysteem bij volwassenen met een aandoening van de ademhalingswegen (met een samenvatting in het Nederlands) Proefschrift ter verdediging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof. dr. G.J. van der Zwaan, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op dinsdag 7 november 2017 des middags te 12.45 uur door Dirkje Anna van Kessel geboren op 13 december 1955 te Culemborg Promotoren: Prof.dr. J.C. Grutters Prof.dr. G.T. Rijkers Copromotor: Dr. P. Zanen Paranimfen: Thijs Hoffman Joost Jacobs Dedicated to Frans Jozef†, Isabelle en Joost Jacobs Table of contents Chapter 1: General introduction, aims and outline of the thesis 3 Part I: Immunological screening
    [Show full text]
  • Clinical and Immunological Features of 78 Adult Patients with Primary Selective Igg Subclass Defciencies
    Archivum Immunologiae et Therapiae Experimentalis (2019) 67:325–334 https://doi.org/10.1007/s00005-019-00556-3 ORIGINAL ARTICLE Clinical and Immunological Features of 78 Adult Patients with Primary Selective IgG Subclass Defciencies Amrita Khokar1,3 · Sudhir Gupta1,2 Received: 13 January 2019 / Accepted: 23 July 2019 / Published online: 30 July 2019 © L. Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland 2019 Abstract The purpose of this study is to describe both clinical and immunological features in large cohort of adult patients with IgG subclass defciency, and response to immunoglobulin therapy. This is a retrospective study of data obtained from electronic medical records and paper charts of 78 patients with IgG subclass defciency seen and followed at our immunology clinics from 2010 to 2016. Both isolated selective IgG subclass defciency as well as combined (two) subclass defciencies were observed. IgG3 subclass defciency, isolated and in combination with other IgG subclass defciency, is the most frequent of IgG subclass defciency. A majority of patients presented with upper and lower respiratory tract infections, especially chronic sinusitis. Both allergic and autoimmune manifestations are common; however, there is no subclass preference. The propor- tions and absolute numbers of CD3 + T cells, CD4 + T and CD8+ T cells, CD19 + B cells, and CD3−CD16+CD56+ NK cells were normal in the majority of patients in all IgG subclass defciencies. Total serum IgG levels did not correlate with IgG subclass levels across all IgG subclass defciencies. Anti-pneumococcal polysaccharide antibody responses were impaired in 56% of patients. IgG3 subclass defciency is the most common IgG subclass defciency, and anti-polysaccharide antibody responses are distributed among IgG subclasses with modest preference in IgG2 subclass.
    [Show full text]
  • Immunological Disturbances in the Pathogenesis of Malabsorption
    J Clin Pathol: first published as 10.1136/jcp.s3-5.1.146 on 1 January 1971. Downloaded from J. clin. Path., 24, Suppl. (Roy. Coll. Path.), 5, 146-150 Immunological disturbances in the pathogenesis of malabsorption J. R. HOBBS From the Department of Chemical Pathology, Westminster Medical School, London Before considering the pathogenesis of malabsorp- First, while still susceptible to acid and pepsin tion, I will briefly review the known immune mech- in the gastric juice, the secretory IgA added there- anisms of the normal gut. The post hoc effects that after is largely resistant to normal intestinal pH and malabsorption can have upon immunity must also enzymes, so that it can persist through to the faeces. be mentioned, so that at the time a patient presents This accounts for polio virus coproantibody (Kono, and is investigated these will not be confused with Ikawa, Yaoi, Hamada, Ashihara, and Kawamaki, true propter hoc effects immunological disturbances 1966), conclusively shown to be IgA by Berger, can have on malabsorption. Ainbender, Hodes, Zepp, and Hevizy (1967). Secondly, secretory IgA can fix complement The Normal Immune Defence of the Gut (Adinolfi, Glynn, Lindsay, and Milne, 1966) and can thereby cause holes to form in the lipid mem- Normal immune mechanisms involve humoral and branes of microorganisms. In the case of Gram- cellular components and for the gut more is known negative bacteria, which have an underlying poly- of the former. saccharide backbone, lysozyme (also present in the In 1922, Davies showed that antibodies against secretions) can enter through such holes in the lipidcopyright.
