An Analysis of the Peculiar Velocity Structure in Galaxy Cluster A154

Total Page:16

File Type:pdf, Size:1020Kb

An Analysis of the Peculiar Velocity Structure in Galaxy Cluster A154 AN ANALYSIS OF THE PECULIAR VELOCITY STRUCTURE IN GALAXY CLUSTER A154 A DISSERTATION SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE DOCTOR OF EDUCATION BY RYAN WESLEY TOBIN DR. ROBERT BERRINGTON - ADVISOR BALL STATE UNIVERSITY MUNCIE, INDIANA DECEMBER 2016 To Elijah, Samuel and Zachary... The important thing is not to stop questioning. Curiosity has its own reason for existing. {Albert Einstein Never fear answers, only fear running out of questions. {Unknown Acknowledgements I would like to thank Dr. Robert Berrington for his years of patience, advice and encouragement. I would also like to thank my graduate committee members, Dr. Patricia Lang, Dr. Ronald Kaitchuk and Dr. Thalia Mulvihill, and the Department of Physics and Astronomy faculty for their support, instruction and advice throughout the years. I also want to thank my wife, Amy, and my sons, Elijah and Samuel, who supported me when I was gone | but always made me glad to come home. This research is a testament to their support and perseverance as much as it is to mine own. Finally, I would like to thank Mr. Marc Semanchik, who helped me to overcome a disability and provided me with a sounding board to discuss and refine my understanding of various complex topics. Without your help, I would never have been able to finish. Thank you all! Contents 1 Introduction 1 1.1 Understanding Galaxy Clusters . 2 1.2 Importance of Further Study . 2 1.3 Abell 154 and Dissertation Overview . 3 2 Background 5 2.1 Hierarchical Merging . 5 2.2 Cluster Properties . 6 2.2.1 Cosmic Distances . 7 2.2.2 Cluster Mass . 13 2.2.3 Timescales . 15 2.3 The Relaxed Cluster . 19 2.3.1 Distributions . 20 2.3.2 Cooling Flows and X-ray Emission . 23 2.4 The Merging Cluster . 26 2.4.1 Merger Shocks . 27 2.4.2 Cluster Environments . 28 2.5 Prior Studies of Abell 154 . 30 2.5.1 Morphology and Appearance . 33 2.5.2 Cluster Core . 34 iii 2.5.3 Previous Radial Velocities . 37 2.5.4 X-ray Sources and Cooling Flow Signatures . 37 2.5.5 Photometric Analysis . 41 3 Radial Velocity Measurements 42 3.1 New Data . 42 3.1.1 Targets for Observation . 43 3.1.2 Observations . 43 3.1.3 Reduction . 44 3.1.4 Reconciling Absorption- and Emission-Based Data . 55 3.2 Literature Data . 55 3.3 Compilation of Data . 57 3.3.1 Reconciling Literature Data with New Data . 57 4 Data Analysis And Discussion 62 4.1 Statistical Analysis . 62 4.1.1 3-σ Clipping . 64 4.1.2 Gaussian Fitting . 68 4.1.3 Analysis in Two and Three Dimensions . 75 4.1.4 Statistical Rejections . 76 4.2 Gaussian Fitting and Subgroup Analysis . 83 4.2.1 Group A Analysis . 87 4.2.2 Group B Analysis . 87 4.2.3 Additional Gaussian Components . 89 4.2.4 Subgrouping . 94 4.2.5 Core Structure . 94 4.2.6 Summary of Statistical Results . 97 4.3 Radio Data . 97 iv 4.4 X-ray Data . 100 4.5 Gravitational Binding . 101 4.5.1 Projected Mass Versus Virial Mass . 103 4.5.2 Two-Body Analysis . 104 5 Summary And Conclusions 108 5.1 Summary . 108 5.1.1 Group A . 109 5.1.2 Group B . 109 5.2 Drawing Conclusions . 111 5.3 Future Work . 113 5.3.1 Current Limitations . 113 5.3.2 X-ray Emission and the Sunyaev-Zel'dovich Effect . 114 5.3.3 Metallicity and Stellar Population Analyses . 115 5.3.4 Computational/Numerical Modeling . 115 Appendix 116 A.1 Literature Summary . 117 A.2 New Measurements . 120 A.3 Final Catalog . 128 A.4 Stellar Data . 139 Bibliography 146 v List of Figures 2.1 Spectrum of a galaxy in Abell 154. 