Wattwatcher: Fine-Grained Power Estimation on Live Multicore Systems Using Configurable Models

Total Page:16

File Type:pdf, Size:1020Kb

Wattwatcher: Fine-Grained Power Estimation on Live Multicore Systems Using Configurable Models WattWatcher: Fine-Grained Power Estimation on Live Multicore Systems Using Configurable Models Michael LeBeane∗, Jee Ho Ryoo†, Reena Panda‡, and Lizy K. John§ Department of Electrical and Computer Engineering, The University of Texas at Austin Email: ∗[email protected], †[email protected], ‡[email protected] , §[email protected] Abstract—Power is a first-order design constraint in any Sample Points modern computing platform. Extensive research has focused on estimating power to guide advances in power management Total schemes, thermal hot spots, and voltage noise. However, most Watts Core 0 power estimation tools possess drawbacks related to the level of Time detail and amount of training needed for reliable results. This Core 0 Watts OTHER OTHER paper introduces WattWatcher, a power measurement framework 4% 3% Core1 MC MC that provides fine-grained power traces by passing predefined 6% 8% OoO OoO 13% performance counters and a hardware descriptor file into config- 17% ALU L3 L3 9% 16% urable back-end power models. We show that WattWatcher has Core 2 ALU 12% 13% Fetch L2 9% a mean absolute percentage error of 2.67% aggregated over all Fetch 17% LS L2 12% benchmarks when compared to measured power consumption on Core 3 LS 13% 31% 17% SPEC CPU 2006 and PARSEC benchmarks across three different Time machines. (a) Per Core Power Breakdown (b) Functional Unit Power Breakdown I. INTRODUCTION Fig. 1. Illustration of important fine-grained monitoring features provided by WattWatcher. Estimating the power and energy consumption of pro- cessors, either at runtime or offline, is a critical concern in statistics collected by WattWatcher are generic enough modern machines. Currently, coarse grained measurements to apply to most modern processors in a variety of can be obtained through hardware power counters [1] [2] or form factors. Researchers and vendors can add other external probes [3]. While processor wide power metering processors to our tool by mapping these machines to may be useful for high level policies, such aggregate studies the WattWatcher interface. mask important internal power consumption trends. Figure 1(a) • WattWatcher’s power models do not require significant illustrates a common scenario where individual core power training. Most curve fitting models require an exten- consumption trends drastically differ from the power consump- sive amount of training over a wide enough sample tion of the entire processor. Isolating and understanding the space to cover all possible program types that will be trends in individual core power consumption is critical for run in the future. WattWatcher specifically models all researching and applying per core DVFS, power capping, and of the major functional units in a microprocessor by power gating techniques. Even core level power estimates, querying the SUT for its hardware configuration. however, may prove insufficient for certain areas of active • WattWatcher offers power breakdowns at the individ- research. Figure 1(b) illustrates how functional unit power ual core and functional unit granularity. This supports consumption can vary drastically over the course of program advanced research that requires a much finer level execution. Measuring the power consumption of the internal component breakdown than is available from coarse components of a core is critical for studies in thermal analysis grained monitoring tools. and voltage noise. This paper is organized into several sections that present the Some curve fitting solutions [4][5][6][1] can overcome WattWatcher methodology and toolkit. Section II explains the the granularity limitations inherent in coarse grained power design of WattWatcher. Section III evaluates how WattWatcher probes, but require extensive training on numerous targeted performs on three different processors. Finally, section IV microbenchmarks, limiting their deployability. These solutions concludes the paper. are also extremely sensitive to the coverage of the training set, and fail when exposed to trends that they have not yet encoun- II. WATTWATCHER:OVERVIEW AND OPERATION tered. In this paper, we present WattWatcher, a methodology In this paper we introduce WattWatcher, a tool that mea- and accompanying tool-kit that uses detailed configurable sures