Depositional Systems in the Paluxy Formation (Lower Cretaceous), Northeast Texas- Oil,Gas, and Groundwater Resources by Charles A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Aptian–Albian) of Texas and Oklahoma
Reappraisal of the tribosphenidan mammals from the Trinity Group (Aptian–Albian) of Texas and Oklahoma BRIAN M. DAVIS and RICHARD L. CIFELLI Davis, B.M. and Cifelli, R.L. 2011. Reappraisal of the tribosphenidan mammals from the Trinity Group (Aptian–Albian) of Texas and Oklahoma. Acta Palaeontologica Polonica 56 (3): 441–462. The Trinity therians have long been the focus of attempts to reconstruct the evolutionary history of higher mammals, es− pecially in the context of the development of tribospheny. In this paper, we update the taxonomy of the tribosphenidan taxa known from the Trinity Group and establish with more confidence the premolar/molar count in each. Many isolated specimens can be referred to a specific tooth locus. Additional diversity is revealed within the Deltatheroida, with the de− scription of an additional species of Oklatheridium; Pappotherium is here considered a likely metatherian based on the in− ferred presence of four molars, while Holoclemensia is a basal eutherian (the opposite of some traditional interpretations). The remainder of the genera, Kermackia and Slaughteria, cannot be allied with either of the living groups of tribo− sphenidan mammals using the available data. We identify strong morphological diversity within this assemblage of stem taxa, including modifications to the traditional tribosphenic occlusal pattern in Kermackia. Mammalian evolution at the base of the tribosphenidan radiation was complex, and this underscores the need for caution when interpreting the mor− phology and relationships of taxa known by incomplete material. Key words: Tribosphenida, Metatheria, Eutheria, Deltatheroida, Trinity Group, Early Cretaceous. Brian M. Davis [[email protected]] and Richard L. Cifelli [[email protected]], Department of Zoology and Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, 2401 Chautauqua Ave, Norman, OK, 73072, USA. -
L ANDERSON Thinking Is More Important Than Elaborate
Stratigraphy of the Fredericksburg Group, East Texas Basin L ANDERSON thinking is more important than elaborate FRANK PH.D. PROFESSOR OF GEOLOGY BAYLOR UNIVERSITY 1929-1934 Objectives of Geological Training at Baylor The training of a geologist in a university covers but a few years; his education continues throughout his active life. The purposes of train ing geologists at Baylor University are to provide a sound basis of understanding and to foster a truly geological point of view, both of which are essential for continued professional growth. The staff considers geology to be unique among sciences since it is primarily a field science. All geologic research in cluding that done in laboratories must be firmly supported by field observations. The student is encouraged to develop an inquiring ob jective attitude and to examine critically all geological and principles. The development of a mature and professional attitude toward geology and geological research is a principal concern of the department. Cover: Isopach of the Fredericksburg Group. THE BAYLOR PRINTING SERVICE WACO, TEXAS BAYLOR GEOLOGICAL STUDIES BULLETIN NO. 47 Stratigraphy of the Fredericksburg Group, East Texas Basin L. Marlow Anderson BAYLOR UNIVERSITY Department of Geology Waco, Texas Spring 1989 Baylor Geological Studies EDITORIAL STAFF Janet L. Burton, Editor O. T. Hayward, Ph.D., Advisor, Cartographic Editor general and urban geology and what have you Joe C. Yelderman, Jr., Ph.D., Associate Editor hydrogeology Peter M. Allen, Ph.D. urban and environmental geology, hydrology Harold H. Beaver, Ph.D. stratigraphy, petroleum geology Rena Bonem, Ph.D. paleontology, paleoecology Brown, Ph.D. structural tectonics S. -
31295018183201.Pdf (11.51Mb)