9 2.2 Overlayed spectra of a galaxy from Abell 154 and the Andromeda galaxy. 10 2.3 Temperature as a function of radius in cooling flow clusters. 24 2.4 Temperature as a function of radius in non-cooling flow clusters. 25 2.5 X-ray intensity as a function of position. 26 2.6 Abell 154 from the POSS-II survey (inverted). 31 2.7 Abell 154 core from the POSS-II survey (inverted). 32 2.8 Einstein X-ray image of Abell 154. 39 2.9 X-ray contour image of the core of Abell 154. 40 3.1 Targets for radial velocity measurements. 45 3.2 FXCOR interactive display. 48 3.3 FXCOR graphical output of a galaxy in Abell 154. 49 3.4 FXCOR graphical output of a star. 50 3.5 Stellar targets. 53 3.6 Galactic radial velocities in Abell 154. 59 3.7 Abell 154 2D histogram. 60 3.8 Abell 154 velocity histogram. 61 4.1 Abell 154 histogram. 63 4.2 Initial 3-σ histogram. 65 vi 4.3 Abell 154 by group. 69 4.4 Histogram of the positions of all 205 galaxies with radial velocity measurements. 70 4.5 Histogram of the positions of galaxies. 70 4.6 Histogram of the positions of Group A galaxies. 70 4.7 Histogram of the positions of Group B galaxies. 70 4.8 Right ascension and declination as a function of radial velocity. 71 4.9 Abell 154 radial velocity histogram by group. 81 4.10 Group A and Group B histograms. 82 4.11 3-σ clipped Dressler-Shectman bubble plot. 84 4.12 Dressler-Shectman bubble plot of Group B galaxies. 85 4.13 Dressler-Shectman bubble plot of Group A galaxies. 86 4.14 Group A histogram. 88 4.15 Group B histogram. 90 4.16 Group B histogram. 91 4.17 Group B double root residual plot. 93 4.18 Group B histogram with subgroups. 96 4.19 Group A map overlay. 98 4.20 Group B map overlay. 99 4.21 Subgroup B1 and Subgroup B2 map. 100 4.22 X-ray emission in Abell 154. 102 4.23 Group A to Group B gravitational binding. 106 4.24 Subgroup B1 to Subgroup B2 gravitational binding. 107 vii List of Tables 2.1 Typical custer properties. 19 2.2 Typical timescales. 19 2.3 Abell 154 information. 34 3.1 Targets for observation. 44 3.2 Observations at Kitt-Peak National Observatory. 46 3.3 Emission reference spectra. 54 3.4 Literature radial velocity sources. 56 3.5 Literature self-consistency. 58 4.1 KMM and GMM two group analysis..
Recommended publications
  • Correcting for Peculiar Velocities of Type Ia Supernovae in Clusters of Galaxies P.-F
    A&A 615, A162 (2018) Astronomy https://doi.org/10.1051/0004-6361/201832932 & © ESO 2018 Astrophysics Correcting for peculiar velocities of Type Ia supernovae in clusters of galaxies P.-F. Léget1,2, M. V. Pruzhinskaya1,3, A. Ciulli1, E. Gangler1, G. Aldering4, P. Antilogus5, C. Aragon4, S. Bailey4, C. Baltay6, K. Barbary4, S. Bongard5, K. Boone4,7, C. Buton8, M. Childress9, N. Chotard8, Y. Copin8, S. Dixon4, P. Fagrelius4,7, U. Feindt10, D. Fouchez11, P. Gris1, B. Hayden4, W. Hillebrandt12, D. A. Howell13,14, A. Kim4, M. Kowalski15,16, D. Kuesters15, S. Lombardo15, Q. Lin17, J. Nordin15, R. Pain5, E. Pecontal18, R. Pereira8, S. Perlmutter4,7, D. Rabinowitz6, M. Rigault1, K. Runge4, D. Rubin4,19, C. Saunders5, L.-P. Says1, G. Smadja8, C. Sofiatti4,7, N. Suzuki4,22, S. Taubenberger12,20, C. Tao11,17, and R. C. Thomas21 THE NEARBY SUPERNOVA FACTORY 1 Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, 63000 Clermont-Ferrand, France e-mail: [email protected] 2 Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics, Stanford University, Stanford, CA 94305, USA 3 Lomonosov Moscow State University, Sternberg Astronomical Institute, Universitetsky pr. 13, Moscow 119234, Russia 4 Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA 5 Laboratoire de Physique Nucléaire et des Hautes Énergies, Université Pierre et Marie Curie Paris 6, Université Paris Diderot Paris 7, CNRS-IN2P3, 4 place Jussieu, 75252 Paris Cedex 05, France 6 Department of