performance events in live systems and manipulates them models from the computer architecture simulation domain to drive detailed configurable power models. WattWatcher es- and adapts them for power modeling on real live multicore timates structure and functional unit access patterns to produce systems. WattWatcher works by collecting performance events input traces suitable for power and timing models traditionally from the system under test (SUT) and passing them through associated with cycle accurate simulation. By calling into easily customizable power models. Our work offers several the back-end power model at a much larger time granularity contributions over the prior art, and carves out a unique and than traditional cycle accurate simulators, we can utilize these important spot in available power estimation methodologies: power models in a realtime environment. • WattWatcher can model a variety of different proces- There are a number of configurable power simulators that sors with its extensible configuration interface. The could serve as the backend for WattWatcher [7][8][9]. For the TABLE I. GENERIC HARDWARE EVENTS COLLECTED BY Hardware Processor WATTWATCHER. Counter Hardware SUT Analyzer Descriptor Events Events Descriptor Category Hardware Events Power Core/Kernel cycles, instructions, uops, migrations Analysis Frontend branches, mispredictions, IC/iTLB misses LS L1/L2/LLC misses, LLC/dTLB misses Execution FP scalar, FP packed WattWatcher Analyzer WattWatcherW Network specific embodiment of the tool presented in this paper, we CollectorCo Connection have chosen to implement WattWatcher around McPAT [8], Input Formatter due to its frequent updates, verification, and popularity within Operating HW Event Customized McPAT System Interface the computer architecture community. The following sections Output Formatter describe how WattWatcher integrates real hardware informa- Admin Application WattWatcher Control tion into the back-end model and the layout of the tool. Controller A. Modeling Fig. 2. Overview of the WattWatcher toolchain. Since most configurable architectural power models are processor state. WattWatcher will use this information along originally designed for simulation environments, they require with statistics it gathers on core C-state transfers to factor a large number of input statistics representing precise events in the correct leakage power. Secondly, if no coarse grained inside the microarchitecture. However, researchers have noted measurement tool is available, the datasheet for the processor a tight correlation between power consumption and only a can be consulted for ideal numbers regarding power dissipation few important hardware events that are exposed as perfor- in different C-states. mance counters [4]. WattWatcher leverages this knowledge by monitoring only the generally available counters shown in B. Tool Overview Table I, deriving the inputs to the power model either directly WattWatcher is a toolkit that integrates a number of Linux from these counters, or by making reasonable estimations and utilities and McPAT together with configurable system models transformations. A few simple examples are illustrated in the and functional unit estimators. The toolkit is divided up into following paragraphs. three components: the Controller, Analyzer, and Collector. OoO Engine and Instruction Fetch: These structures include These three elements work together and interact with each the reorder buffer, instruction window, and reservation stations. other to comprise the full WattWatcher toolkit. A description Accesses to these data structures are estimated directly based of how these elements operate together in a common workflow on the instructions (either RISC instructions or x86 micro ops) is presented in Figure 2 and is described in the following issued and retired. paragraphs in detail. Register File Accesses: Register file access are estimated Controller: All user interaction with the WattWatcher system based on the number and type of instructions issued. For is initiated via the Controller module. The user passes a example, we assume that integer instructions will perform on number of parameters to the Controller at startup, such as the average two reads to the integer register file, and one write. location (hostname) of the SUT(s) and the counter descriptor Similarly for floating point, where the width of the read and the file containing the umask and event numbers. The WattWatcher number of instructions is determined