DEPOSITION AND DIAGENESIS OF THE LOWER CRETACEOUS ANTLERS SANDSTONE ON THE YOUNG RANCH, NOLAN COUNTY, TEXAS by LEONARD WAYNE WOOD, B.S. A THESIS IN GEOSCIENCE Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Approved Chairp^son of the Committee Accepted Dean of the Graduate School December, 2001 ACKNOWLEDGEMENTS I would like to express my appreciation to Dr. George B. Asquith for his constant guidance, assistance, and encouragement during my tenure at Tech. He has been a second father to me and a great teacher; his influence has truly shaped my life. I am also grateful to my graduate committee, Dr. Tom Lehman and Dr. Moira Ridley, for their assistance and review of my thesis. I would like to thank R.T. Winn, Jason Slayden, Cindy Welch, and Lee Wood (my father) for their assistance in the field. Thank you to the Young family for allowing me access and the opportunity to work on their beautiful ranch. I would also like to thank Mike Gower for his help in preparing thin sections, and his assistance with any other questions I had. His help was greatly appreciated. Thank you to Dr. Mark Crimson for his assistance in the SEM lab and to the Department of Biological Sciences at Texas Tech University for providing access to the Electron Microscopy Laboratory. I would like to dedicate this thesis to my parents and grandparents, the people that have influenced my life the most. I am glad they all stayed around long enough to see this. -
Paleontological Contributions
Paleontological Contributions Number 14 The first giant raptor (Theropoda: Dromaeosauridae) from the Hell Creek Formation Robert A. DePalma, David A. Burnham, Larry D. Martin, Peter L. Larson, and Robert T. Bakker October 30, 2015 Lawrence, Kansas, USA ISSN 1946-0279 (online) paleo.ku.edu/contributions Life restoration by Emily Willoughby of Dakotaraptor steini running with the sparrow-sized birds, Cimolopteryx petra while the mammal, Purgatorius, can be seen in the foreground. Paleontological Contributions October 30, 2015 Number 14 THE FIRST GIANT RAPTOR (THEROPODA: DROMAEOSAURIDAE) FROM THE HELL CREEK FORMATION Robert A. DePalma1,2, David A. Burnham2,*, Larry D. Martin2,†, Peter L. Larson3 and Robert T. Bakker4 1 Department of Vertebrate Paleontology, The Palm Beach Museum of Natural History, Fort Lauderdale, Florida; 2 University of Kansas Bio- diversity Institute, Lawrence, Kansas; 3Black Hills Institute of Geological Research, Hill City, South Dakota; 4Houston Museum of Nature and Science, Houston, Texas; e-mail: [email protected] ABSTRACT Most dromaeosaurids were small- to medium-sized cursorial, scansorial, and arboreal, sometimes volant predators, but a comparatively small percentage grew to gigantic proportions. Only two such giant “raptors” have been described from North America. Here, we describe a new giant dromaeosaurid, Dakotaraptor steini gen. et sp. nov., from the Hell Creek Formation of South Dakota. The discovery represents the first giant dromaeosaur from the Hell Creek Formation, and the most recent in the fossil record worldwide. A row of prominent ulnar papilli or “quill knobs” on the ulna is our first clear evidence for feather quills on a large dromaeosaurid forearm and impacts evolutionary reconstructions and functional morphology of such derived, typically flight-related features. -
Occurrence, Availability, and Chemical Quality of Ground
TEXAS DEPARTMENT OF WATER RESOURCES REPORT 269 OCCURRENCE, AVAILABILITY, AND CHEMICAL QUALITY OF GROUND WATER IN THE CRETACEOUS AQUIFERS OF NORTH-CENTRAL TEXAS VOLUME 1 Phillip L. Nordstrom, Geologist April 1982 TEXAS DEPARTMENT OF WATER RESOURCES Harvey Davis, Executive Director TEXAS WATER DEVELOPMENT BOARD Louis A. Beecherl Jr., Chairman John H. Garrett, Vice Chairman George W. McCleskey W. 0. Bankston Glen E. Roney Lonnie A. “Bo” Pilgrim TEXAS WATER COMMISSION Felix McDonald, Chairman Dorsey B. Hardeman, Commissioner Lee B. M. Biggart, Commissioner Authorization for use or reproduction of any original material contained in this publication, i.e., not obtained from other sources, is freely granted. The Department would appreciate acknowledgement. Published and distributed by the Texas Department of Water Resources Post Office Box 13087 Austin, Texas 78711 ii __ TABLE OF CONTENTS Page SUMMARY AND CONCLUSIONS . 1 INTRODUCTION . .. 3 Purpose and Scope . 3 Location and Extent . 3 Physiography . 3 Climate . 4 Population . 4 Economy . 4 Previous Investigations . 4 Acknowledgements . 7 Method of Investigation . 7 Well-Numbering System . 7 Metric Conversion . 8 GEOLOGY AS RELATED TO THE OCCURRENCE OF GROUND WATER . 9 Geologic History . 9 Paleozoic . 9 Cretaceous . 9 Tertiary and Quaternary . 9 General Stratigraphy . 9 Structure . 10 STRATIGRAPHY OF THE WATER-BEARING FORMATIONS . 12 Paleozoic Rocks . 12 Antlers . 13 iii TABLE OF CONTENTS – Continued Page Twin Mountain Formation . 13 Paluxy Formation . 14 Woodbine Group . 14 Blossom Sand . 15 Nacatoch Sand . 15 CHEMICAL QUALITY OF GROUND WATER AS RELATED TO USE . 15 General Chemical Quality of Ground Water . 15 Quality Criteria or Standards . 16 Municipal . 16 Primary Standards . 20 Secondary Standards . -
