Guide to Collecting and Maintaining Live Arthropods for Classroom Display in Florida1 S

Total Page:16

File Type:pdf, Size:1020Kb

Guide to Collecting and Maintaining Live Arthropods for Classroom Display in Florida1 S ENY-1001 Guide to Collecting and Maintaining Live Arthropods for Classroom Display in Florida1 S. McCann, J. D. Ellis, and M. K. O’Malley2 Introduction General Care This guide is intended for those interested in maintenance Proper care of captive insects and other arthropods is and display of insects and other arthropods for educational essential to maintain their health and appearance as well as purposes in Florida. It can be used in conjunction with demonstrate to children the proper care of these specimens. other entomology curricula and is relevant and accessible to Unfortunately, many species lack proper husbandry all age groups, although the amount of teacher involvement resources because those species have never been reared in will vary accordingly. Few illustrations are more effective captivity. The best advice is to infer an insect’s appropriate for the entomology classroom than live insect displays, and living condition from its natural situation. Was the insect this document details the entire process of maintaining found associated with a particular plant? Is it active in the such displays. day or the night? Is the family known to have predatory members or are they herbivores? Are they known to Legal Considerations: Non-Native produce secretions that can irritate the skin? There are many insects and spiders in Florida, so it may be best to Arthropods take a picture and send it to the Insect Identification Lab Florida Statute 581.083 regulates the importation or pos- in the Entomology and Nematology Department at the session of exotic invertebrates in Florida. In practice, this University of Florida for identification. Knowing the species means that importation or possession of exotic insects is will help in taking care of the organism. regulated by the Florida Department of Agriculture and Consumer Services. As such, many large showy insects Climbing insects such as mantids, walkingsticks, and (such as Hissing Cockroaches) that are suitable for live grasshoppers do well in vertically-oriented cages with some classroom display are not legally available in Florida. This vegetation or sticks to climb on. Ground dwelling insects is no barrier, however, to the capture and display of native appreciate a substrate where they can dig, as well as have insects and spiders. Florida has a rich insect fauna that can some hiding places fashioned from cardboard, leaves, or be found through much of the year, making it easy to col- bark. lect interesting insects for display. Species of conservation concern may be protected by law. For more information see Rare and Endangered Biota of Florida Vol. IV. Invertebrates by M. Deyrup, R. Franz. 1. This document is ENY-1001, one of a series of the Department of Entomology and Nematology, UF/IFAS Extension. Original publication date January 2008. Revised October 2014 and December 2017. Visit the EDIS website at http://edis.ifas.ufl.edu. 2. S. McCann, former Extension assistant; J. D. Ellis, associate professor; and M. K. O’Malley, former Extension assistant, Department of Entomology and Nematology; UF/IFAS Extension, Gainesville, FL 32611. The Institute of Food and Agricultural Sciences (IFAS) is an Equal Opportunity Institution authorized to provide research, educational information and other services only to individuals and institutions that function with non-discrimination with respect to race, creed, color, religion, age, disability, sex, sexual orientation, marital status, national origin, political opinions or affiliations. For more information on obtaining other UF/IFAS Extension publications, contact your county’s UF/IFAS Extension office. U.S. Department of Agriculture, UF/IFAS Extension Service, University of Florida, IFAS, Florida A & M University Cooperative Extension Program, and Boards of County Commissioners Cooperating. Nick T. Place, dean for UF/IFAS Extension. Food and Water Species Accounts If commercial foodstuffs are provided to captive insects, Horned Passalid, Odontotaenius disjunctus a few general considerations are worth mentioning. First, Easily collected from beneath rotting oak logs, these food should be maintained in a fresh state unless the spe- impressive beetles (Figure 1) should be maintained in the cies is one that prefers rotting food. Uneaten food should be same rotted oak medium where they are found. Diet can removed regularly. If fruits or vegetables are provided, try be supplemented with fruits and vegetables. Transport the to use organically-grown or pesticide-free. Needless to say, beetles in a smaller cage with less rotting wood for easier pesticides can be dangerous for captive invertebrates. Water display. These beetles have large mandibles and should be should be provided in such a manner that your insects handled with care. are not able to drown in it. Water provided in a dish filled with marbles or soaked on a cotton wick is good for this purpose. Some insects appreciate droplets of water sprayed on leaves, which simulates dew. Displaying