by characteristics of the Controller opens a connection to the SUT(s) and queries it to instruction (single vs. double precision and packed vs. scalar). gather high level statistics on microarchitectural features such Memory Hierarchy Accesses: Most memory hierarchy statis- as cache layout, number of CPUs, and core frequency. These tics are collected directly from the processor counters. Load statistics are used to populate an XML file that represents the and store queue activity is based on the L1 D-cache statistics. machine configuration in McPAT. Functional unit information Raw number of access to a level of the memory hierarchy are is estimated from a pre-populated table of common system estimated based on the number of misses in the level directly configurations. This information
Recommended publications
  • Memory Centric Characterization and Analysis of SPEC CPU2017 Suite
    Session 11: Performance Analysis and Simulation ICPE ’19, April 7–11, 2019, Mumbai, India Memory Centric Characterization and Analysis of SPEC CPU2017 Suite Sarabjeet Singh Manu Awasthi [email protected] [email protected] Ashoka University Ashoka University ABSTRACT These benchmarks have become the standard for any researcher or In this paper, we provide a comprehensive, memory-centric charac- commercial entity wishing to benchmark their architecture or for terization of the SPEC CPU2017 benchmark suite, using a number of exploring new designs. mechanisms including dynamic binary instrumentation, measure- The latest offering of SPEC CPU suite, SPEC CPU2017, was re- ments on native hardware using hardware performance counters leased in June 2017 [8]. SPEC CPU2017 retains a number of bench- and operating system based tools. marks from previous iterations but has also added many new ones We present a number of results including working set sizes, mem- to reflect the changing nature of applications. Some recent stud- ory capacity consumption and memory bandwidth utilization of ies [21, 24] have already started characterizing the behavior of various workloads. Our experiments reveal that, on the x86_64 ISA, SPEC CPU2017 applications, looking for potential optimizations to SPEC CPU2017 workloads execute a significant number of mem- system architectures. ory related instructions, with approximately 50% of all dynamic In recent years the memory hierarchy, from the caches, all the instructions requiring memory accesses. We also show that there is way to main memory, has become a first class citizen of computer a large variation in the memory footprint and bandwidth utilization system design.
    [Show full text]
  • Overview of the SPEC Benchmarks
    9 Overview of the SPEC Benchmarks Kaivalya M. Dixit IBM Corporation “The reputation of current benchmarketing claims regarding system performance is on par with the promises made by politicians during elections.” Standard Performance Evaluation Corporation (SPEC) was founded in October, 1988, by Apollo, Hewlett-Packard,MIPS Computer Systems and SUN Microsystems in cooperation with E. E. Times. SPEC is a nonprofit consortium of 22 major computer vendors whose common goals are “to provide the industry with a realistic yardstick to measure the performance of advanced computer systems” and to educate consumers about the performance of vendors’ products. SPEC creates, maintains, distributes, and endorses a standardized set of application-oriented programs to be used as benchmarks. 489 490 CHAPTER 9 Overview of the SPEC Benchmarks 9.1 Historical Perspective Traditional benchmarks have failed to characterize the system performance of modern computer systems. Some of those benchmarks measure component-level performance, and some of the measurements are routinely published as system performance. Historically, vendors have characterized the performances of their systems in a variety of confusing metrics. In part, the confusion is due to a lack of credible performance information, agreement, and leadership among competing vendors. Many vendors characterize system performance in millions of instructions per second (MIPS) and millions of floating-point operations per second (MFLOPS). All instructions, however, are not equal. Since CISC machine instructions usually accomplish a lot more than those of RISC machines, comparing the instructions of a CISC machine and a RISC machine is similar to comparing Latin and Greek. 9.1.1 Simple CPU Benchmarks Truth in benchmarking is an oxymoron because vendors use benchmarks for marketing purposes.