The Ontogenetic Osteohistology of Tenontosaurus Tilletti
The Ontogenetic Osteohistology of Tenontosaurus tilletti Sarah Werning*¤ Department of Zoology and Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, Norman, Oklahoma, United States of America Abstract Tenontosaurus tilletti is an ornithopod dinosaur known from the Early Cretaceous (Aptian-Albian) Cloverly and Antlers formations of the Western United States. It is represented by a large number of specimens spanning a number of ontogenetic stages, and these specimens have been collected across a wide geographic range (from central Montana to southern Oklahoma). Here I describe the long bone histology of T. tilletti and discuss histological variation at the individual, ontogenetic and geographic levels. The ontogenetic pattern of bone histology in T. tilletti is similar to that of other dinosaurs, reflecting extremely rapid growth early in life, and sustained rapid growth through sub-adult ontogeny. But unlike other iguanodontians, this dinosaur shows an extended multi-year period of slow growth as skeletal maturity approached. Evidence of termination of growth (e.g., an external fundamental system) is observed in only the largest individuals, although other histological signals in only slightly smaller specimens suggest a substantial slowing of growth later in life. Histological differences in the amount of remodeling and the number of lines of arrested growth varied among elements within individuals, but bone histology was conservative across sampled individuals of the species, despite known paleoenvironmental differences between the Antlers and Cloverly formations. The bone histology of T. tilletti indicates a much slower growth trajectory than observed for other iguanodontians (e.g., hadrosaurids), suggesting that those taxa reached much larger sizes than Tenontosaurus in a shorter time. -
Osteology of a Near-Complete Skeleton of Tenontosaurus Tilletti (Dinosauria: Ornithopoda) from the Cloverly Formation, Montana, USA
Osteology of a Near-Complete Skeleton of Tenontosaurus tilletti (Dinosauria: Ornithopoda) from the Cloverly Formation, Montana, USA A report submitted in partial fulfilment of the requirements for the degree of MEarthSci Geology (Hons.), University of Manchester Jonathan Tennant 70406912 MEarthSci Geology (Hons.) School of Earth, Atmospheric and Environmental Sciences University of Manchester Williamson Building Oxford Road Manchester M13 9PL Osteology of Tenontosaurus tilletti Contents Figures and Tables..............................................................................................................................................3 1.0 Abstract .............................................................................................................................................................6 2.0 Introduction ......................................................................................................................................................7 2.1 Aims and Objectives....................................................................................................................................7 2.2 Institutional Abbreviations ........................................................................................................................9 3.0 Previous Work ............................................................................................................................................... 11 3.1 The Cloverly Formation .......................................................................................................................... -
A New Specimen of Acrocanthosaurus Atokensis (Theropoda, Dinosauria) from the Lower Cretaceous Antlers Formation (Lower Cretaceous, Aptian) of Oklahoma, USA