Insects Insects can be displayed in plastic terraria, jars, glass aquariums, and other such containers. Dangerous or chemically-defended species should be displayed in containers that are break-proof and difficult for children to open. If displaying such species, ensure that children are supervised at all times. One may think that bringing children into contact with creatures such as widow spiders Figure 1. Horned Passalid Odontotaenius disjunctus. This large, is not advisable; however, if proper precautions are taken, impressive beetle makes a fine display specimen. such encounters can show kids what species they should avoid in nature. On the other hand, be aware that children Rainbow Scarab, Phanaeus vindex often return home and try to capture insects/spiders they Impressive in coloration (Figure 2), this beetle is easily have seen displayed. As such, it is important to teach collected near dung as it prepares its nest. This beetle will children where the dangers lie in this practice and provide readily fly, so it is suitable only for caged display. Adults them safer alternatives instead. may be fed on fresh fruits such as banana. Males are recognized by a long horn on the head. The shape of the Many children like to handle insects and other creatures, female’s pronotum lends itself to forming dung balls and and this experience can be the highlight of any presenta- digging, while the male’s is suited to territorial combat. tion. Suitable insects for handling purposes can be found in Florida, especially Ox beetles, scarabs, click beetles, buprestids, weevils, and mantids. Lubber grasshoppers are extremely large, impressive insects and can be handled gently. However, they are capable of producing an irritating secretion when disturbed. Please bear this in mind when using insects with younger children. Be sure to provide some interesting background informa- tion about the species you wish to display such as life history, economic importance, behavior, conservation status and habitat. Doing so with native species will go a long way towards stimulating and sustaining interest in insects and the natural word in general. Figure 2. Male Rainbow Scarab, Phanaeus vindex. This most impressive insect is sure to fascinate with its dinosaur-like appearance. Guide to Collecting and Maintaining Live Arthropods for Classroom Display in Florida 2 Ox Beetles, Strategus antaeus makes an interesting classroom demonstration. Alaus These large scarabs make great displays and can be myops is a smaller relative of this species that is also good handled easily. They should be maintained in a woodland for display. vivarium (an enclosed container that simulates a woodland environment) and fed fruits as adults. Males of Strategus antaeus (Figure 3) have three elongate horns on the prono- tum, used for territorial combat with other males. They may be found in wooded areas with sandy soils. Adults may be fed soft fruits and leaves. Figure 5. Alaus oculatus. This large eyed click beetle makes an attractive demonstration insect. Other smaller click beetles are less striking in appearance, Figure 3. Strategus antaeus. This large male has impressive horns. yet if gathered in large numbers may be used for children to Hercules Beetles, Dynastes tityus handle. Both species should be fed cut pieces of soft fruit. This enormous beetle makes an impressive and hardy Buprestid Beetles (Metallic Wood-Boring classroom display. They should be maintained in insect cages and fed fruit. It is uncommon in Florida but if Beetles) collected makes an impressive insect. Many species of buprestid (Figure 6) beetles are suitable for in-class display or handling. They are impressive, beautiful, and gentle. They may be found near damaged or dying trees on warm days, often in some abundance. Their metallic colors and sculptured texture make them ideal display insects. Try feeding them the foliage of trees, especially from trees found near where the beetles were collected. Figure 4. Dynastes tityus. This beetle’s horn structure is unique. Eyed Click Beetle, Alaus oculatus The eyed click beetle can be found near houses, under Figure 6. Buprestid beetle, Chalcophora virginiensis. This large, bark, etc. Unmistakable in appearance (Figure 5), adults of impressive species is often abundant around dying pine trees. this species are large, impressive, and gentle. The clicking mechanism is a means of defense and allows the insect to right itself if placed on its back on a smooth surface. This Guide to Collecting and Maintaining Live Arthropods for Classroom Display in Florida 3 Diaprepes (Citrus) Root Weevils, Diaprepes They should be housed in tall, planted cages and fed insects abbreviatus, Pachnaeus litus, Pachnaeus daily. opalus These large, attractive weevils are easy to find, maintain, and make excellent display animals (Figure 7). They also are important pests of Florida citrus and thus are excellent teaching tools to explain crop pests and introduced species problems. They can be found feeding on many tree and shrub species and are best collected in the morning by shaking vegetation vigorously over a sheet or umbrella. They may be kept in jars and fed green beans, carrots, and other vegetables.