    [Show full text]
  • 3 — Arithmetic for Computers 2 MIPS Arithmetic Logic Unit (ALU) Zero Ovf
    Chapter 3 Arithmetic for Computers 1 § 3.1Introduction Arithmetic for Computers Operations on integers Addition and subtraction Multiplication and division Dealing with overflow Floating-point real numbers Representation and operations Rechnerstrukturen 182.092 3 — Arithmetic for Computers 2 MIPS Arithmetic Logic Unit (ALU) zero ovf 1 Must support the Arithmetic/Logic 1 operations of the ISA A 32 add, addi, addiu, addu ALU result sub, subu 32 mult, multu, div, divu B 32 sqrt 4 and, andi, nor, or, ori, xor, xori m (operation) beq, bne, slt, slti, sltiu, sltu With special handling for sign extend – addi, addiu, slti, sltiu zero extend – andi, ori, xori overflow detection – add, addi, sub Rechnerstrukturen 182.092 3 — Arithmetic for Computers 3 (Simplyfied) 1-bit MIPS ALU AND, OR, ADD, SLT Rechnerstrukturen 182.092 3 — Arithmetic for Computers 4 Final 32-bit ALU Rechnerstrukturen 182.092 3 — Arithmetic for Computers 5 Performance issues Critical path of n-bit ripple-carry adder is n*CP CarryIn0 A0 1-bit result0 ALU B0 CarryOut0 CarryIn1 A1 1-bit result1 B ALU 1 CarryOut 1 CarryIn2 A2 1-bit result2 ALU B2 CarryOut CarryIn 2 3 A3 1-bit result3 ALU B3 CarryOut3 Design trick – throw hardware at it (Carry Lookahead) Rechnerstrukturen 182.092 3 — Arithmetic for Computers 6 Carry Lookahead Logic (4 bit adder) LS 283 Rechnerstrukturen 182.092 3 — Arithmetic for Computers 7 § 3.2 Addition and Subtraction 3.2 Integer Addition Example: 7 + 6 Overflow if result out of range Adding +ve and –ve operands, no overflow Adding two +ve operands
    [Show full text]
  • Asustek Computer Inc.: Asus P6T
    SPEC CFP2006 Result spec Copyright 2006-2014 Standard Performance Evaluation Corporation ASUSTeK Computer Inc. (Test Sponsor: Intel Corporation) SPECfp 2006 = 32.4 Asus P6T Deluxe (Intel Core i7-950) SPECfp_base2006 = 30.6 CPU2006 license: 13 Test date: Oct-2008 Test sponsor: Intel Corporation Hardware Availability: Jun-2009 Tested by: Intel Corporation Software Availability: Nov-2008 0 3.00 6.00 9.00 12.0 15.0 18.0 21.0 24.0 27.0 30.0 33.0 36.0 39.0 42.0 45.0 48.0 51.0 54.0 57.0 60.0 63.0 66.0 71.0 70.7 410.bwaves 70.8 21.5 416.gamess 16.8 34.6 433.milc 34.8 434.zeusmp 33.8 20.9 435.gromacs 20.6 60.8 436.cactusADM 61.0 437.leslie3d 31.3 17.6 444.namd 17.4 26.4 447.dealII 23.3 28.5 450.soplex 27.9 34.0 453.povray 26.6 24.4 454.calculix 20.5 38.7 459.GemsFDTD 37.8 24.9 465.tonto 22.3 470.lbm 50.2 30.9 481.wrf 30.9 42.1 482.sphinx3 41.3 SPECfp_base2006 = 30.6 SPECfp2006 = 32.4 Hardware Software CPU Name: Intel Core i7-950 Operating System: Windows Vista Ultimate w/ SP1 (64-bit) CPU Characteristics: Intel Turbo Boost Technology up to 3.33 GHz Compiler: Intel C++ Compiler Professional 11.0 for IA32 CPU MHz: 3066 Build 20080930 Package ID: w_cproc_p_11.0.054 Intel Visual Fortran Compiler Professional 11.0 FPU: Integrated for IA32 CPU(s) enabled: 4 cores, 1 chip, 4 cores/chip, 2 threads/core Build 20080930 Package ID: w_cprof_p_11.0.054 CPU(s) orderable: 1 chip Microsoft Visual Studio 2008 (for libraries) Primary Cache: 32 KB I + 32 KB D on chip per core Auto Parallel: Yes Secondary Cache: 256 KB I+D on chip per core File System: NTFS Continued on next page Continued on next page Standard Performance Evaluation Corporation [email protected] Page 1 http://www.spec.org/ SPEC CFP2006 Result spec Copyright 2006-2014 Standard Performance Evaluation Corporation ASUSTeK Computer Inc.
