Guide to Collecting and Maintaining Live Arthropods for Classroom Display in Florida1 S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effects of Prescribed Fire and Fire Surrogates on Pollinators and Saproxylic Beetles in North Carolina and Alabama
EFFECTS OF PRESCRIBED FIRE AND FIRE SURROGATES ON POLLINATORS AND SAPROXYLIC BEETLES IN NORTH CAROLINA AND ALABAMA by JOSHUA W. CAMPBELL (Under the Direction of James L. Hanula) ABSTRACT Pollinating and saproxylic insects are two groups of forest insects that are considered to be extremely vital for forest health. These insects maintain and enhance plant diversity, but also help recycle nutrients back into the soil. Forest management practices (prescribed burns, thinnings, herbicide use) are commonly used methods to limit fuel build up within forests. However, their effects on pollinating and saproxylic insects are poorly understood. We collected pollinating and saproxylic insect from North Carolina and Alabama from 2002-2004 among different treatment plots. In North Carolina, we captured 7921 floral visitors from four orders and 21 families. Hymenoptera was the most abundant and diverse order, with Halictidae being the most abundant family. The majority of floral visitors were captured in the mechanical plus burn treatments, while lower numbers were caught on the mechanical only treatments, burn only treatments and control treatments. Overall species richness was also higher on mechanical plus burn treatments compared to other treatments. Total pollinator abundance was correlated with decreased tree basal area (r2=0.58) and increased percent herbaceous plant cover (r2=0.71). We captured 37,191 saproxylic Coleoptera in North Carolina, comprising 20 families and 122 species. Overall, species richness and total abundance of Coleoptera were not significantly different among treatments. However, total numbers of many key families, such as Scolytidae, Curculionidae, Cerambycidae, and Buprestidae, have higher total numbers in treated plots compared to untreated controls and several families (Elateridae, Cleridae, Trogositidae, Scolytidae) showed significant differences (p≤0.05) in abundance. -
Indiana County Endangered, Threatened and Rare Species List 03/09/2020 County: Pike
Page 1 of 3 Indiana County Endangered, Threatened and Rare Species List 03/09/2020 County: Pike Species Name Common Name FED STATE GRANK SRANK Insect: Plecoptera (Stoneflies) Acroneuria ozarkensis Ozark stone SE G2 S1 Mollusk: Bivalvia (Mussels) Cyprogenia stegaria Eastern Fanshell Pearlymussel LE SE G1Q S1 Epioblasma torulosa Tubercled Blossom LE SX GX SX Fusconaia subrotunda Longsolid C SX G3 SX Obovaria subrotunda Round Hickorynut C SE G4 S1 Pleurobema clava Clubshell LE SE G1G2 S1 Pleurobema cordatum Ohio Pigtoe SSC G4 S2 Pleurobema plenum Rough Pigtoe LE SE G1 S1 Pleurobema rubrum Pyramid Pigtoe SX G2G3 SX Potamilus capax Fat Pocketbook LE SE G2 S1 Ptychobranchus fasciolaris Kidneyshell SSC G4G5 S2 Simpsonaias ambigua Salamander Mussel C SSC G3 S2 Theliderma cylindrica Rabbitsfoot LT SE G3G4 S1 Insect: Coleoptera (Beetles) Dynastes tityus Unicorn Beetle SR GNR S2 Insect: Ephemeroptera (Mayflies) Pseudiron centralis White Crabwalker Mayfly SE G5 S1 Siphloplecton interlineatum Flapless Cleft-footed Minnow ST G5 S2 Mayfly Fish Ammocrypta clara Western Sand Darter SSC G3 S2 Amphibian Acris blanchardi Blanchard's Cricket Frog SSC G5 S4 Lithobates areolatus circulosus Northern Crawfish Frog SE G4T4 S2 Reptile Nerodia erythrogaster neglecta Copperbelly Water Snake PS:LT SE G5T3 S2 Opheodrys aestivus Rough Green Snake SSC G5 S3 Terrapene carolina carolina Eastern Box Turtle SSC G5T5 S3 Bird Accipiter striatus Sharp-shinned Hawk SSC G5 S2B Asio flammeus Short-eared Owl SE G5 S2 Buteo platypterus Broad-winged Hawk SSC G5 S3B Circus hudsonius -
Proceedings, 23Rd U.S. Department of Agriculture Interagency Research
United States Department of Proceedings Agriculture 23rd U.S. Department of Agriculture Forest Service Northern Interagency Research Forum on Research Station Invasive Species 2012 General Technical Report NRS-P-114 The findings and conclusions of each article in this publication are those of the individual author(s) and do not necessarily represent the views of the U.S. Department of Agriculture or the Forest Service. All articles were received in digital format and were edited for uniform type and style. Each author is responsible for the accuracy and content of his or her paper. The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture or the Forest Service of any product or service to the exclusion of others that may be suitable. This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and/or Federal, agencies before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fi sh or other wildlife—if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. Cover graphic by Vincent D’Amico, U.S. Forest Service, Northern Research Station. Manuscript received for publication August 2012 Published by: For additional copies: U.S. -
