Interpreting Phylogenetic Trees4
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phylogenetic Models Linking Speciation and Extinction to Chromosome and Mating System Evolution
Phylogenetic Models Linking Speciation and Extinction to Chromosome and Mating System Evolution by William Allen Freyman A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology and the Designated Emphasis in Computational and Genomic Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Dr. Bruce G. Baldwin, Chair Dr. John P. Huelsenbeck Dr. Brent D. Mishler Dr. Kipling W. Will Fall 2017 Phylogenetic Models Linking Speciation and Extinction to Chromosome and Mating System Evolution Copyright 2017 by William Allen Freyman Abstract Phylogenetic Models Linking Speciation and Extinction to Chromosome and Mating System Evolution by William Allen Freyman Doctor of Philosophy in Integrative Biology and the Designated Emphasis in Computational and Genomic Biology University of California, Berkeley Dr. Bruce G. Baldwin, Chair Key evolutionary transitions have shaped the tree of life by driving the processes of spe- ciation and extinction. This dissertation aims to advance statistical and computational ap- proaches that model the timing and nature of these transitions over evolutionary trees. These methodological developments in phylogenetic comparative biology enable formal, model- based, statistical examinations of the macroevolutionary consequences of trait evolution. Chapter 1 presents computational tools for data mining the large-scale molecular sequence datasets needed for comparative phylogenetic analyses. I describe a novel metric, the miss- ing sequence decisiveness score (MSDS), which assesses the phylogenetic decisiveness of a matrix given the pattern of missing sequence data. In Chapter 2, I introduce a class of phylogenetic models of chromosome number evolution that accommodate both anagenetic and cladogenetic change. -
Lecture 2 Phylogenetics of Fishes 1. Phylogenetic Systematics 2
Lecture 2 Phylogenetics of Fishes 1. Phylogenetic systematics 2. General fish evolution 3. Molecular systematics & Genetic approaches Charles Darwin & Alfred Russel Wallace All species are related through common descent 1809 - 1882 1823 - 1913 Willi Hennig (1913 – 1976) • Hennig developed cladistical method to infer relatedness • Goal is to correctly group ancestors and all their descendants Cladistics (a.k.a Phylogenetic Systematics) Fundamental approach • divide characters into two groups • Apomorphies: more recently derived characteristics • Pleisomorhpies: more ancestral, primitive characteristics • Identify Synapomorphies (shared derived characteristics) • group clades by synapomorphies Cladistics (a.k.a Phylogenetic Systematics) eyes Synapomorphy of rockfish, gills bichir, and sharks? jaws bony skeleton swim bladder Bichir Rockfish Sharks Lamprey Hagfish Cladistics (a.k.a Phylogenetic Systematics) eyes Sympleisomorphy of gills rockfish, bichir, and sharks? jaws bony skeleton swim bladder Bichir Rockfish Sharks Lamprey Hagfish Cladistics (a.k.a Phylogenetic Systematics) eyes “Ancestral” and “derived” are gills relative to your focal group jaws bony skeleton swim bladder Bichir Rockfish Sharks Lamprey Hagfish Cladistics (a.k.a Phylogenetic Systematics) Monophyletic (aka clade): all taxa are descended from a common ancestor that is not the ancestor of any other group (every taxa descended from that ancestor is included) examples? Cladistics (a.k.a Phylogenetic Systematics) Paraphyletic: the group does not contain all species descended from the most recent common ancestor of its members examples? Cladistics (a.k.a Phylogenetic Systematics) Polyphyletic: taxa are descended from several ancestors that are also the ancestors of taxa classified into other groups examples? Problems with Traditional Cladistics Homoplasies • traits evolved due to convergence - keel: stabilizes tail at high speeds Problems with Traditional Cladistics Statistically inconsistent • can lend more support for the wrong answer Bernal et al. -
Species Concepts Should Not Conflict with Evolutionary History, but Often Do