Recommended publications
  • Effects of Prescribed Fire and Fire Surrogates on Pollinators and Saproxylic Beetles in North Carolina and Alabama
    EFFECTS OF PRESCRIBED FIRE AND FIRE SURROGATES ON POLLINATORS AND SAPROXYLIC BEETLES IN NORTH CAROLINA AND ALABAMA by JOSHUA W. CAMPBELL (Under the Direction of James L. Hanula) ABSTRACT Pollinating and saproxylic insects are two groups of forest insects that are considered to be extremely vital for forest health. These insects maintain and enhance plant diversity, but also help recycle nutrients back into the soil. Forest management practices (prescribed burns, thinnings, herbicide use) are commonly used methods to limit fuel build up within forests. However, their effects on pollinating and saproxylic insects are poorly understood. We collected pollinating and saproxylic insect from North Carolina and Alabama from 2002-2004 among different treatment plots. In North Carolina, we captured 7921 floral visitors from four orders and 21 families. Hymenoptera was the most abundant and diverse order, with Halictidae being the most abundant family. The majority of floral visitors were captured in the mechanical plus burn treatments, while lower numbers were caught on the mechanical only treatments, burn only treatments and control treatments. Overall species richness was also higher on mechanical plus burn treatments compared to other treatments. Total pollinator abundance was correlated with decreased tree basal area (r2=0.58) and increased percent herbaceous plant cover (r2=0.71). We captured 37,191 saproxylic Coleoptera in North Carolina, comprising 20 families and 122 species. Overall, species richness and total abundance of Coleoptera were not significantly different among treatments. However, total numbers of many key families, such as Scolytidae, Curculionidae, Cerambycidae, and Buprestidae, have higher total numbers in treated plots compared to untreated controls and several families (Elateridae, Cleridae, Trogositidae, Scolytidae) showed significant differences (p≤0.05) in abundance.
    [Show full text]
  • Indiana County Endangered, Threatened and Rare Species List 03/09/2020 County: Pike
    Page 1 of 3 Indiana County Endangered, Threatened and Rare Species List 03/09/2020 County: Pike Species Name Common Name FED STATE GRANK SRANK Insect: Plecoptera (Stoneflies) Acroneuria ozarkensis Ozark stone SE G2 S1 Mollusk: Bivalvia (Mussels) Cyprogenia stegaria Eastern Fanshell Pearlymussel LE SE G1Q S1 Epioblasma torulosa Tubercled Blossom LE SX GX SX Fusconaia subrotunda Longsolid C SX G3 SX Obovaria subrotunda Round Hickorynut C SE G4 S1 Pleurobema clava Clubshell LE SE G1G2 S1 Pleurobema cordatum Ohio Pigtoe SSC G4 S2 Pleurobema plenum Rough Pigtoe LE SE G1 S1 Pleurobema rubrum Pyramid Pigtoe SX G2G3 SX Potamilus capax Fat Pocketbook LE SE G2 S1 Ptychobranchus fasciolaris Kidneyshell SSC G4G5 S2 Simpsonaias ambigua Salamander Mussel C SSC G3 S2 Theliderma cylindrica Rabbitsfoot LT SE G3G4 S1 Insect: Coleoptera (Beetles) Dynastes tityus Unicorn Beetle SR GNR S2 Insect: Ephemeroptera (Mayflies) Pseudiron centralis White Crabwalker Mayfly SE G5 S1 Siphloplecton interlineatum Flapless Cleft-footed Minnow ST G5 S2 Mayfly Fish Ammocrypta clara Western Sand Darter SSC G3 S2 Amphibian Acris blanchardi Blanchard's Cricket Frog SSC G5 S4 Lithobates areolatus circulosus Northern Crawfish Frog SE G4T4 S2 Reptile Nerodia erythrogaster neglecta Copperbelly Water Snake PS:LT SE G5T3 S2 Opheodrys aestivus Rough Green Snake SSC G5 S3 Terrapene carolina carolina Eastern Box Turtle SSC G5T5 S3 Bird Accipiter striatus Sharp-shinned Hawk SSC G5 S2B Asio flammeus Short-eared Owl SE G5 S2 Buteo platypterus Broad-winged Hawk SSC G5 S3B Circus hudsonius