A Phylogenetic Analysis of the Dung Beetle Genus Phanaeus (Coleoptera: Scarabaeidae) Based on Morphological Data
A phylogenetic analysis of the dung beetle genus Phanaeus (Coleoptera: Scarabaeidae) based on morphological data DANA L. PRICE Insect Syst.Evol. Price, D. L.: A phylogenetic analysis of the dung beetle genus Phanaeus (Coleoptera: Scarabaeidae) based on morphological data. Insect Syst. Evol. 38: 1-18. Copenhagen, April, 2007. ISSN 1399-560X. The genus Phanaeus (Scarabaeidae: Scarabaeinae) forms an important part of the dung bee- tle fauna in much of the Western Hemisphere. Here a phylogeny for Phanaeus, including 49 Phanaeus sp., and 12 outgroup taxa, is proposed. Parsimony analysis of 67 morphological characters, and one biogeographical character produced 629 equally parsimonious trees of 276 steps. Oxysternon, the putative sister taxon is nested well within the subgenus Notiophanaeus, implying that Oxysternon might ultimately need to be synonymized with Phanaeus. Species groups of Edmonds (1994) recovered as monophyletic are paleano, endymion, chalcomelas, tridens, triangularis, and quadridens. An ‘unscaled’ equal weighting analysis yielded 57,149 equally parsimonious trees of 372 steps. The strict consensus of these trees yielded a mono- phyletic Phanaeus with the inclusion of Oxysternon. Bootstrap values are relatively low and some clades are unresolved. Dana L. Price, Graduate Program of Ecology and Evolution, Rutgers University, DEENR, 1st Floor, 14 College Farm Road, New Brunswick, NJ 08901 ([email protected]). Introduction morphological characters and cladistic methods, The genus Phanaeus is a group of tunneling dung the phylogeny of this clade. Hence, the monophy- beetles that are well known for their bright metal- ly of the genus, as well as relationships among lic colors and striking sexual dimorphism Phanaeus, with special attention to previously (Edmonds 1979). -
A Faunal Survey of the Elateroidea of Montana by Catherine Elaine
A faunal survey of the elateroidea of Montana by Catherine Elaine Seibert A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology Montana State University © Copyright by Catherine Elaine Seibert (1993) Abstract: The beetle family Elateridae is a large and taxonomically difficult group of insects that includes many economically important species of cultivated crops. Elaterid larvae, or wireworms, have a history of damaging small grains in Montana. Although chemical seed treatments have controlled wireworm damage since the early 1950's, it is- highly probable that their availability will become limited, if not completely unavailable, in the near future. In that event, information about Montana's elaterid fauna, particularity which species are present and where, will be necessary for renewed research efforts directed at wireworm management. A faunal survey of the superfamily Elateroidea, including the Elateridae and three closely related families, was undertaken to determine the species composition and distribution in Montana. Because elateroid larvae are difficult to collect and identify, the survey concentrated exclusively on adult beetles. This effort involved both the collection of Montana elateroids from the field and extensive borrowing of the same from museum sources. Results from the survey identified one artematopid, 152 elaterid, six throscid, and seven eucnemid species from Montana. County distributions for each species were mapped. In addition, dichotomous keys, and taxonomic and biological information, were compiled for various taxa. Species of potential economic importance were also noted, along with their host plants. Although the knowledge of the superfamily' has been improved significantly, it is not complete. -
Indiana Comprehensive Wildlife Strategy 2
Developed for: The State of Indiana, Governor Mitch Daniels Department of Natural Resources, Director Kyle Hupfer Division of Fish and Wildlife, Director Glen Salmon By: D. J. Case and Associates 317 E. Jefferson Blvd. Mishawaka, IN 46545 (574)-258-0100 With the Technical and Conservation information provided by: Biologists and Conservation Organizations throughout the state Project Coordinator: Catherine Gremillion-Smith, Ph.D. Funded by: State Wildlife Grants U. S. Fish and Wildlife Service Indiana Comprehensive Wildlife Strategy 2 Indiana Comprehensive Wildlife Strategy 3 Indiana Comprehensive Wildlife Strategy 4 II. Executive Summary The Indiana Department of Natural Resources, Division of Fish and Wildlife (DFW) working with conservation partners across the state, developed a Comprehensive Wildlife Strategy (CWS) to protect and conserve habitats and associated wildlife at a landscape scale. Taking advantage of Congressional guidance and nationwide synergy Congress recognized