ARTICLE IN PRESS Stud. Hist. Phil. Biol. & Biomed. Sci. xxx (2008) xxx–xxx Contents lists available at ScienceDirect Stud. Hist. Phil. Biol. & Biomed. Sci. journal homepage: www.elsevier.com/locate/shpsc Species concepts should not conflict with evolutionary history, but often do Joel D. Velasco Department of Philosophy, University of Wisconsin-Madison, 5185 White Hall, 600 North Park St., Madison, WI 53719, USA Department of Philosophy, Building 90, Stanford University, Stanford, CA 94305, USA article info abstract Keywords: Many phylogenetic systematists have criticized the Biological Species Concept (BSC) because it distorts Biological Species Concept evolutionary history. While defences against this particular criticism have been attempted, I argue that Phylogenetic Species Concept these responses are unsuccessful. In addition, I argue that the source of this problem leads to previously Phylogenetic Trees unappreciated, and deeper, fatal objections. These objections to the BSC also straightforwardly apply to Taxonomy other species concepts that are not defined by genealogical history. What is missing from many previous discussions is the fact that the Tree of Life, which represents phylogenetic history, is independent of our choice of species concept. Some species concepts are consistent with species having unique positions on the Tree while others, including the BSC, are not. Since representing history is of primary importance in evolutionary biology, these problems lead to the conclusion that the BSC, along with many other species concepts, are unacceptable. If species are to be taxa used in phylogenetic inferences, we need a history- based species concept. Ó 2008 Elsevier Ltd. All rights reserved. When citing this paper, please use the full journal title Studies in History and Philosophy of Biological and Biomedical Sciences 1. -
A Phylogenomic Analysis of Turtles ⇑ Nicholas G
Molecular Phylogenetics and Evolution 83 (2015) 250–257 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A phylogenomic analysis of turtles ⇑ Nicholas G. Crawford a,b,1, James F. Parham c, ,1, Anna B. Sellas a, Brant C. Faircloth d, Travis C. Glenn e, Theodore J. Papenfuss f, James B. Henderson a, Madison H. Hansen a,g, W. Brian Simison a a Center for Comparative Genomics, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA b Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA c John D. Cooper Archaeological and Paleontological Center, Department of Geological Sciences, California State University, Fullerton, CA 92834, USA d Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA e Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA f Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA g Mathematical and Computational Biology Department, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA 9171, USA article info abstract Article history: Molecular analyses of turtle relationships have overturned prevailing morphological hypotheses and Received 11 July 2014 prompted the development of a new taxonomy. Here we provide the first genome-scale analysis of turtle Revised 16 October 2014 phylogeny. We sequenced 2381 ultraconserved element (UCE) loci representing a total of 1,718,154 bp of Accepted 28 October 2014 aligned sequence. Our sampling includes 32 turtle taxa representing all 14 recognized turtle families and Available online 4 November 2014 an additional six outgroups. Maximum likelihood, Bayesian, and species tree methods produce a single resolved phylogeny. -
Genetic Change and Rates of Cladogenesis
GENETIC CHANGE AND RATES OF CLADOGENESIS JOHN C. AVISE* AND FRANCISCO J. AYALA Depariment of Genetics, University of Californiu, Davis, California 95616 Manuscript received May 12, 1975 Revised copy received July 28, 1975 ABSTRACT Models are introduced which predict ratios of mean levels of genetic divergence in species-rich versus species-poor phylads under two competing assumptions: (1) genetic differentiation is a function of time, unrelated to the number of cladogenetic events and (2) genetic differentiation is proportional to the number of speciation events in the group. The models are simple, general, and biologically real, but not precise. They lead to qualitatively distinct predic- tions about levels of genetic divergence depending upon the relationship between rates of speciation and amount of genetic change. When genetic dis- tance between species is a function of time, mean genetic distances in speciose and depauperate phylads of equal evolutionary age are very similar. On the contrary, when genetic distance is a function of the number of speciations in the history of a phylad, the ratio of mean genetic distances separating species in speciose versus depauperate phylads is greater than one, and increases rapidly as the frequency of speciations in one group relative to the other increases. The models may be tested with data from natural populations to assess (1) possible correlations between rates of anagenesis and cladogenesis and (2) the amount of genetic differentiation accompanying the speciation process. The data collected in electrophoretic surveys and other kinds of studies can be used to test the predictions of the models. For this purpose genetic distances need to be measured in speciose and depauperate phylads of equal evolutionary age. -
