Understanding Problem Fermentations–A Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Concepts in Wine Chemistry
THIRD EDITION Concepts IN Wine Chemistry YAIR MARGALIT, Ph.D. The Wine Appreciation Guild San Francisco Contents Introduction ix I. Must and Wine Composition 1 A. General Background 3 B. Sugars 5 C. Acids 11 D. Alcohols 22 E. Aldehydes and Ketones 30 F. Esters 32 G. Nitrogen Compounds 34 H. Phenols 43 I. Inorganic Constituents 52 References 55 n. Fermentation 61 A. General View 63 B. Chemistry of Fermentation 64 C. Factors Affecting Fermentation 68 D. Stuck Fermentation 77 E. Heat of Fermentation 84 F. Malolactic Fermentation 89 G. Carbonic Maceration 98 References 99 v III. Phenolic Compounds 105 A. Wine Phenolic Background 107 B. Tannins 120 C. Red Wine Color 123 D. Extraction of Phenolic Compounds from Grapes 139 References 143 IV. Aroma and Flavor 149 A. Taste 151 B. Floral Aroma 179 C. Vegetative Aroma 189 D. Fruity Aroma 194 E. Bitterness and Astringency 195 F. Specific Flavors 201 References 214 V. Oxidation and Wine Aging 223 A. General Aspects of Wine Oxidation 225 B. Phenolic Oxidation 227 C. Browning of White Wines 232 D. Wine Aging 238 References 253 VI. Oak Products 257 A. Cooperage 259 B. Barrel Aging 274 C. Cork 291 References 305 vi VH. Sulfur Dioxide 313 A. Sulfur-Dioxide as Food Products Preservative 315 B. Sulfur-Dioxide Uses in Wine 326 References 337 Vm. Cellar Processes 341 A. Fining 343 B. Stabilization 352 C. Acidity Adjustment 364 D. Wine Preservatives 372 References 382 IX. Wine Faults 387 A. Chemical Faults 389 B. Microbiological Faults 395 C. Summary ofFaults 402 References 409 X. -
Screening of Indigenous Yeast from Different Ecological Regions of Kathmandu Valley and Its Application in Wine Production
Screening of Indigenous Yeast From Different Ecological Regions of Kathmandu Valley and Its Application in Wine Production Bipanab Rajopadhyaya1, Bipana Maharjan1, Roshani Maharjan1, Amrit Acharya1 1 Department Microbiology, Pinnacle College, Affi liated Tribhuvan University, Lalitpur, Nepal Corresponding author: Amrit Acharya, [email protected], ph: 9849180693, Department of Microbiology, Pinnacle College, Affi liated Tribhuvan University, Lalitpur, Nepal University ABSTRACT Objectives: The aim of the study was to isolate and screen the potent yeast from the air for implementing new yeast in wine fermentation. Methods: In this study, 35 air samples collected in sterile grape juice in glass jar and left over for four days exposure for the growth of yeast from different locations around the Kathmandu Valley. Yeasts were screened by culturing on selective Ethanol Sulfi te Agar (ESA) media at 30°C for 2-3 days in Microbiology Lab of Pinnacle College. Yeast isolates were characterized based on colony morphology, microscopic characteristics, Fermentative capacity, Hydrogen sulfi de production. Selected yeast isolates were subjected to ethanol fermentation and tested for alcohol tolerance capacity. Wine quality was assessed by sensory evaluation. Results: Of 35 samples, only 20 yeast isolates were isolated. Among these isolates, the variation in colony characteristics along with oval and ellipsoidal microscopic appearance was observed. All the isolates were able to ferment major sugars such as glucose, fructose and sucrose, but few could not ferment galactose and maltose, while none-fermented lactose and xylose. Here, isolates showing no H2S (L29, L34) and mild H2S producer (isolate L31) were subjected to ethanol fermentation. Also, Comparative analysis was made by using commercial standard wine yeast (STAN). -
The Alcohol Textbook 4Th Edition