    [Show full text]
  • Measuring the Velocity Field from Type Ia Supernovae in an LSST-Like Sky
    Prepared for submission to JCAP Measuring the velocity field from type Ia supernovae in an LSST-like sky survey Io Odderskov,a Steen Hannestada aDepartment of Physics and Astronomy University of Aarhus, Ny Munkegade, Aarhus C, Denmark E-mail: [email protected], [email protected] Abstract. In a few years, the Large Synoptic Survey Telescope will vastly increase the number of type Ia supernovae observed in the local universe. This will allow for a precise mapping of the velocity field and, since the source of peculiar velocities is variations in the density field, cosmological parameters related to the matter distribution can subsequently be extracted from the velocity power spectrum. One way to quantify this is through the angular power spectrum of radial peculiar velocities on spheres at different redshifts. We investigate how well this observable can be measured, despite the problems caused by areas with no information. To obtain a realistic distribution of supernovae, we create mock supernova catalogs by using a semi-analytical code for galaxy formation on the merger trees extracted from N-body simulations. We measure the cosmic variance in the velocity power spectrum by repeating the procedure many times for differently located observers, and vary several aspects of the analysis, such as the observer environment, to see how this affects the measurements. Our results confirm the findings from earlier studies regarding the precision with which the angular velocity power spectrum can be determined in the near future. This level of precision has been found to imply, that the angular velocity power spectrum from type Ia supernovae is competitive in its potential to measure parameters such as σ8.
    [Show full text]
  • Peculiar Transverse Velocities of Galaxies from Quasar Microlensing
    Peculiar Transverse Velocities of Galaxies from Quasar Microlensing. Tentative Estimate of the Peculiar Velocity Dispersion at z ∼ 0:5 E. MEDIAVILLA1;2, J. JIMENEZ-VICENTE´ 3;4, J. A. MUNOZ~ 5;6, E. BATTANER3;4 ABSTRACT We propose to use the flux variability of lensed quasar images induced by gravitational microlensing to measure the transverse peculiar velocity of lens galaxies over a wide range of redshift. Microlensing variability is caused by the motions of the observer, the lens galaxy (including the motion of the stars within the galaxy), and the source; hence, its frequency is directly related to the galaxy's transverse peculiar velocity. The idea is to count time-event rates (e.g., peak or caustic crossing rates) in the observed microlensing light curves of lensed quasars that can be compared with model predictions for different values of the transverse peculiar velocity. To compensate for the large time- scale of microlensing variability we propose to count and model the number of events in an ensemble of gravitational lenses. We develop the methodology to achieve this goal and apply it to an ensemble of 17 lensed quasar systems . In spite of the shortcomings of the available data, we have obtained tentative estimates of the peculiar velocity dispersion of lens galaxies at z ∼ 0:5, σpec(0:53± p −1 0:18) ' (638 ± 213) hmi=0:3M km s . Scaling at zero redshift we derive, p −1 σpec(0) ' (491 ± 164) hmi=0:3M km s , consistent with peculiar motions of nearby galaxies and with recent N-body nonlinear reconstructions of the Local Universe based on ΛCDM.