    [Show full text]
  • Modeling and Analyzing CPU Power and Performance: Metrics, Methods, and Abstractions
    Modeling and Analyzing CPU Power and Performance: Metrics, Methods, and Abstractions Margaret Martonosi David Brooks Pradip Bose VET NOV TES TAM EN TVM DE I VI GE T SV B NV M I NE Moore’s Law & Power Dissipation... Moore’s Law: ❚ The Good News: 2X Transistor counts every 18 months ❚ The Bad News: To get the performance improvements we’re accustomed to, CPU Power consumption will increase exponentially too... (Graphs courtesy of Fred Pollack, Intel) Why worry about power dissipation? Battery life Thermal issues: affect cooling, packaging, reliability, timing Environment Hitting the wall… ❚ Battery technology ❚ ❙ Linear improvements, nowhere Past: near the exponential power ❙ Power important for increases we’ve seen laptops, cell phones ❚ Cooling techniques ❚ Present: ❙ Air-cooled is reaching limits ❙ Power a Critical, Universal ❙ Fans often undesirable (noise, design constraint even for weight, expense) very high-end chips ❙ $1 per chip per Watt when ❚ operating in the >40W realm Circuits and process scaling can no longer solve all power ❙ Water-cooled ?!? problems. ❚ Environment ❙ SYSTEMS must also be ❙ US EPA: 10% of current electricity usage in US is directly due to power-aware desktop computers ❙ Architecture, OS, compilers ❙ Increasing fast. And doesn’t count embedded systems, Printers, UPS backup? Power: The Basics ❚ Dynamic power vs. Static power vs. short-circuit power ❙ “switching” power ❙ “leakage” power ❙ Dynamic power dominates, but static power increasing in importance ❙ Trends in each ❚ Static power: steady, per-cycle energy cost ❚ Dynamic power: power dissipation due to capacitance charging at transitions from 0->1 and 1->0 ❚ Short-circuit power: power due to brief short-circuit current during transitions.
    [Show full text]
  • Continuous Profiling: Where Have All the Cycles Gone?
    Continuous Profiling: Where Have All the Cycles Gone? JENNIFER M. ANDERSON, LANCE M. BERC, JEFFREY DEAN, SANJAY GHEMAWAT, MONIKA R. HENZINGER, SHUN-TAK A. LEUNG, RICHARD L. SITES, MARK T. VANDEVOORDE, CARL A. WALDSPURGER, and WILLIAM E. WEIHL Digital Equipment Corporation This article describes the Digital Continuous Profiling Infrastructure, a sampling-based profiling system designed to run continuously on production systems. The system supports multiprocessors, works on unmodified executables, and collects profiles for entire systems, including user programs, shared libraries, and the operating system kernel. Samples are collected at a high rate (over 5200 samples/sec. per 333MHz processor), yet with low overhead (1–3% slowdown for most workloads). Analysis tools supplied with the profiling system use the sample data to produce a precise and accurate accounting, down to the level of pipeline stalls incurred by individual instructions, of where time is being spent. When instructions incur stalls, the tools identify possible reasons, such as cache misses, branch mispredictions, and functional unit contention. The fine-grained instruction-level analysis guides users and automated optimizers to the causes of performance problems and provides important insights for fixing them. Categories and Subject Descriptors: C.4 [Computer Systems Organization]: Performance of Systems; D.2.2 [Software Engineering]: Tools and Techniques—profiling tools; D.2.6 [Pro- gramming Languages]: Programming Environments—performance monitoring; D.4 [Oper- ating Systems]: General; D.4.7 [Operating Systems]: Organization and Design; D.4.8 [Operating Systems]: Performance General Terms: Performance Additional Key Words and Phrases: Profiling, performance understanding, program analysis, performance-monitoring hardware An earlier version of this article appeared at the 16th ACM Symposium on Operating System Principles (SOSP), St.