TTHEHE AALCOHOLLCOHOL TEXTBOOKEXTBOOK T TH 44TH EEDITIONDITION A reference for the beverage, fuel and industrial alcohol industries Edited by KA Jacques, TP Lyons and DR Kelsall Foreword iii The Alcohol Textbook 4th Edition A reference for the beverage, fuel and industrial alcohol industries K.A. Jacques, PhD T.P. Lyons, PhD D.R. Kelsall iv T.P. Lyons Nottingham University Press Manor Farm, Main Street, Thrumpton Nottingham, NG11 0AX, United Kingdom NOTTINGHAM Published by Nottingham University Press (2nd Edition) 1995 Third edition published 1999 Fourth edition published 2003 © Alltech Inc 2003 All rights reserved. No part of this publication may be reproduced in any material form (including photocopying or storing in any medium by electronic means and whether or not transiently or incidentally to some other use of this publication) without the written permission of the copyright holder except in accordance with the provisions of the Copyright, Designs and Patents Act 1988. Applications for the copyright holder’s written permission to reproduce any part of this publication should be addressed to the publishers. ISBN 1-897676-13-1 Page layout and design by Nottingham University Press, Nottingham Printed and bound by Bath Press, Bath, England Foreword v Contents Foreword ix T. Pearse Lyons Presient, Alltech Inc., Nicholasville, Kentucky, USA Ethanol industry today 1 Ethanol around the world: rapid growth in policies, technology and production 1 T. Pearse Lyons Alltech Inc., Nicholasville, Kentucky, USA Raw material handling and processing 2 Grain dry milling and cooking procedures: extracting sugars in preparation for fermentation 9 Dave R. Kelsall and T. Pearse Lyons Alltech Inc., Nicholasville, Kentucky, USA 3 Enzymatic conversion of starch to fermentable sugars 23 Ronan F. -
Microbial and Chemical Analysis of Non-Saccharomyces Yeasts from Chambourcin Hybrid Grapes for Potential Use in Winemaking
fermentation Article Microbial and Chemical Analysis of Non-Saccharomyces Yeasts from Chambourcin Hybrid Grapes for Potential Use in Winemaking Chun Tang Feng, Xue Du and Josephine Wee * Department of Food Science, The Pennsylvania State University, Rodney A. Erickson Food Science Building, State College, PA 16803, USA; [email protected] (C.T.F.); [email protected] (X.D.) * Correspondence: [email protected]; Tel.: +1-814-863-2956 Abstract: Native microorganisms present on grapes can influence final wine quality. Chambourcin is the most abundant hybrid grape grown in Pennsylvania and is more resistant to cold temperatures and fungal diseases compared to Vitis vinifera. Here, non-Saccharomyces yeasts were isolated from spontaneously fermenting Chambourcin must from three regional vineyards. Using cultured-based methods and ITS sequencing, Hanseniaspora and Pichia spp. were the most dominant genus out of 29 fungal species identified. Five strains of Hanseniaspora uvarum, H. opuntiae, Pichia kluyveri, P. kudriavzevii, and Aureobasidium pullulans were characterized for the ability to tolerate sulfite and ethanol. Hanseniaspora opuntiae PSWCC64 and P. kudriavzevii PSWCC102 can tolerate 8–10% ethanol and were able to utilize 60–80% sugars during fermentation. Laboratory scale fermentations of candidate strain into sterile Chambourcin juice allowed for analyzing compounds associated with wine flavor. Nine nonvolatile compounds were conserved in inoculated fermentations. In contrast, Hanseniaspora strains PSWCC64 and PSWCC70 were positively correlated with 2-heptanol and ionone associated to fruity and floral odor and P. kudriazevii PSWCC102 was positively correlated with a Citation: Feng, C.T.; Du, X.; Wee, J. Microbial and Chemical Analysis of group of esters and acetals associated to fruity and herbaceous aroma. -
Xylose Fermentation to Ethanol by Schizosaccharomyces Pombe Clones with Xylose Isomerase Gene." Biotechnology Letters (8:4); Pp
NREL!TP-421-4944 • UC Category: 246 • DE93000067 l I Xylose Fermenta to Ethanol: A R ew '.) i I, -- , ) )I' J. D. McMillan I ' J.( .!i �/ .6' ....� .T u�.•ls:l ., �-- • National Renewable Energy Laboratory II 'J 1617 Cole Boulevard Golden, Colorado 80401-3393 A Division of Midwest Research Institute Operated for the U.S. Department of Energy under Contract No. DE-AC02-83CH10093 Prepared under task no. BF223732 January 1993 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, com pleteness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily con stitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Printed in the United States of America Available from: National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA22161 Price: Microfiche A01 Printed Copy A03 Codes are used for pricing all publications. The code is determined by the number of pages in the publication. Information pertaining to the pricing codes can be found in the current issue of the following publications which are generally available in most libraries: Energy Research Abstracts (ERA); Govern ment Reports Announcements and Index ( GRA and I); Scientific and Technical Abstract Reports(STAR); and publication NTIS-PR-360 available from NTIS at the above address. -