    [Show full text]
  • The Distance to Ngc 4993: the Host Galaxy of the Gravitational-Wave Event Gw170817
    DRAFT VERSION OCTOBER 17, 2017 Typeset using LATEX twocolumn style in AASTeX61 THE DISTANCE TO NGC 4993: THE HOST GALAXY OF THE GRAVITATIONAL-WAVE EVENT GW170817 JENS HJORTH,1 ANDREW J. LEVAN,2 NIAL R. TANVIR,3 JOE D. LYMAN,2 RADOSŁAW WOJTAK,1 SOPHIE L. SCHRØDER,1 ILYA MANDEL,4 CHRISTA GALL,1 AND SOFIE H. BRUUN1 1Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø, Denmark 2Department of Physics, University of Warwick, Coventry, CV4 7AL, UK 3Department of Physics and Astronomy, University of Leicester, LE1 7RH, UK 4Birmingham Institute for Gravitational Wave Astronomy and School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK (Received 2017 September 29; Revised revised 2017 October 2; Accepted 2017 October 3; published 2017 October 16) ABSTRACT The historic detection of gravitational waves from a binary neutron star merger (GW170817) and its electromagnetic counter- part led to the first accurate (sub-arcsecond) localization of a gravitational-wave event. The transient was found to be ∼1000 from the nucleus of the S0 galaxy NGC 4993. We report here the luminosity distance to this galaxy using two independent methods. (1) Based on our MUSE/VLT measurement of the heliocentric redshift (zhelio = 0:009783 ± 0:000023) we infer the systemic re- cession velocity of the NGC 4993 group of galaxies in the cosmic microwave background (CMB) frame to be vCMB = 3231 ± 53 -1 -1 km s . Using constrained cosmological simulations we estimate the line-of-sight peculiar velocity to be vpec = 307±230 km s , -1 resulting in a cosmic velocity of vcosmic = 2924 ± 236 km s (zcosmic = 0:00980 ± 0:00079) and a distance of Dz = 40:4 ± 3:4 Mpc -1 -1 assuming a local Hubble constant of H0 = 73:24 ± 1:74 km s Mpc .
    [Show full text]
  • AY 20 Fall 2010
    AY 20 Fall 2010 Structure & Morphology of the Milky Way Reading: Carroll & Ostlie, Chapter 24.2, 24.3 Galactic Structure cont’d: distribution of each population related to orbital characteristics thin disk <102 Myrs, thick disk 2-10 Gyrs scale heights ` 100-350 pc, 1 kpc resp. Sun in thin disk ~ 30 pc above plane number density of stars in thick disk 25 kpc radius <10% that in thin disk stars in thick disk older 100 kpc radius star formation continuing in thin disk From star counts & kinematics: 10 thin disk: mass ~ 6.5x10 Mʘ 4 kpc radius 10 LB = 1.8x 10 Lʘ 8 thick disk: LB = 2x10 Lʘ (much fainter) 9 mass ~ 2-4 x 10 Mʘ H2, cool dust: 3-8 kpc from GC HI: 3 – 25 kpc mass ~ 4 x 109 M mass ~ 109 M HI ʘ H2 ʘ neutral gas also a disk component; * scale height HI increases beyond 12 radius ~25 kpc, age < 10 Gyrs kpc radius to 900 pc 2 scale height < 100 pc*, Shape of each population depends on orbital characteristics. Note also a range of metallicities age-metallicity relation not a simple correlation! Abundance of iron (Fe) - product of type 1a SN – correlates w. star age NFe ()N star Fe log H H ()NFe indicates “metallicity” Adopt [Fe/H] = 0 for Sun NH For more metal rich stars [Fe/H] +ve; metal poorer [Fe/H] -ve Not entirely 1 to 1 correlation – iron production small and may be local [O/H] from core collapse SNs may be more accurate (occur sooner than type Ia) 3 N.B.