    [Show full text]
  • Proceedings, 23Rd U.S. Department of Agriculture Interagency Research
    United States Department of Proceedings Agriculture 23rd U.S. Department of Agriculture Forest Service Northern Interagency Research Forum on Research Station Invasive Species 2012 General Technical Report NRS-P-114 The findings and conclusions of each article in this publication are those of the individual author(s) and do not necessarily represent the views of the U.S. Department of Agriculture or the Forest Service. All articles were received in digital format and were edited for uniform type and style. Each author is responsible for the accuracy and content of his or her paper. The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture or the Forest Service of any product or service to the exclusion of others that may be suitable. This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and/or Federal, agencies before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fi sh or other wildlife—if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. Cover graphic by Vincent D’Amico, U.S. Forest Service, Northern Research Station. Manuscript received for publication August 2012 Published by: For additional copies: U.S.
    [Show full text]
  • A Phylogenetic Analysis of the Dung Beetle Genus Phanaeus (Coleoptera: Scarabaeidae) Based on Morphological Data
    A phylogenetic analysis of the dung beetle genus Phanaeus (Coleoptera: Scarabaeidae) based on morphological data DANA L. PRICE Insect Syst.Evol. Price, D. L.: A phylogenetic analysis of the dung beetle genus Phanaeus (Coleoptera: Scarabaeidae) based on morphological data. Insect Syst. Evol. 38: 1-18. Copenhagen, April, 2007. ISSN 1399-560X. The genus Phanaeus (Scarabaeidae: Scarabaeinae) forms an important part of the dung bee- tle fauna in much of the Western Hemisphere. Here a phylogeny for Phanaeus, including 49 Phanaeus sp., and 12 outgroup taxa, is proposed. Parsimony analysis of 67 morphological characters, and one biogeographical character produced 629 equally parsimonious trees of 276 steps. Oxysternon, the putative sister taxon is nested well within the subgenus Notiophanaeus, implying that Oxysternon might ultimately need to be synonymized with Phanaeus. Species groups of Edmonds (1994) recovered as monophyletic are paleano, endymion, chalcomelas, tridens, triangularis, and quadridens. An ‘unscaled’ equal weighting analysis yielded 57,149 equally parsimonious trees of 372 steps. The strict consensus of these trees yielded a mono- phyletic Phanaeus with the inclusion of Oxysternon. Bootstrap values are relatively low and some clades are unresolved. Dana L. Price, Graduate Program of Ecology and Evolution, Rutgers University, DEENR, 1st Floor, 14 College Farm Road, New Brunswick, NJ 08901 ([email protected]). Introduction morphological characters and cladistic methods, The genus Phanaeus is a group of tunneling dung the phylogeny of this clade. Hence, the monophy- beetles that are well known for their bright metal- ly of the genus, as well as relationships among lic colors and striking sexual dimorphism Phanaeus, with special attention to previously (Edmonds 1979).