Phenolic Compounds As Markers of Wine Quality and Authenticity
foods Review Phenolic Compounds as Markers of Wine Quality and Authenticity Vakare˙ Merkyte˙ 1,2 , Edoardo Longo 1,2,* , Giulia Windisch 1,2 and Emanuele Boselli 1,2 1 Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bozen-Bolzano, Italy; [email protected] (V.M.); [email protected] (G.W.); [email protected] (E.B.) 2 Oenolab, NOI Techpark South Tyrol, Via A. Volta 13B, 39100 Bozen-Bolzano, Italy * Correspondence: [email protected]; Tel.: +39-0471-017691 Received: 29 October 2020; Accepted: 28 November 2020; Published: 1 December 2020 Abstract: Targeted and untargeted determinations are being currently applied to different classes of natural phenolics to develop an integrated approach aimed at ensuring compliance to regulatory prescriptions related to specific quality parameters of wine production. The regulations are particularly severe for wine and include various aspects of the viticulture practices and winemaking techniques. Nevertheless, the use of phenolic profiles for quality control is still fragmented and incomplete, even if they are a promising tool for quality evaluation. Only a few methods have been already validated and widely applied, and an integrated approach is in fact still missing because of the complex dependence of the chemical profile of wine on many viticultural and enological factors, which have not been clarified yet. For example, there is a lack of studies about the phenolic composition in relation to the wine authenticity of white and especially rosé wines. This review is a bibliographic account on the approaches based on phenolic species that have been developed for the evaluation of wine quality and frauds, from the grape varieties (of V. -
Continuous Production of Ethanol in Packed Bed- Bioreactors with Immobilized Yeast Cells on Lignocellulosic Waste Producción Co
CONTINUOUS PRODUCTION OF ETHANOL IN PACKED BED- BIOREACTORS WITH IMMOBILIZED YEAST CELLS ON LIGNOCELLULOSIC WASTE PRODUCCIÓN CONTINUA DE ETANOL EN BIORREACTORES DE LECHO EMPACADO CON CÉLULAS DE LEVADURA INMOVILIZADAS EN RESIDUOS LIGNOCELULÓSICOS LINA MARÍA AGUDELO ESCOBAR Ph.D. (c). Profesora Asistente, Universidad de Antioquia, Medellín, Colombia, [email protected] URIEL SALAZAR ÁLVAREZ Ingeniero Químico, Universidad de Antioquia, Medellín, Colombia MARIANA PEÑUELA Ph.D. Profesora Asistente, Universidad de Antioquia, Sede de Investigación Universitaria (SIU) Received for review November 23 th, 2011, accepted May 16th, 2012, final version May, 31 th, 2012 ABSTRACT: Continuous processes with immobilized cells are a good alternative for improving the efficiency and the performance of alcoholic fermentations. The potential use of raw materials obtained from agro-industrial waste as supports for cell immobilization was recently evaluated. In this work, we evaluated the continuous production of ethanol in packed-bed reactors with yeast cells immobilized on wood shaving, cane bagasse, corn leave, and corn cob lignocellulosic waste. We used glucose as a carbon source to establish the reference conditions and we made the fermentations with commercial sucrose. We also evaluated the glucose syrup obtained from cassava flour as alternative substrate. The experiments were performed on a laboratory level in column reactors of 250 mL. The cane bagasse was the material on which the highest amount of cells was immobilized. A value of 0.047 g Biomass/g Carrier (gX/gC) was obtained. For the fermentation performed with glucose, the productivity reached was 13.33 ± 1.5 g/L h. A similar value, 13.00 ± 0.02 g/L h was reached for the productivity of fermentation with sucrose. -
Understanding Problem Fermentations – a Review