A new specimen of Acrocanthosaurus atokensis (Theropoda, Dinosauria) from the Lower Cretaceous Antlers Formation (Lower Cretaceous, Aptian) of Oklahoma, USA Philip J. CURRIE Royal Tyrrell Museum of Palaeontology, Box 7500, Drumheller, Alberta T0J 0Y0 (Canada) [email protected] Kenneth CARPENTER Denver Museum of Natural History, Department of Earth Sciences, City Park, Denver, Colorado 80205 (USA) [email protected] Currie P. J. & Carpenter K. 2000. — A new specimen of Acrocanthosaurus atokensis (Theropoda, Dinosauria) from the Lower Cretaceous Antlers Formation (Lower Cretaceous, Aptian) of Oklahoma, USA. Geodiversitas 22 (2) : 207-246. The data matrix is available at http://www.mnhn.fr/publication/matadd/g00n2a3.html ABSTRACT A new skeleton of Acrocanthosaurus atokensis is the most complete specimen collected and has the only known complete skull. Aspects of the new skeleton are described in detail, with special attention directed to the morphology of the skull and forelimb. Although unquestionably one of the largest theropods ever found, it is smaller than Carcharodontosaurus, Giganotosaurus and Tyrannosaurus. Comparison with other theropods suggests that Acrocanthosaurus bears a strong resemblance to these taxa because of charac- KEY WORDS ters that are size determinate, and the evidence suggests Acrocanthosaurus is Dinosaurs, more closely related to Allosauridae than to Carcharodontosauridae. Three theropods, Early Cretaceous, families (Allosauridae, Carcharodontosauridae, Sinraptoridae) are recognized USA. in the Allosauroidea. GEODIVERSITAS • 2000 • 22 (2) © Publications Scientifiques du Muséum national d’Histoire naturelle, Paris. www.mnhn.fr/publication/ 207 Currie P. J. & Carpenter K. RÉSUMÉ Un nouveau specimen d’Acrocanthosaurus atokensis (Theropoda, Dinosauria) du Crétacé inférieur de la Formation Antlers (Crétacé inférieur, Aptien) de l’Oklahoma, États-Unis. -
Osteology, Paleobiology, and Relationships of the Sauropod Dinosaur Sauroposeidon
Osteology, paleobiology, and relationships of the sauropod dinosaur Sauroposeidon MATHEW J. WEDEL, RICHARD L. CIFELLI, and R. KENT SANDERS Wedel, M.J., Cifelli, R.L., & Sanders, R.K. 2000. Osteology, paleobiology, and relation- ships of the sauropod dinosaur Sauroposeidon. -Acta Palaeontologica Polonica 45,4, 343-388. Sauroposeidon proteles is a large brachiosaurid sauropod recently described from the Antlers Formation (Aptian-Albian) of southeastern Oklahoma. Sauroposeidon repre- sents the culmination of brachiosaurid trends toward lengthening and lightening the neck, and its cervical vertebrae are characterized by extensive pneumatic structures. The elaboration of vertebral air sacs during sauropod evolution produced a variety of internal structure types. We propose anew classification system for this array of vertebral charac- ters, using computed tomography (CT) of pneumatic internal structures. Comparisons with birds suggest that the vertebrae of sauropods were pneumatized by a complex sys- tem of air sacs in the thorax and abdomen. The presence of a thoraco-abdominal air sac system in sauropods would dramatically affect current estimates of mass, food intake, and respiratory requirements. Sauroposeidon was one of the last sauropods in the Early Cretaceous of North America; sauropods disappeared from the continent by the early Cenomanian. The demise of sauropods in the Early Cretaceous of North America pre- dates significant radiations of angiosperms, so the decline and extinction of this dinosaur group cannot be linked to changes in flora. Key words : Dinosauria, Sauropoda, Sauroposeidon, pneumatic structures, Cretaceous, Oklahoma. Mathew J. Wedel [[email protected]]and Richard L. Cifelli [[email protected]], Oklahoma Museum of Natural History and Department of Zoology, University of Oklahoma, 2401 Chautauqua Avenue, Norman, OK 73072, USA; R. -
Early Evolution of Titanosauriform Sauropod Dinosaurs by Michael