    [Show full text]
  • Immunoglobulin G Subclass Deficiencies in Adult Patients with Chronic Airway Diseases
    ORIGINAL ARTICLE Immunology, Allergic Disorders & Rheumatology http://dx.doi.org/10.3346/jkms.2016.31.10.1560 • J Korean Med Sci 2016; 31: 1560-1565 Immunoglobulin G Subclass Deficiencies in Adult Patients with Chronic Airway Diseases Joo-Hee Kim,1 Sunghoon Park,1 Immunoglobulin G subclass deficiency (IgGSCD) is a relatively common primary Yong Il Hwang,1 Seung Hun Jang,1 immunodeficiency disease (PI) in adults. The biological significance of IgGSCD in patients Ki-Suck Jung,1 Yun Su Sim,1 with chronic airway diseases is controversial. We conducted a retrospective study to Cheol-Hong Kim,1 Changhwan Kim,2 characterize the clinical features of IgGSCD in this population. This study examined the 1 and Dong-Gyu Kim medical charts from 59 adult patients with IgGSCD who had bronchial asthma or chronic obstructive pulmonary disease (COPD) from January 2007 to December 2012. Subjects 1Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym were classified according to the 10 warning signs developed by the Jeffrey Modell University Medical Center, Anyang, Korea; 2Division Foundation (JMF) and divided into two patient groups: group I (n = 17) met ≥ two JMF of Pulmonary and Allergy, Department of Medicine, criteria, whereas group II (n = 42) met none. IgG3 deficiency was the most common Jeju National University Hospital, Jeju, Korea subclass deficiency (88.1%), followed by IgG4 (15.3%). The most common infectious Received: 12 February 2016 complication was pneumonia, followed by recurrent bronchitis, and rhinosinusitis. The Accepted: 12 June 2016 numbers of infections, hospitalizations, and exacerbations of asthma or COPD per year were significantly higher in group I than in group II (P < 0.001, P = 0.012, and P < 0.001, Address for Correspondence: respectively).
    [Show full text]
  • Treatment of Selective Iga Deficiency
    Immune Deficiency Foundation Patient & Family Handbook for Primary Immunodeficiency Diseases Australasian Edition This book contains general medical information which cannot be applied safely to any individual case. Medical knowledge and practice can change rapidly. Therefore, this book should not be used as a substitute for professional medical advice. Australasian Edition COPYRIGHT 1987, 1993, 2001, 2007, 2013 IMMUNE DEFICIENCY FOUNDATION Copyright 2013 by Immune Deficiency Foundation, USA. Readers may redistribute this article to other individuals for non-commercial use, provided that the text, html codes, and this notice remain intact and unaltered in any way. The Immune Deficiency Foundation Patient & Family Handbook may not be resold, reprinted or redistributed for compensation of any kind without prior written permission from the Immune Deficiency Foundation. If you have any questions about permission, please contact: Immune Deficiency Foundation, 110 West Road, Suite 300, Towson, MD 21204, USA; or by telephone at 800-296-4433. Immune Deficiency Foundation Patient & Family Handbook for Primary Immunodeficency Diseases Australasian Edition The printing of the Australasian Edition was made possible by Immune Deficiencies Foundation Australia (IDFA) PO Box 969 Penrith NSW 2751 www.idfa.org.au [email protected] Immune Deficiency Foundation 110 West Road, Suite 300 Towson, MD 21204 800-296-4433 www.primaryimmune.org [email protected] EDITORS R. Michael Blaese, MD, Executive Editor Francisco A. Bonilla, MD, PhD Immune Deficiency Foundation Boston Children’s Hospital Towson, MD Boston, MA E. Richard Stiehm, MD M. Elizabeth Younger, CPNP, PhD University of California Los Angeles Johns Hopkins Los Angeles, CA Baltimore, MD CONTRIBUTORS Mark Ballow, MD Joseph Bellanti, MD R.
    [Show full text]
  • Chapter 11 Hyper Igm Syndromes
    Hyper IgM Syndromes Chapter 11 Hyper IgM Syndromes Patients with Hyper-IgM (HIGM) syndrome are susceptible to recurrent and severe infections and in some types of HIGM syndrome opportunistic infections and an increased risk of cancer as well. The disease is characterized by decreased levels of immunoglobulin G (IgG) in the blood and normal or elevated levels of IgM. A number of different genetic defects can cause HIGM syndrome. The most common form is inherited as an X-chromosome linked. Most of the other forms are inherited as autosomal recessive traits and therefore can affect both boys and girls. Definition of Hyper IgM Syndromes Patients with HIGM syndrome have an inability to switch immunity and are also susceptible to all kinds of from the production of antibodies of the IgM type to infections, particularly opportunistic infections and to antibodies of the IgG, IgA or IgE types. As a result, some types of cancer. patients with this disease have decreased levels of IgG Other forms of HIGM syndrome are inherited as and IgA but normal or elevated levels of IgM in their autosomal recessive traits and have been observed in blood. These different types of antibodies perform both girls and boys. (See chapter titled “Inheritance.”) different functions and are all important in fighting One of these forms results from a defect in CD40 and is infections. Normally, B-lymphocytes can produce IgM clinically identical to XHIGM (the disease with the defect antibodies on their own, but they require interactive help in CD40 ligand). Other autosomal recessive forms of from T-lymphocytes in order to switch from IgM to IgG, HIGM syndrome result from defects in genes that are IgA or IgE.
    [Show full text]
  • Does the Hyper Igm Phenotype Affect Prognosis in Ataxia Telangiectasia?