    [Show full text]
  • Specfp Benchmark Disclosure
    SPEC CFP2006 Result Copyright 2006-2016 Standard Performance Evaluation Corporation Cisco Systems SPECfp2006 = Not Run Cisco UCS C220 M4 (Intel Xeon E5-2667 v4, 3.20 GHz) SPECfp_base2006 = 125 CPU2006 license: 9019 Test date: Mar-2016 Test sponsor: Cisco Systems Hardware Availability: Mar-2016 Tested by: Cisco Systems Software Availability: Dec-2015 0 30.0 60.0 90.0 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600 630 660 690 720 750 780 810 840 900 410.bwaves 572 416.gamess 43.1 433.milc 72.5 434.zeusmp 225 435.gromacs 63.4 436.cactusADM 894 437.leslie3d 427 444.namd 31.6 447.dealII 67.6 450.soplex 48.3 453.povray 62.2 454.calculix 61.6 459.GemsFDTD 242 465.tonto 52.1 470.lbm 799 481.wrf 120 482.sphinx3 91.6 SPECfp_base2006 = 125 Hardware Software CPU Name: Intel Xeon E5-2667 v4 Operating System: SUSE Linux Enterprise Server 12 SP1 (x86_64) CPU Characteristics: Intel Turbo Boost Technology up to 3.60 GHz 3.12.49-11-default CPU MHz: 3200 Compiler: C/C++: Version 16.0.0.101 of Intel C++ Studio XE for Linux; FPU: Integrated Fortran: Version 16.0.0.101 of Intel Fortran CPU(s) enabled: 16 cores, 2 chips, 8 cores/chip Studio XE for Linux CPU(s) orderable: 1,2 chips Auto Parallel: Yes Primary Cache: 32 KB I + 32 KB D on chip per core File System: xfs Secondary Cache: 256 MB I+D on chip per core System State: Run level 3 (multi-user) Continued on next page Continued on next page Standard Performance Evaluation Corporation [email protected] Page 1 http://www.spec.org/ SPEC CFP2006 Result Copyright 2006-2016 Standard Performance
    [Show full text]
  • Intel Corporation: Lenovo T400 (Intel Core 2 Duo T9900)
    SPEC CFP2006 Result spec Copyright 2006-2014 Standard Performance Evaluation Corporation Intel Corporation SPECfp2006 = 21.2 Lenovo T400 (Intel Core 2 Duo T9900) SPECfp_base2006 = 20.5 CPU2006 license: 13 Test date: Mar-2009 Test sponsor: Intel Corporation Hardware Availability: Mar-2009 Tested by: Intel Corporation Software Availability: Nov-2008 0 1.00 3.00 5.00 7.00 9.00 11.0 13.0 15.0 17.0 19.0 21.0 23.0 25.0 27.0 29.0 32.0 27.6 410.bwaves 27.6 19.9 416.gamess 19.1 18.8 433.milc 18.8 434.zeusmp 24.1 19.7 435.gromacs 19.3 30.7 436.cactusADM 30.0 437.leslie3d 17.5 16.2 444.namd 16.2 24.5 447.dealII 22.1 17.1 450.soplex 16.9 30.4 453.povray 24.3 20.0 454.calculix 20.0 16.3 459.GemsFDTD 16.5 19.2 465.tonto 17.5 470.lbm 15.3 21.2 481.wrf 21.2 30.8 482.sphinx3 31.0 SPECfp_base2006 = 20.5 SPECfp2006 = 21.2 Hardware Software CPU Name: Intel Core 2 Duo T9900 Operating System: Windows XP Professional w/ SP2 (64-bit) CPU Characteristics: Compiler: Intel C++ Compiler Professional 11.0 for IA32 CPU MHz: 3066 Build 20080930 Package ID: w_cproc_p_11.0.054 Intel Visual Fortran Compiler Professional 11.0 FPU: Integrated for IA32 CPU(s) enabled: 2 cores, 1 chip, 2 cores/chip Build 20080930 Package ID: w_cprof_p_11.0.054 CPU(s) orderable: 1 chip Microsoft Visual Studio 2008 (for libraries) Primary Cache: 32 KB I + 32 KB D on chip per core Auto Parallel: Yes Secondary Cache: 6 MB I+D on chip per chip File System: NTFS Continued on next page Continued on next page Standard Performance Evaluation Corporation [email protected] Page 1 http://www.spec.org/
    [Show full text]
  • Historical Perspective and Further Reading 4.7