Early evolution of titanosauriform sauropod dinosaurs by Michael Daniel DʼEmic A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Geology) in The University of Michigan 2011 Committee: Associate Professor Jeffrey A. Wilson, chair Assistant Professor Catherine Badgley Professor Tomasz K. Baumiller Professor Daniel C. Fisher Professor Rob van der Voo © Michael DʼEmic 2011 ACKNOWLEDGEMENTS First, I would like to thank my dissertation committee: C. Badgley, T. Baumiller, D. Fisher, R. van der Voo, and J. A. Wilson for advice and guidance during the project. Special thanks to J. A. Wilson for constant support, guidance, and research opportunities over the years. Thanks for field assistance and support from P. Christenson, T. Churchill, B. Dauksewicz, B. Foreman, P. Gingerich, A. Hayden, D. Klein, S. Macone, C. Manz, K. Melstrom, D. Raisanen, A. Tillett, and C. Youngs. Thanks to M. Fox (YPM), D. Nixon (SMU), C. Manz, K. Melstrom, and B. Sanders (UM) for preparation. Special thanks to A. Pan, L. Ballinger (FWMSH) and D. Colodner (ASDM) for permission to destructively sample limb bones for histology, and M. Sander and K. Stein for helpful technical information about drilling sauropod bones. Thanks to D. C. Fisher for use of thin-sectioning equipment and K. M. Smith for assistance. J. A. Wilson, M. Wedel and R. Barnes kindly provided parts of figures 4.1, 4.6 and 4.7, respectively. Thanks to the administrative staff of the UM Geological Sciences Department, especially N. Kingsbury and A. Hudon for much help over the years. Collections managers and curators at the following institutions are thanked for their help and hospitality, without which this dissertation certainly would not have been possible: C. -
Dinosaurian Faunas of the Cedar Mountain Formation and LA-ICP- MS Detrital Zircon Ages for Three Stratigraphic Sections
Brigham Young University BYU ScholarsArchive Theses and Dissertations 2009-11-23 Dinosaurian Faunas of the Cedar Mountain Formation and LA-ICP- MS Detrital Zircon Ages for Three Stratigraphic Sections Hirotsugu Mori Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Geology Commons BYU ScholarsArchive Citation Mori, Hirotsugu, "Dinosaurian Faunas of the Cedar Mountain Formation and LA-ICP-MS Detrital Zircon Ages for Three Stratigraphic Sections" (2009). Theses and Dissertations. 2000. https://scholarsarchive.byu.edu/etd/2000 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Dinosaurian faunas of the Cedar Mountain Formation with detrital zircon ages for three stratigraphic sections and The relationship between the degree of abrasion and U-Pb LA-ICP-MS ages of detrital zircons Hirotsugu Mori A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Brooks B. Britt Thomas H. Morris Ritter M. Scott Department of Geological Sciences Brigham Young University December 2009 Copyright © 2009 Hirotsugu Mori All Rights Reserved ABSTRACT Dinosaurian faunas of the Cedar Mountain Formation with detrital zircon ages for three stratigraphic sections and The relationship between the degree of abrasion and U-Pb LA-ICP-MS ages of detrital zircons Hirotsugu Mori Department of Geological Sciences Master of Science The Cedar Mountain Formation contains the most diverse record of Early Cretaceous dinosaurs in the western hemisphere. -
2018 Hunt Tyler Thesis.Pdf (1.149Mb)
UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE NEW INSIGHTS INTO TENONTOSAURUS TILLETTI (DINOSAURIA: ORNITHOPODA) FROM AN EXCEPTIONALLY PRESERVED SPECIMEN A THESIS SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE By TYLER CRAIG HUNT Norman, Oklahoma 2018 NEW INSIGHTS INTO TENONTOSAURUS TILLETTI (DINOSAURIA: ORNITHOPODA) FROM AN EXCEPTIONALLY PRESERVED SPECIMEN A THESIS APPROVED FOR THE DEPARTMENT OF BIOLOGY BY __________________________________ Dr. Rich Cifelli, Chair __________________________________ Dr. Stephen Westrop __________________________________ Dr. Cameron Siler __________________________________ Dr. Nicholas Czaplewski © Copyright by TYLER CRAIG HUNT 2018 All Rights Reserved. I dedicate this thesis to my family, for cultivating my love of the natural world and for supporting me in every possible way as I strive to achieve my childhood dream. Also, to Todd Johnson for taking me on my first fossil hunt, while my fossil collection has grown over the years, the ammonite I found on that first trip still holds a place of honor as my first major find. Acknowledgements First and foremost, I would like to thank the members of my committee, Rich, Steve, Nick, and Cam whose mentorship extended years prior to them joining my committee, I truly would not be here today without your guidance. To my colleagues, Joe Frederickson and Josh Cohen thank you for bringing me into the fold and teaching me how to be a productive, collaborative, scientist and for pushing me to do more than I thought I was capable of. Special thanks to Kyle Davies for being a great office mate, suffering my constant questions, and for suggesting the initial topic of my thesis.