Understanding Problem Fermentations – A Review S. Malherbe, F.F. Bauer and M. Du Toit* Institute for Wine Biotechnology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa Submitted for publication: July 2007 Accepted for publication: September 2007 Key words: Problem Fermentations, Alcoholic Fermentation, Malolactic Fermentation, Analytical Techniques, Chemometrics. Despite advances in winemaking technology and improvements in fermentation control, problem alcoholic and malolactic fermentations remain a major oenological concern worldwide. This is due to possible depreciation of product quality and its consequent negative economic impact. Various factors have been identified and studied over the years, yet the occurrence of fermentation problems persists. The synergistic effect of the various factors amongst each other provides additional challenges for the study of such fermentations. This literature review summarises the most frequently studied causes of problematic alcoholic and malolactic fermentations and in addition provides a summary of established and some potential new analytical technologies to monitor and investigate the phenomenon of stuck and sluggish fermentations. INTRODUCTION Kunkee, 1985; Bely et al., 1990), vitamin deficiency, especial- Alcoholic fermentation, the conversion of the principal grape ly thiamine (Peynaud and Lafourcade, 1977; Ough et al., 1989; sugars, glucose and fructose, to ethanol and carbon dioxide is Salmon, 1989), oxygen deficiency (Thomaset al., 1978; Traverso conducted by yeasts -
Ethanol Fermentation from Food Processing Waste
This is the author’s final, peer-reviewed manuscript as accepted for publication. The publisher-formatted version may be available through the publisher’s web site or your institution’s library. Ethanol fermentation from food processing waste Kara Walker, Praveen Vadlani, Ronald Madl, Philip Ugorowski, Keith L. Hohn How to cite this manuscript If you make reference to this version of the manuscript, use the following information: Walker, K., Vadlani, P., Madl, R., Ugorowski, P., & Hohn, K. L. (2013). Ethanol fermentation from food processing waste. Retrieved from http://krex.ksu.edu Published Version Information Citation: Walker, K., Vadlani, P., Madl, R., Ugorowski, P., & Hohn, K. L. (2013). Ethanol fermentation from food processing waste. Environmental Progress & Sustainable Energy, 32(4), 1280-1283. Copyright: © 2012 American Institute of Chemical Engineers Digital Object Identifier (DOI): doi:10.1002/ep.11700 Publisher’s Link: http://onlinelibrary.wiley.com/enhanced/doi/10.1002/ep.11700/ This item was retrieved from the K-State Research Exchange (K-REx), the institutional repository of Kansas State University. K-REx is available at http://krex.ksu.edu Ethanol fermentation from food processing waste Kara Walker1, Praveen Vadlani2, Ronald Madl2, Philip Ugorowski3, Keith L. Hohn4* 1Kansas State University Research Experiences for Undergraduates (REU) Program, Manhattan, Kansas 2Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506 3Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 4Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506 E-mail: [email protected] * Correspondence: Keith L. Hohn, Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506 Keywords: ethanol, fermentation, food waste, distillation, renewable energy Abstract This study focuses on the use of restaurant waste for production of ethanol. -
Understanding Problem Fermentations - a Review
Understanding Problem Fermentations - A Review S. Maiherbe, F.F. Bauer and M. Du Toit Institute for Wine Biotechnology, Stellenbosch University, Private Bag Xl, Matieland, 7602, South Africa Submitted for publication: July 2007 Accepted for publication: September 2007 Key words: Problem Fermentations, Alcoholic Fermentation, Malolactic Fermentation, Analytical Techniques, Chemometrics. Despite advances in winemaking technology and improvements in fermentation control, problem alcoholic and malolactic fermentations remain a major oenological concern worldwide. This is due to possible depreciation of product quality and its consequent negative economic impact. Various factors have been identified and studied over the years, yet the occurrence of fermentation problems persists. The synergistic effect of the various factors amongst each other