    [Show full text]
  • Introduction to Cosmology (SS 2014 Block Course) Lecturers: Markus P¨Ossel& Simon Glover
    1 FORMATION OF STRUCTURE: LINEAR REGIME 1 Introduction to Cosmology (SS 2014 block course) Lecturers: Markus P¨ossel& Simon Glover 1 Formation of structure: linear regime • Up to this point in our discussion, we have assumed that the Universe is perfectly homogeneous on all scales. However, if this were truly the case, then we would not be here in this lecture theatre. • We know that in reality, the Universe is highly inhomogeneous on small scales, with a considerable fraction of the matter content locked up in galaxies that have mean densities much higher than the mean cosmological matter density. We only recover homogeneity when we look at the distribution of these galaxies on very large scales. • The extreme smoothness of the CMB tells us that the Universe must have been very close to homogeneous during the recombination epoch, and that all of the large-scale structure that we see must have formed between then and now. • In this section and the next, we will review the theory of structure formation in an expanding Universe. We start by considering the evolution of small perturbations that can be treated using linear perturbation theory, before going on to look at which happens once these perturbations become large and linear theory breaks down. 1.1 Perturbation equations • We start with the equations of continuity @ρ + r~ · (ρ~v) = 0; (1) @t momentum conservation (i.e. Euler's equation) @~v r~ p + ~v · r~ ~v = − + r~ Φ (2) @t ρ and Poisson's equation for the gravitational potential Φ: r2Φ = 4πGρ. (3) • We next split up the density and velocity in their homogeneous background values ρ0 and ~v0 and small perturbations δρ, δ~v.
    [Show full text]
  • Deriving Accurate Peculiar Velocities (Even at High Redshift)
    Mon. Not. R. Astron. Soc. 000, 000–000 (2014) Printed 28 May 2014 (MN LATEX style file v2.2) Deriving accurate peculiar velocities (even at high redshift) Tamara M. Davis1,⋆ and Morag I. Scrimgeour2,3 1School of Mathematics and Physics, University of Queensland, QLD 4072, Australia 2Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada 3Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5, Canada Accepted 2014 May 5. Received 2014 May 1; in original form 2014 April 1 ABSTRACT The way that peculiar velocities are often inferred from measurements of distances and redshifts makes an approximation, vp = cz − H0D, that gives significant errors −1 even at relatively low redshifts (overestimates by ∆vp ∼100 kms at z ∼ 0.04). Here we demonstrate where the approximation breaks down, the systematic offset it introduces, and how the exact calculation should be implemented. Key words: cosmology – peculiar velocities. 1 INTRODUCTION in major compilations of peculiar velocity data such as Cosmicflows-2 (Tully et al. 2013). Peculiar velocities can be a useful cosmological probe, as they are sensitive to the matter distribution on large scales, This formula contains the approximation that, vapprox = cz, and can test the link between gravity and matter. As pecu- which fails at high redshift. This has been pointed out liar velocity measurements are getting more numerous, more in the past (e.g. Faber & Dressler 1977; Harrison 1974; accurate, and stretching to higher redshift, it is important Lynden-Bell et al. 1988; Harrison 1993; Colless et al. 2001), that we examine the assumptions made in the derivation but since many recent papers still use the approximation, of peculiar velocity from measurements of redshift and dis- and because several major peculiar velocity surveys are im- tance.
    [Show full text]
  • Letter of Interest Probing Gravity with Type Ia Supernova Peculiar Velocities
    Snowmass2021 - Letter of Interest Probing Gravity with Type Ia Supernova Peculiar Velocities Thematic Areas: (check all that apply /) (CF1) Dark Matter: Particle Like (CF2) Dark Matter: Wavelike (CF3) Dark Matter: Cosmic Probes (CF4) Dark Energy and Cosmic Acceleration: The Modern Universe (CF5) Dark Energy and Cosmic Acceleration: Cosmic Dawn and Before (CF6) Dark Energy and Cosmic Acceleration: Complementarity of Probes and New Facilities (CF7) Cosmic Probes of Fundamental Physics (Other) [Please specify frontier/topical group] Contact Information: Submitter Name/Institution: Alex G. Kim / Lawrence Berkeley National Laboratory Contact Email: [email protected] Abstract: In the upcoming decade cadenced wide-field imaging surveys will increase the number of iden- tified Type Ia supernovae (SNe Ia) at z < 0:2 from hundreds up to one hundred thousand. The increase in the number density and solid-angle coverage of SNe Ia, in parallel with improvements in the standardization of their absolute magnitudes, now make them competitive probes of the growth of structure and hence of gravity. Each SN Ia can have a peculiar velocity S=N ∼ 1 with the distance probative power of 30 − 40 galaxies, so a sample of 100,000 SNe Ia is equivalent to a survey of 3 million galaxies, in a redshift range where we currently have .100,000 galaxies. The peculiar velocity power spectrum is sensitive to the effect of gravity on the linear growth of structure. In the next decade the peculiar velocities of SNe Ia at z < 0:2 can distinguish between General Relativity and leading models of alternative gravity at 4-5σ confidence. These constraints have the same statistical significance as those from DESI or Euclid, but are measured essentially at a given cosmic time rather than averaged over a broad range z ∼ 1 − 2, and at low redshift where modifications of gravity may be most apparent.