    [Show full text]
  • A Faunal Survey of the Elateroidea of Montana by Catherine Elaine
    A faunal survey of the elateroidea of Montana by Catherine Elaine Seibert A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology Montana State University © Copyright by Catherine Elaine Seibert (1993) Abstract: The beetle family Elateridae is a large and taxonomically difficult group of insects that includes many economically important species of cultivated crops. Elaterid larvae, or wireworms, have a history of damaging small grains in Montana. Although chemical seed treatments have controlled wireworm damage since the early 1950's, it is- highly probable that their availability will become limited, if not completely unavailable, in the near future. In that event, information about Montana's elaterid fauna, particularity which species are present and where, will be necessary for renewed research efforts directed at wireworm management. A faunal survey of the superfamily Elateroidea, including the Elateridae and three closely related families, was undertaken to determine the species composition and distribution in Montana. Because elateroid larvae are difficult to collect and identify, the survey concentrated exclusively on adult beetles. This effort involved both the collection of Montana elateroids from the field and extensive borrowing of the same from museum sources. Results from the survey identified one artematopid, 152 elaterid, six throscid, and seven eucnemid species from Montana. County distributions for each species were mapped. In addition, dichotomous keys, and taxonomic and biological information, were compiled for various taxa. Species of potential economic importance were also noted, along with their host plants. Although the knowledge of the superfamily' has been improved significantly, it is not complete.
    [Show full text]
  • Indiana Comprehensive Wildlife Strategy 2
    Developed for: The State of Indiana, Governor Mitch Daniels Department of Natural Resources, Director Kyle Hupfer Division of Fish and Wildlife, Director Glen Salmon By: D. J. Case and Associates 317 E. Jefferson Blvd. Mishawaka, IN 46545 (574)-258-0100 With the Technical and Conservation information provided by: Biologists and Conservation Organizations throughout the state Project Coordinator: Catherine Gremillion-Smith, Ph.D. Funded by: State Wildlife Grants U. S. Fish and Wildlife Service Indiana Comprehensive Wildlife Strategy 2 Indiana Comprehensive Wildlife Strategy 3 Indiana Comprehensive Wildlife Strategy 4 II. Executive Summary The Indiana Department of Natural Resources, Division of Fish and Wildlife (DFW) working with conservation partners across the state, developed a Comprehensive Wildlife Strategy (CWS) to protect and conserve habitats and associated wildlife at a landscape scale. Taking advantage of Congressional guidance and nationwide synergy Congress recognized the importance of partnerships and integrated conservation efforts, and charged each state and territory across the country to develop similar strategies. To facilitate future comparisons and cross-boundary cooperation, Congress required all 50 states and 6 U.S. territories to simultaneously address eight specific elements. Congress also directed that the strategies must identify and be focused on the “species in greatest need of conservation,” yet address the “full array of wildlife” and wildlife-related issues. Throughout the process, federal agencies and national organizations facilitated a fruitful ongoing discussion about how states across the country were addressing wildlife conservation. States were given latitude to develop strategies to best meet their particular needs. Congress gave each state the option of organizing its strategy by using a species-by-species approach or a habitat- based approach.
    [Show full text]
  • Arthropods of Elm Fork Preserve
    Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux.
    [Show full text]
  • BOLMIN-THESIS-2017.Pdf
    ©Copyright 2017 Ophélia Bolmin OBSERVING AND MODELLING THE LEGLESS JUMPING MECHANISM OF CLICK BEETLES FOR BIO-INSPIRED ROBOTIC DESIGN BY OPHELIA BOLMIN THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Aerospace Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2017 Urbana, Illinois Adviser: Assistant Professor Aimy Wissa Abstract Click beetles (Coleoptera: Elateridae) have evolved a unique jumping mechanism to right themselves when on their dorsal side without using their legs or any other appendages. This work describes and analyzes the stages of the click beetle jump using high-speed video recordings and scanning electron micrographs of six beetle species, namely Alaus oculatus, Ampedus linteus, Hemicrepidius sp., Melanactes sp., Melanotus spp. and Parallelosthetus attenuatus. The jump of the click beetle is divided into three consecutive stages: the pre-jump stage (energy storage), and the take-off and airborne stages (energy release). Morphological measurements of the previously mentioned species as well as three additional species, namely Agriotes sp., Athous sp. and Lacon discoideus are taken, and isometric scaling across the species is observed. The body of the click beetle is considered as two masses linked by a hinge. Dynamic and kinematic models of the jump stages are developed. Non-dimensional analysis of the airborne stage is used to analyze the jump and identify the contribution of kinematic and morphological governing parameters. An energetics model is developed to describe the energy exchanges between the three stages of the jump. Kinematic and dynamic models are used to calculate the hinge stiffness and the elastic energy stored in the body during the jump.