    4.7 Historical Perspective and Further Reading 4.7 From the earliest days of computing, designers have specified performance goals—ENIAC was to be 1000 times faster than the Harvard Mark-I, and the IBM Stretch (7030) was to be 100 times faster than the fastest computer then in exist- ence. What wasn’t clear, though, was how this performance was to be measured. The original measure of performance was the time required to perform an individual operation, such as addition. Since most instructions took the same exe- cution time, the timing of one was the same as the others. As the execution times of instructions in a computer became more diverse, however, the time required for one operation was no longer useful for comparisons. To take these differences into account, an instruction mix was calculated by mea- suring the relative frequency of instructions in a computer across many programs. Multiplying the time for each instruction by its weight in the mix gave the user the average instruction execution time. (If measured in clock cycles, average instruction execution time is the same as average CPI.) Since instruction sets were similar, this was a more precise comparison than add times. From average instruction execution time, then, it was only a small step to MIPS. MIPS had the virtue of being easy to understand; hence it grew in popularity. The In More Depth section on this CD dis- cusses other definitions of MIPS, as well as its relatives MOPS and FLOPS! The Quest for an Average Program As processors were becoming more sophisticated and relied on memory hierar- chies (the topic of Chapter 7) and pipelining (the topic of Chapter 6), a single exe- cution time for each instruction no longer existed; neither execution time nor MIPS, therefore, could be calculated from the instruction mix and the manual.
    [Show full text]
  • An Evaluation of the TRIPS Computer System
    Appears in the Proceedings of the 14th International Conference on Architecture Support for Programming Languages and Operating Systems An Evaluation of the TRIPS Computer System Mark Gebhart Bertrand A. Maher Katherine E. Coons Jeff Diamond Paul Gratz Mario Marino Nitya Ranganathan Behnam Robatmili Aaron Smith James Burrill Stephen W. Keckler Doug Burger Kathryn S. McKinley Department of Computer Sciences The University of Texas at Austin [email protected] www.cs.utexas.edu/users/cart Abstract issue-width scaling of conventional superscalar architec- The TRIPS system employs a new instruction set architec- tures. Because of these trends, major microprocessor ven- ture (ISA) called Explicit Data Graph Execution (EDGE) dors have abandoned architectures for single-thread perfor- that renegotiates the boundary between hardware and soft- mance and turned to the promise of multiple cores per chip. ware to expose and exploit concurrency. EDGE ISAs use a While many applications can exploit multicore systems, this block-atomic execution model in which blocks are composed approach places substantial burdens on programmers to par- of dataflow instructions. The goal of the TRIPS design is allelize their codes. Despite these trends, Amdahl’s law dic- to mine concurrency for high performance while tolerating tates that single-thread performance will remain key to the emerging technology scaling challenges, such as increas- future success of computer systems [9]. ing wire delays and power consumption. This paper eval- In response to semiconductor scaling trends, we designed uates how well TRIPS meets this goal through a detailed a new architecture and microarchitecture intended to extend ISA and performance analysis.