provides additional challenges for the study of such fermentations. This literature review summarises the most frequently studied causes of problematic alcoholic and malolactic fermentations and in addition provides a summary of established and some potential new analytical technologies to monitor and investigate the phenomenon of stuck and sluggish fermentations. INTRODUCTION Kunkee, 1985; Bely et al., 1990), vitamin deficiency, especial- Alcoholic fermentation, the conversion of the principal grape ly thiamine (Peynaud and Lafourcade, 1977; Ough et aL, 1989; sugars, glucose and fructose, to ethanol and carbon dioxide is Salmon, 1989), oxygen deficiency (Thomas et aL, 1978; Traverso conducted by yeasts -
Ethanol Fermentation on the Move
NEWS AND VIEWS Ethanol fermentation on the move Thomas W Jeffries The complete genome sequence of the ethanol-producing bacterium Zymomonas mobilis provides new opportunities for industrial alcohol fermentation. Ethanol has been derived from microbial fer mentation for thousands of years. It is not only an important product of the alcoholic beverage industry, but also, it is one of the fastest growing fuel sources in the world. In 2004, the United States produced more than 12.5 × 109 liters of ethanol–a 17% increase over the amount generated in 20031. Keeping in step with this demand will require the engineering of new strains of fermentative microorganisms that can produce ethanol more efficiently, and more detailed informa tion about the genetic circuits involved. In this issue, Kang and colleagues2 report the complete genome sequence of one of these organisms, the ethanologenic bacterium Zymomonas mobilis. The perennial choice for making beverage ethanol is Saccharomyces cerevisiae. In con trast, Z. mobilis has been shunned because it can spoil fermentations ofcider and beer with sulfurous flavors and rotten odors. However, in this rapidly changing industry, Z. mobilis might gain popularity. Off-flavors are not a concern in the production of fuel etha nol, so the faster fermentation kinetics and higher product yields of Z. mobilis could give it an advantage. Publication of the complete 2.06 Mb Z. mobilis genome by a consortium of researchers in Korea should provide a new impetus to efforts to exploit this bacterium Figure 1 Ethanol fermentation in Zymomonas mobilis. The conversion of glucose into two moles for ethanol production. -
Saccharomyces Cerevisiae in the Production of Fermented Beverages
beverages Review Saccharomyces cerevisiae in the Production of Fermented Beverages Graeme M Walker 1,* and Graham G Stewart 2 1 Abertay University, Dundee, Scotland DD1 1HG, UK 2 Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-1382-308658 Academic Editor: Edgar Chambers IV Received: 20 October 2016; Accepted: 11 November 2016; Published: 17 November 2016 Abstract: Alcoholic beverages are produced following the fermentation of sugars by yeasts, mainly (but not exclusively) strains of the species, Saccharomyces cerevisiae. The sugary starting materials may emanate from cereal starches (which require enzymatic pre-hydrolysis) in the case of beers and whiskies, sucrose-rich plants (molasses or sugar juice from sugarcane) in the case of rums, or from fruits (which do not require pre-hydrolysis) in the case of wines and brandies. In the presence of sugars, together with other essential nutrients such as amino acids, minerals and vitamins, S. cerevisiae will conduct fermentative metabolism to ethanol and carbon dioxide (as the primary fermentation metabolites) as the cells strive to make energy and regenerate the coenzyme NAD+ under anaerobic conditions. Yeasts will also produce numerous secondary metabolites which act as important beverage flavour congeners, including higher alcohols, esters, carbonyls and sulphur compounds. These are very important in dictating the final flavour and aroma characteristics of beverages such as beer and wine, but also in distilled beverages such as whisky, rum and brandy. Therefore, yeasts are of vital importance in providing the alcohol content and the sensory profiles of such beverages. This Introductory Chapter reviews, in general, the growth, physiology and metabolism of S.