the importance of partnerships and integrated conservation efforts, and charged each state and territory across the country to develop similar strategies. To facilitate future comparisons and cross-boundary cooperation, Congress required all 50 states and 6 U.S. territories to simultaneously address eight specific elements. Congress also directed that the strategies must identify and be focused on the “species in greatest need of conservation,” yet address the “full array of wildlife” and wildlife-related issues. Throughout the process, federal agencies and national organizations facilitated a fruitful ongoing discussion about how states across the country were addressing wildlife conservation. States were given latitude to develop strategies to best meet their particular needs. Congress gave each state the option of organizing its strategy by using a species-by-species approach or a habitat- based approach. -
Arthropods of Elm Fork Preserve
Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux. -
BOLMIN-THESIS-2017.Pdf
©Copyright 2017 Ophélia Bolmin OBSERVING AND MODELLING THE LEGLESS JUMPING MECHANISM OF CLICK BEETLES FOR BIO-INSPIRED ROBOTIC DESIGN BY OPHELIA BOLMIN THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Aerospace Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2017 Urbana, Illinois Adviser: Assistant Professor Aimy Wissa Abstract Click beetles (Coleoptera: Elateridae) have evolved a unique jumping mechanism to right themselves when on their dorsal side without using their legs or any other appendages. This work describes and analyzes the stages of the click beetle jump using high-speed video recordings and scanning electron micrographs of six beetle species, namely Alaus oculatus, Ampedus linteus, Hemicrepidius sp., Melanactes sp., Melanotus spp. and Parallelosthetus attenuatus. The jump of the click beetle is divided into three consecutive stages: the pre-jump stage (energy storage), and the take-off and airborne stages (energy release). Morphological measurements of the previously mentioned species as well as three additional species, namely Agriotes sp., Athous sp. and Lacon discoideus are taken, and isometric scaling across the species is observed. The body of the click beetle is considered as two masses linked by a hinge. Dynamic and kinematic models of the jump stages are developed. Non-dimensional analysis of the airborne stage is used to analyze the jump and identify the contribution of kinematic and morphological governing parameters. An energetics model is developed to describe the energy exchanges between the three stages of the jump. Kinematic and dynamic models are used to calculate the hinge stiffness and the elastic energy stored in the body during the jump. -
Scrub Oak Preserve Animal Checklist Volusia County, Florida
Scrub Oak Preserve Animal Checklist Volusia County, Florida Accipitridae Cervidae Cooper's Hawk Accipiter cooperii White-tailed Deer Odocoileus virginianus Red-tailed Hawk Buteo jamaicensis Red-shouldered Hawk Buteo lineatus Charadriidae Bald Eagle Haliaeetus leucocephalus Killdeer Charadrius vociferus Acrididae Corvidae American Bird Grasshopper Schistocerca americana Scrub Jay Aphelocoma coerulescens American Crow Corvus brachyrhynchos Agelenidae Fish Crow Corvus ossifragus Grass Spider Agelenopsis sp. Blue Jay Cyanocitta cristata Anatidae Dactyloidae Wood Duck Aix sponsa Cuban Brown Anole Anolis sagrei Blattidae Elateridae Florida woods cockroach Eurycotis floridana Eyed Click Beetle Alaus oculatus Bombycillidae Emberizidae Cedar Waxwing Bombycilla cedrorum Eastern Towhee Pipilo erythrophthalmus Cardinalidae Eumenidae Northern Cardinal Cardinalis cardinalis Paper wasp Polistes sp. Cathartidae Formicidae Turkey Vulture Cathartes aura Carpenter ants Camponotus sp. Black Vulture Coragyps atratus Fire Ant Solenopsis invicta Certhiidae Fringillidae Blue-gray Gnatcatcher Polioptila caerulea American Goldfinch Carduelis tristis Geomyidae Phalacrocoracidae Southeastern Pocket Gopher Geomys pinetis Double-crested Cormorant Phalacrocorax auritus Gruidae Picidae Sandhill Crane Grus canadensis Northern Flicker Colaptes auratus Pileated Woodpecker Dryocopus pileatus Hesperiidae Red-bellied Woodpecker Melanerpes carolinus Duskywing Erynnis sp. Downy Woodpecker Picoides pubescens Hirundinidae Polychrotidae Tree Swallow Tachycineta bicolor Green Anole -
Department of Entomology Museum of Comparative Zoology Cambridge, MA 02138 USA