Lineages, Splits and Divergence Challenge Whether the Terms Anagenesis and Cladogenesis Are Necessary
Biological Journal of the Linnean Society, 2015, , – . With 2 figures. Lineages, splits and divergence challenge whether the terms anagenesis and cladogenesis are necessary FELIX VAUX*, STEVEN A. TREWICK and MARY MORGAN-RICHARDS Ecology Group, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand Received 3 June 2015; revised 22 July 2015; accepted for publication 22 July 2015 Using the framework of evolutionary lineages to separate the process of evolution and classification of species, we observe that ‘anagenesis’ and ‘cladogenesis’ are unnecessary terms. The terms have changed significantly in meaning over time, and current usage is inconsistent and vague across many different disciplines. The most popular definition of cladogenesis is the splitting of evolutionary lineages (cessation of gene flow), whereas anagenesis is evolutionary change between splits. Cladogenesis (and lineage-splitting) is also regularly made synonymous with speciation. This definition is misleading as lineage-splitting is prolific during evolution and because palaeontological studies provide no direct estimate of gene flow. The terms also fail to incorporate speciation without being arbitrary or relative, and the focus upon lineage-splitting ignores the importance of divergence, hybridization, extinction and informative value (i.e. what is helpful to describe as a taxon) for species classification. We conclude and demonstrate that evolution and species diversity can be considered with greater clarity using simpler, more transparent terms than anagenesis and cladogenesis. Describing evolution and taxonomic classification can be straightforward, and there is no need to ‘make words mean so many different things’. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 00, 000–000. -
Exclusivity As the Key to Defining a Phylogenetic Species Concept
Biol Philos (2009) 24:473–486 DOI 10.1007/s10539-009-9151-4 When monophyly is not enough: exclusivity as the key to defining a phylogenetic species concept Joel D. Velasco Received: 29 November 2008 / Accepted: 6 January 2009 / Published online: 20 January 2009 Ó Springer Science+Business Media B.V. 2009 Abstract A natural starting place for developing a phylogenetic species concept is to examine monophyletic groups of organisms. Proponents of ‘‘the’’ Phylogenetic Species Concept fall into one of two camps. The first camp denies that species even could be monophyletic and groups organisms using character traits. The second groups organisms using common ancestry and requires that species must be monophyletic. I argue that neither view is entirely correct. While monophyletic groups of organisms exist, they should not be equated with species. Instead, species must meet the more restrictive criterion of being genealogically exclusive groups where the members are more closely related to each other than to anything outside the group. I carefully spell out different versions of what this might mean and arrive at a working definition of exclusivity that forms groups that can function within phylogenetic theory. I conclude by arguing that while a phylogenetic species con- cept must use exclusivity as a grouping criterion, a variety of ranking criteria are consistent with the requirement that species can be placed on phylogenetic trees. Keywords Genealogical exclusivity Á Monophyly Á Phylogenetic species concept Á Phylogeneticsystematics Á Species Introduction The species problem—how to sort organisms into various species—remains a central problem in biological taxonomy. Despite many bitter disagreements about these fundamental units, there is widespread agreement on how to delimit ‘‘higher’’ taxa (those that are more inclusive than species). -
Evaluating the Monophyly and Biogeography of Cryptantha (Boraginaceae)