    ASTHMA doi: 10.21911/aai.523 ALLERGY IMMUNOLOGY Asthma Allergy Immunol 2020;18:38-46 ASTIM ALLERJİ İMMÜNOLOJİ RESEARCH ARTICLE Received: 08.03.2020 • Accepted: 26.03.2020 Online Published: 06/04/2020 Does the Hyper IgM Phenotype Affect Prognosis in Ataxia Telangiectasia? Zehra Şule HASKOLOĞLU1 , Caner AYTEKIN2 , Sevgi KÖSTEL BAL1 , Candan ISLAMOĞLU1 , Kübra BASKIN1 , Zeynep YAVUZ3 , Demet ALTUN4 , Serdar CEYLANER5 , Figen DOĞU1 , Aydan IKINCIOĞULLARI1 1 Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey 2 Department of Pediatric Immunology, University of Health Sciences, Ankara Sami Ulus Maternity, Child Health and Diseases Training and Research Hospital, Ankara, Turkey 3 Department of Biostatistics, Ankara University School of Medicine, Ankara, Turkey 4 Department of Pediatrics, Ufuk University School of Medicine, Ankara, Turkey 5 Intergen Genetics Diagnosis Center, Ankara, Turkey Corresponding Author: Zehra Şule HASKOLOĞLU * [email protected] ABSTRACT Objective: To evaluate the characteristics of the patients who were followed-up with the diagnosis of ataxia telangiectasia (AT) and to assess the relationship between the hyper IgM (HIGM) phenotype and their prognosis. Materials and Methods: From 2007 to 2019, the study included 68 patients aged 3-35 years who were followed-up with the diagnosis of AT. We retrospectively evaluated the clinical and immunological characteristics and follow-up results. Results: There were 36 girls and 32 boys with a median follow-up of 10 years (1-12 years). The most common complaints upon admission were unsteady walk in 87%, infection in 6%, presence of a family history in 6%, and intracranial mass in 1%. The marriage was consanguineous in 85% of the parents.
    [Show full text]
  • Intravenous Immune Globulins (Flebogamma DIF, Gammagard Liquid, Gammagard S/D, Gammaked, Gammaplex, Gamunex-C, Octagam, Panzyga, Privigen)
    Intravenous Immune Globulins (Flebogamma DIF, Gammagard Liquid, Gammagard S/D, Gammaked, Gammaplex, Gamunex-C, Octagam, Panzyga, Privigen) When requesting Intravenous Immune Globulins (Flebogamma DIF, Gammagard Liquid, Gammagard S/D, Gammaked, Gammaplex, Gamunex-C, Octagam, Panzyga, Privigen), the individual requiring treatment must be diagnosed with an FDA-approved indication or an approved off-label compendial use and meet the specific coverage guidelines and applicable safety criteria for the covered indication. FDA-Approved Indications Intravenous Immune globulin (IVIG) injection is indicated for the treatment of: • Primary humoral immunodeficiency including but not limited to, congenital agammaglobulinemia, common variable immunodeficiency, x-linked agammaglobulinemia, Wiskott-Aldrich syndrome, and severe combined immunodeficiencies. • Idiopathic thrombocytopenia purpura (ITP) to raise platelet counts to prevent bleeding or to allow a patient with ITP to undergo surgery • Chronic inflammatory demyelinating polyneuropathy (CIDP) to improve neuromuscular disability and impairment and for maintenance therapy to prevent relapse • Multifocal motor neuropathy (MMN) to improve muscle strength and disability • Prevention of bacterial infections in hypogammaglobulinemia and/or recurrent bacterial infections associated with B-cell chronic lymphocytic leukemia • Prevention of coronary artery aneurysms associated with Kawasaki syndrome Approved Off-Label Compendial Uses • Secondary humoral immunodeficiency • Antibody-mediated rejection in solid
    [Show full text]
  • Making a Diagnosis of Common Variable Immunodeficiency: a Review
    Open Access Review Article DOI: 10.7759/cureus.6711 Making a Diagnosis of Common Variable Immunodeficiency: A Review Asma Ghafoor 1 , Shona M. Joseph 1 1. Allergy and Immunology, Nova Southeastern University School of Osteopathic Medicine, Davie, USA Corresponding author: Asma Ghafoor, [email protected] Abstract Common variable immunodeficiency (CVID) is a condition that inhibits the function of the immune system, making those with the condition more susceptible to infection from external pathogens, including bacteria and, less often, viruses. The immune disorder is marked by low immunoglobulin levels of immunoglobulin G (IgG) and IgA as well as IgM in some patients. These immune abnormalities typically result in recurrent sinopulmonary infections and can result in serious complications such as pneumonia and chronic lung disease. Other manifestations include poor vaccine response and defective antibodies in a patient’s immune system. The disorder affects approximately one in 25,000 to one in 50,000 individuals worldwide, with the condition varying across different populations. While the underlying mechanism of disease activity remains poorly understood, only 10% of cases are known to have an underlying genetic link and approximately 25% of patients also have an autoimmune disorder. CVID commonly presents in individuals in their twenties or thirties but can present at any time between childhood through adulthood, with mortality dependent on the severity of illness and frequency of recurrent infections. Potential life-threatening consequences of CVID include malignancies, enteropathy, and autoimmune manifestations. Treatment can help alleviate symptoms and prevent continued recurrent infections and serious complications. However, the lack of awareness among primary care physicians (PCPs) makes the condition difficult to diagnose and manage.
    [Show full text]