    [Show full text]
  • 7.5 X 11.5.Doubleline.P65
    Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information Name index Abell, George, 99, 101 Cappelluti, Nico, 729 Abraham, Robert, 733 Carter, Brandon, 434 Abramovitz, Milton, 206, 209 Caswell, James, 226 Adams, Fred, 353, 369 Cavaliere, Alfonso, 110 Amsler, Claude, 275 Cesarsky, Catherine, 187, 189 Anderson, Carl, 29, 30, 163 Challinor, Anthony, 115, 259 Arnaud, Monique, 110 Chandrasekhar, Subrahmanyan, 302, 429, 434, Arnett, David, 386 455 Arzoumanian, Zaven, 420 Charlot, Stephane,´ 729, 730, 747 Auger, Pierre, 29 Chwolson, O., 117 Cimatti, Andrea, 736, 748 Babbedge, T., 740 Clayton, Donald, 386 Backer, Donald, 417, 418 Clemmow, Phillip, 267 Bahcall, John, 55, 57, 58 Colless, Matthew, 108, 109 Bahcall, Neta, 105 Compton, Arthur, 231 Balbus, Steven, 455 Cordes, James, 420 Band, David, 264 Cowie, Lennox, 733, 736, 743, 745 Barger, Amy, 745 Cox, Donald, 357 Beckwith, Steven, 737, 744 Becquerel, Henri, 146 Damon, Paul, 297 Bekefi, George, 193 Davies, Rodney, 376 Bell(-Burnell), Jocelyn, 19, 406 Davis, Leverett, 373 Bennett, Charles, 16 Davis, Raymond, 32, 54, 55 Bethe, Hans, 57, 163, 166, 175 de Vaucouleurs, Gerard,´ 77, 78 Bignami, Giovanni, 197 Dermer, Charles, 505 Binney, James, 106, 153 Deubner, Franz-Ludwig, 51 Blaauw, Adriaan, 754 Diehl, Roland, 287 Blackett, Patrick, 29 Dirac, Adrian, 29 Blain, Andrew, 743 Djorgovski, George, 88 Bland-Hawthorn, Jonathan, 733 Dougherty, John, 267 Blandford, Roger, 251 Draine, Bruce, 351, 372, 373, 375, Blumenthal, George, 163, 175,
    [Show full text]
  • THE GROWTH RATE of COSMIC STRUCTURE from PECULIAR VELOCITIES at LOW and HIGH REDSHIFTS Michael J
    ApJ Letters, in press. Preprint typeset using LATEX style emulateapj v. 5/2/11 THE GROWTH RATE OF COSMIC STRUCTURE FROM PECULIAR VELOCITIES AT LOW AND HIGH REDSHIFTS Michael J. Hudson1 and Stephen J. Turnbull Dept. of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada. ApJ Letters, in press. ABSTRACT Peculiar velocities are an important probe of the growth rate of mass density fluctuations in the Universe. Most previous studies have focussed exclusively on measuring peculiar velocities at inter- mediate (0:2 < z < 1) redshifts using statistical redshift-space distortions. Here we emphasize the power of peculiar velocities obtained directly from distance measurements at low redshift (z < 0:05), and show that these data break the usual degeneracies in the Ωm;0{ σ8;0 parameter space. Using∼ only peculiar velocity data, we find Ωm;0 = 0:259 0:045 and σ8;0 = 0:748 0:035. Fixing the amplitude of fluctuations at very high redshift using observations± of the Cosmic Microwave± Background (CMB), the same data can be used to constrain the growth index γ, with the strongest constraints coming from peculiar velocity measurements in the nearby Universe. We find γ = 0:619 0:054, consistent with ΛCDM. Current peculiar velocity data already strongly constrain modified gravity± models, and will be a powerful test as data accumulate. 1. INTRODUCTION There are two ways to measure peculiar velocities. The In the standard cosmological model, the Universe is first method is statistical: given a galaxy redshift survey, dominated by cold dark matter combined with a cos- the distortion of the power spectrum or correlation func- mological constant or dark energy (ΛCDM).