Systematic Botany (2018), 43(1): pp. 53–76 © Copyright 2018 by the American Society of Plant Taxonomists DOI 10.1600/036364418X696978 Date of publication April 18, 2018 Evaluating the Monophyly and Biogeography of Cryptantha (Boraginaceae) Makenzie E. Mabry1,2 and Michael G. Simpson1 1Department of Biology, San Diego State University, San Diego, California 92182, U. S. A. 2Current address: Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, U. S. A. Authors for correspondence ([email protected]; [email protected]) Abstract—Cryptantha, an herbaceous plant genus of the Boraginaceae, subtribe Amsinckiinae, has an American amphitropical disjunct distri- bution, found in western North America and western South America, but not in the intervening tropics. In a previous study, Cryptantha was found to be polyphyletic and was split into five genera, including a weakly supported, potentially non-monophyletic Cryptantha s. s. In this and subsequent studies of the Amsinckiinae, interrelationships within Cryptantha were generally not strongly supported and sample size was generally low. Here we analyze a greatly increased sampling of Cryptantha taxa using high-throughput, genome skimming data, in which we obtained the complete ribosomal cistron, the nearly complete chloroplast genome, and twenty-three mitochondrial genes. Our analyses have allowed for inference of clades within this complex with strong support. The occurrence of a non-monophyletic Cryptantha is confirmed, with three major clades obtained, termed here the Johnstonella/Albidae clade, the Maritimae clade, and a large Cryptantha core clade, each strongly supported as monophyletic. From these phylogenomic analyses, we assess the classification, character evolution, and phylogeographic history that elucidates the current amphitropical distribution of the group. -
Diversity-Dependent Cladogenesis Throughout Western Mexico: Evolutionary Biogeography of Rattlesnakes (Viperidae: Crotalinae: Crotalus and Sistrurus)
City University of New York (CUNY) CUNY Academic Works Publications and Research New York City College of Technology 2016 Diversity-dependent cladogenesis throughout western Mexico: Evolutionary biogeography of rattlesnakes (Viperidae: Crotalinae: Crotalus and Sistrurus) Christopher Blair CUNY New York City College of Technology Santiago Sánchez-Ramírez University of Toronto How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/ny_pubs/344 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] 1Blair, C., Sánchez-Ramírez, S., 2016. Diversity-dependent cladogenesis throughout 2 western Mexico: Evolutionary biogeography of rattlesnakes (Viperidae: Crotalinae: 3 Crotalus and Sistrurus ). Molecular Phylogenetics and Evolution 97, 145–154. 4 https://doi.org/10.1016/j.ympev.2015.12.020. © 2016. This manuscript version is made 5 available under the CC-BY-NC-ND 4.0 license. 6 7 8 Diversity-dependent cladogenesis throughout western Mexico: evolutionary 9 biogeography of rattlesnakes (Viperidae: Crotalinae: Crotalus and Sistrurus) 10 11 12 CHRISTOPHER BLAIR1*, SANTIAGO SÁNCHEZ-RAMÍREZ2,3,4 13 14 15 1Department of Biological Sciences, New York City College of Technology, Biology PhD 16 Program, Graduate Center, The City University of New York, 300 Jay Street, Brooklyn, 17 NY 11201, USA. 18 2Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks 19 Street, Toronto, ON, M5S 3B2, Canada. 20 3Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, 21 ON, M5S 2C6, Canada. 22 4Present address: Environmental Genomics Group, Max Planck Institute for 23 Evolutionary Biology, August-Thienemann-Str. -
Species Tree Likelihood Computation Given SNP Data Using Ancestral Configurations
Species Tree Likelihood Computation Given SNP Data Using Ancestral Configurations DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Hang Fan, M.S. Graduate Program in Statistics The Ohio State University 2013 Dissertation Committee: Professor Laura Kubatko, Advisor Professor Bryan Carstens Professor Radu Herbei 1 Copyright by Hang Fan 2013 2 Abstract Inferring species trees given genetic data has been a challenge in the field of phylogenetics because of the high intensity during computation. In the coalescent framework, this dissertation proposes an innovative method of estimating the likelihood of a species tree directly from Single Nucleotide Polymorphism (SNP) data with a certain nucleotide substitution model. This method uses the idea of Ancestral Configurations (Wu, 2011) to avoid the computation burden brought by the enumeration of coalescent histories. Importance