TYPE SPECIMENS OF SPECIES OF DYNASTINI (COLEOPTERA: SCARABAEIDAE: DYNASTINAE) DESCRIBED BY J. L. LECONTE AND G. H. HORN BY JONATHAN R. MAWDSLEY Department of Entomology Museum of Comparative Zoology Cambridge, MA 02138 USA ABSTRACT A lectotype is designated for Megasoma thersites LeConte (type-locality Cape San Lucas, Baja California) from the Leconte collection, Museum of Comparative Zoology. The holotype of Dynastes grantii Horn is preserved in the Horn collection, Museum of Comparative Zoology. INTRODUCTION The pioneer American coleopterists John L. LeConte and George H. Horn each described a single species of Dynastini. Given the popularity of scarabs, particularly dynastines, with col- lectors and the relative accessibility of the LeConte and Horn col- lections in the Museum of Comparative Zoology (MCZ), it is surprising that no previous workers were aware that Megasoma thersites LeConte was described from 8 specimens, none of which had originally been designated as a holotype. Hardy (1972:773) speculated that this species had been described from a single holo- type male, but an examination of the LeConte collection and LeConte's original description (1861:336) clearly indicate that multiple specimens were used to describe this species. I have therefore designated a male specimen from the syntype series as lectotype. The single species of Dynastini described by G. H. Horn, Dynastes grantii, was described from a single specimen from Fort Grant, Arizona, and the holotype of this species is in the Horn col- lection in the MCZ. I have provided bibliographies and brief diag- Manuscript received 7 July 1993. 173 174 Psyche [Vol. 100 noses for each of these species below. -
Investigation of the Selective Color-Changing Mechanism
www.nature.com/scientificreports OPEN Investigation of the selective color‑changing mechanism of Dynastes tityus beetle (Coleoptera: Scarabaeidae) Jiyu Sun1, Wei Wu2, Limei Tian1*, Wei Li3, Fang Zhang3 & Yueming Wang4* Not only does the Dynastes tityus beetle display a reversible color change controlled by diferences in humidity, but also, the elytron scale can change color from yellow‑green to deep‑brown in specifed shapes. The results obtained by focused ion beam‑scanning electron microscopy (FIB‑SEM), show that the epicuticle (EPI) is a permeable layer, and the exocuticle (EXO) is a three‑dimensional photonic crystal. To investigate the mechanism of the reversible color change, experiments were conducted to determine the water contact angle, surface chemical composition, and optical refectance, and the refective spectrum was simulated. The water on the surface began to permeate into the elytron via the surface elemental composition and channels in the EPI. A structural unit (SU) in the EXO allows local color changes in varied shapes. The refectance of both yellow‑green and deep‑brown elytra increases as the incidence angle increases from 0° to 60°. The microstructure and changes in the refractive index are the main factors that infuence the process of reversible color change. According to the simulation, the lower refectance causing the color change to deep‑brown results from water infltration, which increases light absorption. Meanwhile, the waxy layer has no efect on the refection of light. This study lays the foundation to manufacture engineered photonic materials that undergo controllable changes in iridescent color. Te varied colors of nature have a great visual impact on human beings. -
Epicranial Suture." Now a Paper Appears (Du
SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 107, NUMBER 7 THE INSECT CRANIUM AND THE "EPICRANIAL SUTURE" R. E. SNODGRASS Collaborator, Bureau of Entomology and Plant Quarantine U. S. Department of Agriculture (Publication 3896) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION JULY 30, 1947 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 107, NUMBER 7 THE INSECT CRANIUM AND THE ''EPICRANIAL SUTURE" R. E. SNODGRASS Collaborator, Bureau of Entomology and Plant Quarantine U. S. Department of Agriculture 'i^\ ,«s? "^^^.::*5 (Publication 3896) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION JULY 30, 1947 ^6e Bovi QSafftmore (pvcee BALTIMORE, BID., U. S. A. ; THE INSECT CRANIUM AND THE "EPICRANIAL SUTURE" By R. E. SNODGRASS Collaborator, Bureau of Entomology and Plant Quarantine, U. S. Department of Agriculture CONTENTS Page Introduction I I. General discussion 2 II. Examples of the ecdysial cleavage line of the head 13 Apterygote insects 13 Ephemeroptera and Plecoptera 14 Odonata 14 Dermaptera I4 Orthoptera 16 Hemiptera 18 Anoplura 22 Coleoptera 24 Neuroptera (Megaloptera and Planipennia) 28 Mecoptera 31 Trichoptera 32 Lepidoptera 33 Diptera 34 Hymenoptera 39 Symphyla 42 III. Summary 44 Abbreviations used on the figures 47 References 49 INTRODUCTION The structure of insects presumably remains the same for long periods of time. A reading of entomological texts and papers, how- ever, might give the impression that a rapid change has been going on in insects even during the last few years. The evident stability of the insect structure as compared with the diversity in the written accounts of it simply illustrates the difiference between anatomy and mor- phology. Anatomy refers to the facts of structure, morphology is our interpretation of the facts or what we think about them.