    [Show full text]
  • Arxiv:1412.8457V3 [Astro-Ph.CO] 22 Feb 2018 Lensing Effect Is Negligible Compare to the Effect of Peculiar Velocity
    September 24, 2018 21:1 WSPC/INSTRUCTION FILE vpec-6Sep2017- IJMPD International Journal of Modern Physics D c World Scientific Publishing Company Peculiar velocity measurement in a clumpy universe FARHANG HABIBI LAL, IN2P3-CNRS, B.P. 34, 91898 Orsay Cedex, France [email protected] SHANT BAGHRAM Department of Physics, Sharif University of Technology, P. O. Box 11155-9161, Tehran, Iran baghram-AT-sharif.edu SAEED TAVASOLI Department of Physics, Kharazmi University, P. O. Box 31979-37551, Tehran, Iran [email protected] Aims: In this work we address the issue of peculiar velocity measurement in a perturbed Friedmann universe using the deviations from measured luminosity distances of standard candles from background FRW universe. We want to show and quantify the statement that in intermediate redshifts (0:5 < z < 2), deviations from the background FRW model are not uniquely governed by peculiar velocities. Luminosity distances are modified by gravitational lensing. We also want to indicate the importance of relativistic calculations for peculiar velocity measurement at all redshifts. Methods: For this task we discuss the relativistic correction on luminosity distance and redshift measurement and show the contribution of each of the corrections as lensing term, peculiar velocity of the source and Sachs-Wolfe effect. Then we use the SNe Ia sample of Union 2, to investigate the relativistic effects we consider. Results: we show that, using the conventional peculiar velocity method, that ignores the lensing effect, will result in an overestimate of the measured peculiar velocities at intermediate redshifts. Here we quantify this effect. We show that at low redshifts the arXiv:1412.8457v3 [astro-ph.CO] 22 Feb 2018 lensing effect is negligible compare to the effect of peculiar velocity.
    [Show full text]
  • Arxiv:1808.02136V2 [Astro-Ph.CO]
    Correlations in the matter distribution in CLASH galaxy clusters Antonino Del Popoloa,b, Morgan Le Delliouc,d,∗, Xiguo Leee,1 aDipartimento di Fisica e Astronomia, University Of Catania, Viale Andrea Doria 6, 95125 Catania, Italy bINFN sezione di Catania, Via S. Sofia 64, I-95123 Catania, Italy cInstitute of Theoretical Physics, School of Physical Science and Technology, Lanzhou University, No.222, South Tianshui Road, Lanzhou, Gansu, 730000, Peoples Republic of China dInstituto de Astrof´sica e Ciˆencias do Espa¸co, Universidade de Lisboa, Faculdade de Ciencias, Ed. C8, Campo Grande, 1769-016 Lisboa, Portugal eInstitute of Modern Physics, Chinese Academy of Sciences, Post Office Box31, Lanzhou 730000, Peoples Republic of China Abstract We study the total and dark matter (DM) density profiles as well as their correlations for a sample of 15 high-mass galaxy clusters by extending our pre- vious work on several clusters from Newman et al. Our analysis focuses on 15 CLASH X-ray-selected clusters that have high-quality weak- and strong-lensing measurements from combined Subaru and Hubble Space Telescope observations. The total density profiles derived from lensing are interpreted based on the two- phase scenario of cluster formation. In this context, the brightest cluster galaxy (BCG) forms in the first dissipative phase, followed by a dissipationless phase where baryonic physics flattens the inner DM distribution. This results in the formation of clusters with modified DM distribution and several correlations between characteristic quantities of the clusters. We find that the central DM arXiv:1808.02136v2 [astro-ph.CO] 17 Jul 2019 density profiles of the clusters are strongly influenced by baryonic physics as found in our earlier work.
    [Show full text]