    [Show full text]
  • Dell Inc.: Poweredge T610 (Intel Xeon X5690, 3.46 Ghz)
    SPEC CFP2006 Result spec Copyright 2006-2014 Standard Performance Evaluation Corporation Dell Inc. SPECfp2006 = 64.6 PowerEdge T610 (Intel Xeon X5690, 3.46 GHz) SPECfp_base2006 = 60.3 CPU2006 license: 55 Test date: Jun-2011 Test sponsor: Dell Inc. Hardware Availability: Feb-2011 Tested by: Dell Inc. Software Availability: Apr-2011 0 10.0 25.0 40.0 55.0 70.0 85.0 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 305 410.bwaves 180 31.0 416.gamess 26.2 57.4 433.milc 57.1 434.zeusmp 121 26.0 435.gromacs 24.5 436.cactusADM 301 437.leslie3d 104 22.2 444.namd 21.7 447.dealII 44.8 450.soplex 35.5 43.7 453.povray 34.7 37.1 454.calculix 32.9 91.8 459.GemsFDTD 77.6 37.1 465.tonto 27.7 470.lbm 293 481.wrf 51.2 64.8 482.sphinx3 58.5 SPECfp_base2006 = 60.3 SPECfp2006 = 64.6 Hardware Software CPU Name: Intel Xeon X5690 Operating System: SUSE Linux Enterprise Server 11 SP1 (x86_64), CPU Characteristics: Intel Turbo Boost Technology up to 3.73 GHz Kernel 2.6.32.12-0.7-default CPU MHz: 3467 Compiler: Intel C++ and Fortran Intel 64 Compiler XE for FPU: Integrated applications running on Intel 64 Version 12.0 Update 3 CPU(s) enabled: 12 cores, 2 chips, 6 cores/chip Auto Parallel: Yes CPU(s) orderable: 1,2 chips File System: ext3 Primary Cache: 32 KB I + 32 KB D on chip per core System State: Run level 3 (multi-user) Secondary Cache: 256 KB I+D on chip per core Base Pointers: 64-bit Continued on next page Continued on next page Standard Performance Evaluation Corporation [email protected] Page 1 http://www.spec.org/ SPEC CFP2006 Result spec Copyright 2006-2014 Standard Performance Evaluation Corporation Dell Inc.
    [Show full text]
  • A Lightweight Processor Benchmark Mark Claypool Worcester Polytechnic Institute, [email protected]
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@WPI Worcester Polytechnic Institute DigitalCommons@WPI Computer Science Faculty Publications Department of Computer Science 7-1-1998 Touchstone - A Lightweight Processor Benchmark Mark Claypool Worcester Polytechnic Institute, [email protected] Follow this and additional works at: http://digitalcommons.wpi.edu/computerscience-pubs Part of the Computer Sciences Commons Suggested Citation Claypool, Mark (1998). Touchstone - A Lightweight Processor Benchmark. Retrieved from: http://digitalcommons.wpi.edu/computerscience-pubs/206 This Other is brought to you for free and open access by the Department of Computer Science at DigitalCommons@WPI. It has been accepted for inclusion in Computer Science Faculty Publications by an authorized administrator of DigitalCommons@WPI. WPI-CS-TR-98-16 July 1998 Touchstone { A Lightweight Pro cessor Benchmark by Mark Claypool Computer Science Technical Rep ort Series WORCESTER POLYTECHNIC INSTITUTE Computer Science Department 100 Institute Road, Worcester, Massachusetts 01609-2280 Touchstone { A Lightweight Pro cessor Benchmark Mark Claypool [email protected] Worcester Polytechnic Institute Computer Science Department August 11, 1998 Abstract Benchmarks are valuable for comparing pro cessor p erformance. However, p orting and run- ning pro cessor b enchmarks on new platforms can b e dicult. Touchstone, a simple addition b enchmark, is designed to overcome p ortability problems, while retaining p erformance measure- ment accuracy. In this pap er, we present exp erimental results that showTouchstone correlates strongly with pro cessor p erformance under other b enchmarks. Equally imp ortant, we presenta measure of p ortability that demonstrates Touchstone is easier to p ort and run than other b ench- marks.
    [Show full text]