    [Show full text]
  • Scrub Oak Preserve Animal Checklist Volusia County, Florida
    Scrub Oak Preserve Animal Checklist Volusia County, Florida Accipitridae Cervidae Cooper's Hawk Accipiter cooperii White-tailed Deer Odocoileus virginianus Red-tailed Hawk Buteo jamaicensis Red-shouldered Hawk Buteo lineatus Charadriidae Bald Eagle Haliaeetus leucocephalus Killdeer Charadrius vociferus Acrididae Corvidae American Bird Grasshopper Schistocerca americana Scrub Jay Aphelocoma coerulescens American Crow Corvus brachyrhynchos Agelenidae Fish Crow Corvus ossifragus Grass Spider Agelenopsis sp. Blue Jay Cyanocitta cristata Anatidae Dactyloidae Wood Duck Aix sponsa Cuban Brown Anole Anolis sagrei Blattidae Elateridae Florida woods cockroach Eurycotis floridana Eyed Click Beetle Alaus oculatus Bombycillidae Emberizidae Cedar Waxwing Bombycilla cedrorum Eastern Towhee Pipilo erythrophthalmus Cardinalidae Eumenidae Northern Cardinal Cardinalis cardinalis Paper wasp Polistes sp. Cathartidae Formicidae Turkey Vulture Cathartes aura Carpenter ants Camponotus sp. Black Vulture Coragyps atratus Fire Ant Solenopsis invicta Certhiidae Fringillidae Blue-gray Gnatcatcher Polioptila caerulea American Goldfinch Carduelis tristis Geomyidae Phalacrocoracidae Southeastern Pocket Gopher Geomys pinetis Double-crested Cormorant Phalacrocorax auritus Gruidae Picidae Sandhill Crane Grus canadensis Northern Flicker Colaptes auratus Pileated Woodpecker Dryocopus pileatus Hesperiidae Red-bellied Woodpecker Melanerpes carolinus Duskywing Erynnis sp. Downy Woodpecker Picoides pubescens Hirundinidae Polychrotidae Tree Swallow Tachycineta bicolor Green Anole
    [Show full text]
  • Department of Entomology Museum of Comparative Zoology Cambridge, MA 02138 USA
    TYPE SPECIMENS OF SPECIES OF DYNASTINI (COLEOPTERA: SCARABAEIDAE: DYNASTINAE) DESCRIBED BY J. L. LECONTE AND G. H. HORN BY JONATHAN R. MAWDSLEY Department of Entomology Museum of Comparative Zoology Cambridge, MA 02138 USA ABSTRACT A lectotype is designated for Megasoma thersites LeConte (type-locality Cape San Lucas, Baja California) from the Leconte collection, Museum of Comparative Zoology. The holotype of Dynastes grantii Horn is preserved in the Horn collection, Museum of Comparative Zoology. INTRODUCTION The pioneer American coleopterists John L. LeConte and George H. Horn each described a single species of Dynastini. Given the popularity of scarabs, particularly dynastines, with col- lectors and the relative accessibility of the LeConte and Horn col- lections in the Museum of Comparative Zoology (MCZ), it is surprising that no previous workers were aware that Megasoma thersites LeConte was described from 8 specimens, none of which had originally been designated as a holotype. Hardy (1972:773) speculated that this species had been described from a single holo- type male, but an examination of the LeConte collection and LeConte's original description (1861:336) clearly indicate that multiple specimens were used to describe this species. I have therefore designated a male specimen from the syntype series as lectotype. The single species of Dynastini described by G. H. Horn, Dynastes grantii, was described from a single specimen from Fort Grant, Arizona, and the holotype of this species is in the Horn col- lection in the MCZ. I have provided bibliographies and brief diag- Manuscript received 7 July 1993. 173 174 Psyche [Vol. 100 noses for each of these species below.
