Hybrid Transactional/Analytical Processing: a Survey

Total Page:16

File Type:pdf, Size:1020Kb

Hybrid Transactional/Analytical Processing: a Survey Hybrid Transactional/Analytical Processing: A Survey Fatma Özcan Yuanyuan Tian Pınar Tözün IBM Resarch - Almaden IBM Research - Almaden IBM Research - