Microbiology of the Biogas Process

Total Page:16

File Type:pdf, Size:1020Kb

Microbiology of the Biogas Process Microbiology of the biogas process Anna Schnürer Åsa Jarvis 1 Authors: Anna Schnürer and Åsa Jarvis Layout and illustrations: Cajsa Lithell, RedCap Design Cover page: Fluorescent methanogens, photo Anna Schnürer ISBN 978-91-576-9546-8 2 Foreword In Sweden and worldwide, there is currently great interest in the biogas process, since it can stabilize and reduce various types of organic waste whilst producing renewable and environmentally friendly energy in the form of biogas. Efficient production of biogas relies on a complex micro- biological process. Controlling the biogas process in an efficient manner to ensure maximum yield requires some advanced knowledge of how microorganisms work and of the microbiology underlying the biogas process. The report ”U2009:03 Microbiological handbook for biogas plants” from Swedish Waste Management was published in 2009 to provide easily accessible literature in Swedish that is specifically written for staff respon- sible for biogas production plants. The handbook was also translated to English and have been used internationally. It has been widely used in training courses and as a separate guide for staff at the plants. This updated version of the handbook includes recent advances in our understanding of the microbiology of the biogas process. Each chapter has also been expan- ded with a number of exercises (with answers) that are intended to be used to support training courses for staff at biogas plants. The guide was compiled by Anna Schnürer (Dept. of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala) and Åsa Jarvis (Jarvis Biowrite, Uppsala). Both authors have written doctoral dissertations on the subject of the biogas process and its microbiology and have extensive experience in the field. The Swedish version of this handbook was funded by Swedish Waste Management and can be purchased from their web page. 3 Content Introduction 6 1. Microbiology of the biogas process 8 What is required for the function and growth of microorganisms? 8 Environmental factors 12 Degradation of organic compounds 15 Diversity of microorganisms 22 2. The importance of technology to microbiology 25 Start-up of a biogas process 25 Process design 26 Important operating parameters 32 3. Substrates 41 Substrates for biogas production 41 How to choose a substrate for a biogas process 42 Other properties 45 Pre-treatment 46 The importance of different substrate components for the process 48 Important information about various substrates 53 4. Toxicity 62 Inhibition levels 62 Inhibiting substances 63 5. Monitoring and evaluation of the process 71 What should be monitored? 71 Methods for studying the substrate and the process 83 Summary 88 4 6. The digested residues 89 Function and use as fertilizer 89 Plant nutrient value 90 Effects on the soil 91 Quality and Certification 93 Contamination 94 Hygiene 96 Post-digestion and storage 100 Transportation of digestate 101 Environmental benefits and alternative uses 101 What happens in a process malfunction? 103 7. Common problems and solutions 103 Typical problems 105 Corrective measures 108 Additives in the future? 111 Concluding remarks 112 Glossary 113 Literature 117 Questions to the chapters 139 Questions Chapter 1 140 Questions Chapter 2 141 Questions Chapter 3 142 Questions Chapter 4 143 Questions Chapter 5 144 Questions Chapter 6 146 Questions Chapter 7 147 Answers to the questions 149 Answer to the questions to Chapter 1 150 Answer to the questions to Chapter 2 152 Answer to the questions to Chapter 3 154 Answer to the questions to Chapter 4 157 Answer to the questions to Chapter 5 159 Answer to the questions to Chapter 6 161 Answer to the questions to Chapter 7 164 5 Introduction Biogas is formed when organic material, heat or as vehicle fuel. In order to be able to use such as food waste or manure, is degraded biogas for vehicles, the carbon dioxide must first by microorganisms in the absence of oxygen, be separated from the methane. This is called so-called anaerobic (oxygen-free) degradation upgrading. On the combustion of methane, only or digestion. This process differs from compos- carbon dioxide and water are formed. Because the ting, which is also a bio-degradation process, biogas originates from atmospheric sources, the where aerobic conditions (i.e. oxygen) are carbon dioxide that is formed does not contribute required for the organisms to grow and work. to the greenhouse effect, in contrast to when na- tural gas is used as a fuel. Natural gas also consists Biogas is produced spontaneously in environments of methane, but this is a fossil gas extracted from where organic material accumulates with little or bedrock sources. The biogas process, with its no oxygen present, for example in wetlands and diversity of microorganisms, chemical reactions rice paddies, on the seabed or in the stomach of and degradation pathways, may also become ruminants. In recent years, the interest in utilizing important in the future for the production of new this process under controlled conditions has incre- biochemicals. In addition, the methane mole- ased both in Sweden and in other countries and cule can be used as raw material in manufacturing many new biogas plants have been built. Reactor industries. The digester residue can also be used as designs vary, but the basic principle is to allow a raw material for new products. anaerobic microorganisms to degrade the organic The process has been used for energy produc- material which is placed in an air-tight contai- tion since the second half of the 19th century; first ner to prevent oxygen from entering. The biogas in small reactors to provide gas for cooking and formed in this way consists of a mixture of gases, heating for individual households, farms or villa- ges in Asia and Africa, then in increasingly com- mainly methane (CH4) and carbon dioxide (CO2), of which methane is the energy-rich component. mercialized large-scale systems, mainly in Europe. The content of methane varies depending on the In Sweden, the first biogas plants were establis- kind of material that is degraded (digested) in the hed at wastewater treatment plants in the 1940’s process. In addition to biogas, a digestion residue and were expanded in the following decades. is formed, which can be used as a nutrient-rich The purpose of these facilities was primarily to fertilizer and soil conditioner. stabilize and reduce the amount of sludge formed Biogas is an environmentally-friendly fuel that after the aerobic aeration step. The energy crises of can be used for the production of electricity and the 1970’s stimulated the development and use of 6 biogas processes in industry, for example in sugar for the microorganisms to work optimally. This and pulp and paper mills. Biogas also began to book describes the biological process, the im- be recovered from landfills, partly to reduce the portant groups of microorganisms that are active emissions of methane, which is in itself a powerful during the different degradation steps, their nut- greenhouse gas. Large-scale digester plants were ritional and environmental requirements and how built during the 1990’s. In these facilities, many the technology can be adapted to these demands. different materials, such as food wastes, slaughter- Different substrates may require different treat- house waste, fertilizers, etc., are often degraded ments and new substrates are continually being simultaneously in order to extract as much biogas introduced, which may pose new challenges. The as possible. In recent years, interest has also incre- goal of the biogas process is usually to produce as ased in the production of biogas in smaller plants much biogas as possible from a given substrate, but (e.g. at the farm level) from fertilizers and various it is also important to ensure a stable process and plant and food residues. to produce a residue of good quality. This is Common to all biogas processes regardless of discussed in the chapters on substrates, toxici- the design and material (substrate) digested is that ty and the digester residue. In addition, some the degradation occurs step by step in a com- methods for monitoring and controlling the plicated interaction between different anaerobic biogas process are discussed, as well as some of the microorganisms. In order to run a biogas process problems that are commonly encountered and effectively, it is important to understand how this how they can be avoided and remedied. inter- action works and to know what is required Food Waste from cities Waste from farms Nutrients BIOGAS The biogas system is unique from the point of view both of efficient energy production and waste treatment. The nutrient rich residue can be used as a fertilizer. Both large and small scale biogas systems can be constructed and they can be integrated with other bioenergy systems. The biogas process may also provide new bio-chemicals in the future. 7 1. Microbiology of the biogas process A complex microbiological process lies behind The more varied the composition of the orga- the efficient production of biogas. Many nic material, the more components are available different species of microorganisms need to be for growth, and thus allow a greater diversity of active in order for biogas to form. In addition, organisms to grow. However, it is not good if the these organisms have to work closely together. composition varies too much with time because A disturbance of this teamwork results in many of the microorganisms that develop during reduced biogas production and, in the worst the process are specialists, i.e. they grow best on a case scenario, a breakdown of the process. specific substrate. Controlling the biogas process in an efficient In addition to the substrate, the microorganisms manner requires knowledge of the microbio- require a suitable environment in order to thrive logy behind the biogas process and of how and function.
Recommended publications
  • Fermentation and Anaerobic Decomposition in a Hot Spring
    Fermentation and anaerobic decomposition in a hot spring microbial mat by Karen Leigh Anderson A thesis submitted in partial fulfillment of requirements for the degree of Master of Science in Microbiology Montana State University © Copyright by Karen Leigh Anderson (1984) Abstract: Fermentation was investigated in a low sulfate hot spring microbial mat (Octopus Spring) according to current models on anaerobic decomposition. The mat was studied to determine what fermentation products accumulated, where in the mat they accumulated, and what factors affected their accumulation. Mat samples were incubated under dark anaerobic conditions to measure accumulation of fermentation products. Acetate and propionate (ca. 3:1) were the major products to accumulate in a 55&deg,C mat. Other products accumulated to a much lesser extent. Incubation of mat samples of varying thickness showed that fermentation occurred in the top 4mm of the mat. This has interesting implications for fermentative organisms in the mat due to the diurnal changes in mat oxygen concentrations. Fermentation measured in mat samples collected at various temperatures (50&deg,-70°C) showed acetate and propionate to be the major accumulation products. According to the interspecies hydrogen transfer model, the hydrogen concentration in a system affects the types of fermentation products produced. At a 65° C site, with natural high hydrogen levels, and at a 55°C site, with active methanogenesis, fermentation product accumulation was compared. There was a greater ratio of reduced fermentation products to acetate, with the exception of propionate, at 65°C. Ethanol accumulated at the 65°C site, as did lactate, though to a lesser extent.
    [Show full text]
  • Exploring the Nutritional Values of Hydrogenotrophic Bacteria As Space Food
    ISSN: 2455-2631 © December 2018 IJSDR | Volume 3, Issue 12 Exploring the Nutritional Values of Hydrogenotrophic Bacteria as Space Food 1M.GIRISH, 2S.ABIRAMI, 3Dr.V.MAHALAKSHMI 1,2Research scholar, 3Professor 1,3Madras Christian College, 2V.R.R Institute of Biomedical Sciences. Abstract: Hydrogenotrophs are organisms that are capable of metabolizing molecular hydrogen as source of energy and hence hydrogenotrophy is performed by carbon dioxide reducing organism to produce methane. Methanogens are diverse group of strict anaerobes where methanogenesis is a major route in the anaerobic mineralization of organic matter. They have very unique enzyme and cofactors involved in this metabolic pathway. The anaerobic chamber provides a convenient culture system for large-scale studies of strictly anaerobic and/or facultative anaerobic bacteria. In this study, the Hydrogenotrophic organism isolated was characterized as Methanosarcina sp. Though these hydrogenotrophs utilise carbon dioxide and grow in a minimal growth requirement, they were found to be rich in carbohydrates and protein content. Therefore, Hydrogenotroph being a good food source, can be used for future space travel where the astronauts could carry them aboard and synthesis their own food. The by-products produced by these organisms can be used to produce a protein rich meal. This system can be incorporated on to space craft where this works as a closed loop between astronauts and hydrogenotrophs, where carbon dioxide released by astronauts can be captured and filtered through a system and supplied for the growth of these microbes which in turn synthesis carbohydrates. Keywords: Hydrogenotrophs, space food, anaerobes. I. INTRODUCTION Hydrogenotrophs are organisms that are capable of metabolizing molecular hydrogen as source of energy.
    [Show full text]
  • Membrane Fouling and Visualisation Studies
    The Potential of Water Hyacinth (Eicchornia crassipes) from Hartbeespoort dam in Biogas and Soil Ameliorant production, as a Solution to Water Weed Challenges Report to the WATER RESEARCH COMMISSION by A Roopnarain, R Adeleke, R Makofane, L Obi, M Lubinga Agricultural Research Council WRC Report No. 2543/1/18 ISBN 978-0-6392-0024-8 September 2018 Obtainable from Water Research Commission Private Bag X03 GEZINA, 0031 [email protected] or download from www.wrc.org.za DISCLAIMER This report has been reviewed by the Water Research Commission (WRC) and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the WRC nor does mention of trade names or commercial products constitute endorsement or recommendation for use. Printed in the Republic of South Africa © Water Research Commission ii iii iv EXECUTIVE SUMMARY BACKGROUND The Hartbeespoort Dam is situated in the North West province of South Africa and is one of the most significant dams in the economic hub of the province and the Crocodile (West) Marico (CWM) Water Management Area (WMA). The dam is primarily utilised for domestic, industrial, agricultural and recreational purposes. The numerous ecosystem services provided by the dam contribute to its economic significance. These services include provisioning (the availability of water for abstraction), supporting services (holiday, commercial and residential) and regulatory (waste assimilation). City dwellers are frequently attracted to the large water body that is situated within a mountainous setting. This has contributed to the increasing importance of the dam as a regional tourist and recreational centre. The socio-economic activities and facilities available at the dam include holiday resorts, conference venues, weekend cottages, golf courses, fishing, boating and water-skiing.
    [Show full text]
  • Conversion of Amazon Rainforest to Agriculture Alters Community Traits of Methane-Cycling Organisms
    Conversion of Amazon rainforest to agriculture alters community traits of methane-cycling organisms Kyle M. Meyer1***, Ann M. Klein1**, Jorge L.M. Rodrigues2*, Klaus Nüsslein3, Susannah Tringe4, Babur Mirza5, James M. Tiedje6, Titus Brown7 and Brendan J.M. Bohannan1* 1. Institute of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, OR 2. Department of Land, Air and Water Resources, University of California, Davis, CA 3. Department of Microbiology, University of Massachusetts, Amherst, MA 4. Joint Genome Institute, United States Department of Energy, Walnut Creek, CA 5. 6. Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 7. Department of Population Health and Reproduction, University of California, Davis, CA * Corresponding authors ([email protected], [email protected], [email protected]) **These authors contributed equally to this work. ABSTRACT Land use change is one of the greatest environmental threats worldwide, especially to tropical forests. The Amazon rainforest has been subject to particularly high rates of land use change, primarily to cattle pasture. A commonly observed response to cattle pasture establishment in the Amazon is the conversion of soil from a methane sink in rainforest, to a methane source in pasture. However, it is not known how the microorganisms that mediate methane flux are altered by land use change. Here we use the deepest metagenomic sequencing of Amazonian soil to date to investigate differences in methane-cycling microorganisms and their traits across rainforest and cattle pasture soils. We found that methane-cycling microorganisms responded to land use change, with the strongest responses exhibited by methane- consuming, rather than methane-producing, microorganisms.
    [Show full text]
  • WO 2014/135633 Al 12 September 2014 (12.09.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2014/135633 Al 12 September 2014 (12.09.2014) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 9/04 (2006.01) C12P 7/16 (2006.01) kind of national protection available): AE, AG, AL, AM, C12N 9/88 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) Number: International Application DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/EP2014/054334 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 6 March 2014 (06.03.2014) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (26) Publication Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 13 158012.8 6 March 2013 (06.03.2013) EP (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicants: CLARIANT PRODUKTE (DEUTSCH- GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, LAND) GMBH [DE/DE]; Briiningstrasse 50, 65929 UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, Frankfurt am Main (DE).
    [Show full text]
  • Characterization of Ruminal Bacteria in Grazing Nellore Steers
    248 Characterization of ruminal bacteria in grazing Nellore steers Caracterización de bacterias ruminales en novillos Nelore en pastoreo Caraterização bacteriana ruminal em novilhos Nelore em pastejo Raphael B de Jesus1 ; Yury T Granja-Salcedo1* ; Juliana D Messana1 ; Luciano T Kishi2 ; Eliana G M Lemos3 ; Jackson Antonio M de Souza3 ; Telma T Berchielli1. 1Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Câmpus Jaboticabal, Jaboticabal SP, Brazil . 2Departamento de Tecnologia, Faculdade de Ciências Agrarias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Câmpus Jaboticabal, Jaboticabal, SP, Brazil . 3Departamento de Biologia, Faculdade de Ciências Agrarias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Câmpus Jaboticabal, Jaboticabal, SP, Brazil . Received: November 7, 2017; accepted: March 5, 2019 To cite this article: De Jesus RB, Granja-Salcedo YT, Messana JD, Kishi LT, Lemos EGM, De Souza JAM, Barchielli TT. Characterization of ruminal bacteria in grazing Nellore steers. Rev Colomb Cienc Pecu 2019; 32(4): 248-260. DOI: https://doi.org/10.17533/udea.rccp.v32n4a01 This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. eISSN: 2256-2958 Rev Colomb Cienc Pecu 2019; 32(4):248-260 Ruminal bacteria in grazing steers 249 Abstract Background: Rumen microorganisms have developed a series of complex interactions, representing one of the best examples of symbiosis between microorganisms in nature. Conventional taxonomic methods based on culture techniques are being replaced by molecular techniques that are faster and more accurate. Objective: To characterize rumen bacterial diversity of Nellore steers grazing on tropical pastures by sequencing the 16S rRNA gene using Illumina sequencing.
    [Show full text]
  • Outline Release 7 7C
    Garrity, et. al., March 6, 2007 Taxonomic Outline of the Bacteria and Archaea, Release 7.7 March 6, 2007. Part 7 – The Bacteria: Phylum “Firmicutes”: Class “Clostridia” George M. Garrity, Timothy G. Lilburn, James R. Cole, Scott H. Harrison, Jean Euzéby, and Brian J. Tindall F Phylum Firmicutes AL N4Lid DOI: 10.1601/nm.3874 Class "Clostridia" N4Lid DOI: 10.1601/nm.3875 71 Order Clostridiales AL Prévot 1953. N4Lid DOI: 10.1601/nm.3876 Family Clostridiaceae AL Pribram 1933. N4Lid DOI: 10.1601/nm.3877 Genus Clostridium AL Prazmowski 1880. GOLD ID: Gi00163. GCAT ID: 000971_GCAT. Entrez genome id: 80. Sequenced strain: BC1 is from a non-type strain. Genome sequencing is incomplete. Number of genomes of this species sequenced 6 (GOLD) 6 (NCBI). N4Lid DOI: 10.1601/nm.3878 Clostridium butyricum AL Prazmowski 1880. Source of type material recommended for DOE sponsored genome sequencing by the JGI: ATCC 19398. High-quality 16S rRNA sequence S000436450 (RDP), M59085 (Genbank). N4Lid DOI: 10.1601/nm.3879 Clostridium aceticum VP (ex Wieringa 1940) Gottschalk and Braun 1981. Source of type material recommended for DOE sponsored genome sequencing by the JGI: ATCC 35044. High-quality 16S rRNA sequence S000016027 (RDP), Y18183 (Genbank). N4Lid DOI: 10.1601/nm.3881 Clostridium acetireducens VP Örlygsson et al. 1996. Source of type material recommended for DOE sponsored genome sequencing by the JGI: DSM 10703. High-quality 16S rRNA sequence S000004716 (RDP), X79862 (Genbank). N4Lid DOI: 10.1601/nm.3882 Clostridium acetobutylicum AL McCoy et al. 1926. Source of type material recommended for DOE sponsored genome sequencing by the JGI: ATCC 824.
    [Show full text]
  • Geochemical, Biological and Clumped Isotopologue Evidence For
    Geochemical, biological and clumped isotopologue evidence for substantial microbial methane production under carbon limitation in serpentinites of the Samail Ophiolite, Oman Daniel Nothaft, Alexis Templeton, Jeemin Rhim, David Wang, Jabrane Labidi, Hannah Miller, Eric Boyd, Juerg Matter, Shuhei Ono, Edward Young, et al. To cite this version: Daniel Nothaft, Alexis Templeton, Jeemin Rhim, David Wang, Jabrane Labidi, et al.. Geochemical, biological and clumped isotopologue evidence for substantial microbial methane production under carbon limitation in serpentinites of the Samail Ophiolite, Oman. Journal of Geophysical Research: Biogeosciences, American Geophysical Union, In press, 10.1029/2020JG006025. hal-03325162 HAL Id: hal-03325162 https://hal.archives-ouvertes.fr/hal-03325162 Submitted on 24 Aug 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. manuscript submitted to JGR: Biogeosciences 1 Geochemical, biological and clumped isotopologue 2 evidence for substantial microbial methane production 3 under carbon limitation in serpentinites of the Samail 4 Ophiolite, Oman 1 1 2 2∗ 5 Daniel B. Nothaft , Alexis S. Templeton , Jeemin H. Rhim , David T. Wang 3 1y 4 5 6 , Jabrane Labidi , Hannah M. Miller , Eric S. Boyd , Juerg M. Matter , 2 3 1 6 7 Shuhei Ono , Edward D.
    [Show full text]
  • Microbiome of Seven Full-Scale Anaerobic Digestion Plants in South Korea: Effect of Feedstock and Operational Parameters
    energies Article Microbiome of Seven Full-Scale Anaerobic Digestion Plants in South Korea: Effect of Feedstock and Operational Parameters Michal Sposob 1,2,†, Hee-Sung Moon 3,†, Dongjin Lee 3 and Yeo-Myeong Yun 1,* 1 Department of Environmental Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Korea; [email protected] 2 NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, N-1431 Ås, Norway 3 Waste-Energy Research Division, Environmental Resources Research Department, National Institute of Environmental Research, Environmental Research Complex, Incheon 22689, Korea; [email protected] (H.-S.M.); [email protected] (D.L.) * Correspondence: [email protected]; Tel.: +82-43-261-2466; Fax: +82-43-264-2465 † Both authors contributed equally to this work. Abstract: In this study, the microbiomes linked with the operational parameters in seven mesophilic full-scale AD plants mainly treating food waste (four plants) and sewage sludge (three plants) were analyzed. The results obtained indicated lower diversity and evenness of the microbial population in sludge digestion (SD) plants compared to food digestion (FD) plants. Candidatus Accumulibacter dominated (up to 42.1%) in SD plants due to microbial immigration from fed secondary sludge (up to 89%). Its potential activity in SD plants was correlated to H2 production, which was related to the dominance of hydrogenotrophic methanogens (Methanococcus). In FD plants, a balance between the hydrogenotrophic and methylotrophic pathways was found, while Flavobacterium and Levilinea played an important role during acidogenesis. Levilinea also expressed sensitivity to ammonia in FD plants. The substantial differences in hydraulic retention time (HRT), organic loading rate (OLR), and total ammonium nitrogen (TAN) among the studied FD plants did not influence the archaeal methane Citation: Sposob, M.; Moon, H.-S.; production pathway.
    [Show full text]
  • Appendix 1. Validly Published Names, Conserved and Rejected Names, And
    Appendix 1. Validly published names, conserved and rejected names, and taxonomic opinions cited in the International Journal of Systematic and Evolutionary Microbiology since publication of Volume 2 of the Second Edition of the Systematics* JEAN P. EUZÉBY New phyla Alteromonadales Bowman and McMeekin 2005, 2235VP – Valid publication: Validation List no. 106 – Effective publication: Names above the rank of class are not covered by the Rules of Bowman and McMeekin (2005) the Bacteriological Code (1990 Revision), and the names of phyla are not to be regarded as having been validly published. These Anaerolineales Yamada et al. 2006, 1338VP names are listed for completeness. Bdellovibrionales Garrity et al. 2006, 1VP – Valid publication: Lentisphaerae Cho et al. 2004 – Valid publication: Validation List Validation List no. 107 – Effective publication: Garrity et al. no. 98 – Effective publication: J.C. Cho et al. (2004) (2005xxxvi) Proteobacteria Garrity et al. 2005 – Valid publication: Validation Burkholderiales Garrity et al. 2006, 1VP – Valid publication: Vali- List no. 106 – Effective publication: Garrity et al. (2005i) dation List no. 107 – Effective publication: Garrity et al. (2005xxiii) New classes Caldilineales Yamada et al. 2006, 1339VP VP Alphaproteobacteria Garrity et al. 2006, 1 – Valid publication: Campylobacterales Garrity et al. 2006, 1VP – Valid publication: Validation List no. 107 – Effective publication: Garrity et al. Validation List no. 107 – Effective publication: Garrity et al. (2005xv) (2005xxxixi) VP Anaerolineae Yamada et al. 2006, 1336 Cardiobacteriales Garrity et al. 2005, 2235VP – Valid publica- Betaproteobacteria Garrity et al. 2006, 1VP – Valid publication: tion: Validation List no. 106 – Effective publication: Garrity Validation List no. 107 – Effective publication: Garrity et al.
    [Show full text]
  • Microbiological Study of the Anaerobic Corrosion of Iron
    Microbiological study of the anaerobic corrosion of iron Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften - Dr. rer. nat.- dem Fachbereich Biologie/Chemie der Universität Bremen vorgelegt von Dinh Thuy Hang aus Hanoi Bremen 2003 Die Untersuchungen zur vorliegenden Doktorarbeit wurden am Max Planck Institut für Marine Mikrobiologie in Bremen gurchgeführt. 1. Gutachter: Prof. Dr. Friedrich Widdel, Universität Bremen 2. Gutachter: Prof. Dr. Heribert Cypionka, Universität Oldenburg Tag des Promotionskolloquiums: 27. Juni 2003 To my parents Table of content Abbreviations Summary 1 Part I. Biocorrosion of iron: an overview of the literature and results of the present study A Overview of the literature 4 1. Introductory remarks on economic significance and principal reactions during corrosion 4 2. Aerobic microbial corrosion 6 3. Anaerobic microbial corrosion 7 3.1 Anaerobic corrosion by sulfate-reducing bacteria (SRB) 7 3.1.1 Physiology and phylogeny of SRB 8 3.1.2 Hydrogenases in SRB 10 3.1.3 Mechanism of corrosion mediated by SRB 12 3.2 Corrosion by anaerobic microorganisms other than SRB 17 3.2.1 Corrosion by methanogenic archaea 17 3.2.2 Corrosion by Fe(III)-reducing bacteria 18 3.2.3 Corrosion by nitrate-reducing bacteria 19 4. Goals of the present work 19 B Results of the present study 1. Anaerobic corrosion by sulfate-reducing bacteria (SRB) 22 1.1 Enrichment of SRB with metallic iron (Fe) as the only source of electrons 22 1.2 Molecular analysis of bacterial communities in the enrichment cultures 23 1.3 Isolation and characterization of SRB from the enrichment cultures 24 1.4 In situ identification of SRB in the enrichment cultures with metallic iron 26 1.5 Study of corrosion by the new isolates of SRB 27 1.5.1 Capability of sulfate reduction with metallic iron 27 1.5.2 Rate of sulfate reduction with metallic iron 29 1.5.3 Hydrogenase activity and accelerated hydrogen formation with metallic iron 30 1.5.4 Analyses of the corroding iron surface 32 2.
    [Show full text]
  • Genome Sequence and Description of Desnuesiella Massiliensis Gen. Nov., Sp. Nov. a New Member of Family Clostridiaceae
    TAXONOGENOMICS: GENOME OF A NEW ORGANISM Genome sequence and description of Desnuesiella massiliensis gen. nov., sp. nov. a new member of family Clostridiaceae L. Hadjadj1, M. Tidjani Alou1, C. Sokhna2, J.-C. Lagier1, D. Raoult1,3 and J.-M. Rolain1 1) Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UMR CNRS, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France, 2) Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63, CNRS7278, IRD198, InsermU1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, Marseille, France and Dakar, Senegal and 3) Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia Abstract Desnuesiella massiliensis, strain MT10T gen. nov., sp. nov. is a newly proposed genus within the family Clostridiaceae, isolated from the digestive microbiota of a child suffering from kwashiorkor. Desnuesiella massiliensis is a facultatively anaerobic, Gram-positive rod. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 5 503 196-bp long genome (one chromosome but no plasmid) contains 5227 protein-coding and 81 RNA genes, including 14 rRNA genes. New Microbes and New Infections © 2016 The Authors. Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases. Keywords: Culturomics, Desnuesiella massiliensis, genome, kwashiorkor, taxono-genomics Original Submission: 4 February 2016; Revised Submission: 12 March 2016; Accepted: 14 March 2016 Article published online: 19 March 2016 characterization has been demonstrated as a useful approach Corresponding author: J.-M. Rolain, Unité de recherche sur les for the description of new bacterial taxa [2–5].
    [Show full text]