sampling is used to in Monte Carlo integration to approximate the expectations in the computation, where the accuracy of the approximation is tested in different tree models. The SNP data is processed beforehand which vastly boosts the efficiency of the method. Gene tree sampling given the species tree under the coalescent model is employed to make the computation feasible for large trees. Further, the branch lengths on the species tree are optimized according to the computed species tree likelihood, which provides the likelihood of the species tree topology given the SNP data. For inference, this likelihood computation method is implemented in the stepwise addition algorithm to infer the maximum likelihood species tree in the tree space given the SNP data, and simulations are conduced to test the performance. -
Congruence of Morphologically-Defined Genera with Molecular Phylogenies
Congruence of morphologically-defined genera with molecular phylogenies David Jablonskia,1 and John A. Finarellib,c aDepartment of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637; bDepartment of Geological Sciences, University of Michigan, 2534 C. C. Little Building, 1100 North University Avenue, Ann Arbor, MI 48109; and cUniversity of Michigan Museum of Paleontology, 1529 Ruthven Museum, 1109 Geddes Road, Ann Arbor, MI 48109 Communicated by James W. Valentine, University of California, Berkeley, CA, March 24, 2009 (received for review December 4, 2008) Morphologically-defined mammalian and molluscan genera (herein ‘‘morphogenera’’) are significantly more likely to be mono- ABCDEHI J GFKLMNOPQRST phyletic relative to molecular phylogenies than random, under 3 different models of expected monophyly rates: Ϸ63% of 425 surveyed morphogenera are monophyletic and 19% are polyphyl- etic, although certain groups appear to be problematic (e.g., nonmarine, unionoid bivalves). Compiled nonmonophyly rates are probably extreme values, because molecular analyses have fo- cused on ‘‘problem’’ taxa, and molecular topologies (treated herein as error-free) contain contradictory groupings across analyses for 10% of molluscan morphogenera and 37% of mammalian mor- phogenera. Both body size and geographic range, 2 key macro- evolutionary and macroecological variables, show significant rank correlations between values for morphogenera and molecularly- defined clades, even when strictly monophyletic morphogenera EVOLUTION are excluded from analyses. Thus, although morphogenera can be imperfect reflections of phylogeny, large-scale statistical treat- ments of diversity dynamics or macroevolutionary variables in time and space are unlikely to be misleading. biogeography ͉ body size ͉ macroecology ͉ macroevolution ͉ systematics Fig. 1. Diagrammatic representations of monophyletic, uniparaphyletic, multiparaphyletic, and polyphyletic morphogenera. -
EVOLUTIONARY INFERENCE: Some Basics of Phylogenetic Analyses
EVOLUTIONARY INFERENCE: Some basics of phylogenetic analyses. Ana Rojas Mendoza CNIO-Madrid-Spain. Alfonso Valencia’s lab. Aims of this talk: • 1.To introduce relevant concepts of evolution to practice phylogenetic inference from molecular data. • 2.To introduce some of the most useful methods and computer programmes to practice phylogenetic inference. • • 3.To show some examples I’ve worked in. SOME BASICS 11--ConceptsConcepts ofof MolecularMolecular EvolutionEvolution • Homology vs Analogy. • Homology vs similarity. • Ortologous vs Paralogous genes. • Species tree vs genes tree. • Molecular clock. • Allele mutation vs allele substitution. • Rates of allele substitution. • Neutral theory of evolution. SOME BASICS Owen’s definition of homology Richard Owen, 1843 • Homologue: the same organ under every variety of form and function (true or essential correspondence). •Analogy: superficial or misleading similarity. SOME BASICS 1.Concepts1.Concepts ofof MolecularMolecular EvolutionEvolution • Homology vs Analogy. • Homology vs similarity. • Ortologous vs Paralogous genes. • Species tree vs genes tree. • Molecular clock. • Allele mutation vs allele substitution. • Rates of allele substitution. • Neutral theory of evolution. SOME BASICS Similarity ≠ Homology • Similarity: mathematical concept . Homology: biological concept Common Ancestry!!! SOME BASICS 1.Concepts1.Concepts ofof MolecularMolecular EvolutionEvolution • Homology vs Analogy. • Homology vs similarity. • Ortologous vs Paralogous genes. • Species tree vs genes tree. • Molecular clock.