    [Show full text]
  • Investigation of the Selective Color-Changing Mechanism
    www.nature.com/scientificreports OPEN Investigation of the selective color‑changing mechanism of Dynastes tityus beetle (Coleoptera: Scarabaeidae) Jiyu Sun1, Wei Wu2, Limei Tian1*, Wei Li3, Fang Zhang3 & Yueming Wang4* Not only does the Dynastes tityus beetle display a reversible color change controlled by diferences in humidity, but also, the elytron scale can change color from yellow‑green to deep‑brown in specifed shapes. The results obtained by focused ion beam‑scanning electron microscopy (FIB‑SEM), show that the epicuticle (EPI) is a permeable layer, and the exocuticle (EXO) is a three‑dimensional photonic crystal. To investigate the mechanism of the reversible color change, experiments were conducted to determine the water contact angle, surface chemical composition, and optical refectance, and the refective spectrum was simulated. The water on the surface began to permeate into the elytron via the surface elemental composition and channels in the EPI. A structural unit (SU) in the EXO allows local color changes in varied shapes. The refectance of both yellow‑green and deep‑brown elytra increases as the incidence angle increases from 0° to 60°. The microstructure and changes in the refractive index are the main factors that infuence the process of reversible color change. According to the simulation, the lower refectance causing the color change to deep‑brown results from water infltration, which increases light absorption. Meanwhile, the waxy layer has no efect on the refection of light. This study lays the foundation to manufacture engineered photonic materials that undergo controllable changes in iridescent color. Te varied colors of nature have a great visual impact on human beings.
    [Show full text]
  • Epicranial Suture." Now a Paper Appears (Du
    SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 107, NUMBER 7 THE INSECT CRANIUM AND THE "EPICRANIAL SUTURE" R. E. SNODGRASS Collaborator, Bureau of Entomology and Plant Quarantine U. S. Department of Agriculture (Publication 3896) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION JULY 30, 1947 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 107, NUMBER 7 THE INSECT CRANIUM AND THE ''EPICRANIAL SUTURE" R. E. SNODGRASS Collaborator, Bureau of Entomology and Plant Quarantine U. S. Department of Agriculture 'i^\ ,«s? "^^^.::*5 (Publication 3896) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION JULY 30, 1947 ^6e Bovi QSafftmore (pvcee BALTIMORE, BID., U. S. A. ; THE INSECT CRANIUM AND THE "EPICRANIAL SUTURE" By R. E. SNODGRASS Collaborator, Bureau of Entomology and Plant Quarantine, U. S. Department of Agriculture CONTENTS Page Introduction I I. General discussion 2 II. Examples of the ecdysial cleavage line of the head 13 Apterygote insects 13 Ephemeroptera and Plecoptera 14 Odonata 14 Dermaptera I4 Orthoptera 16 Hemiptera 18 Anoplura 22 Coleoptera 24 Neuroptera (Megaloptera and Planipennia) 28 Mecoptera 31 Trichoptera 32 Lepidoptera 33 Diptera 34 Hymenoptera 39 Symphyla 42 III. Summary 44 Abbreviations used on the figures 47 References 49 INTRODUCTION The structure of insects presumably remains the same for long periods of time. A reading of entomological texts and papers, how- ever, might give the impression that a rapid change has been going on in insects even during the last few years. The evident stability of the insect structure as compared with the diversity in the written accounts of it simply illustrates the difiference between anatomy and mor- phology. Anatomy refers to the facts of structure, morphology is our interpretation of the facts or what we think about them.
    [Show full text]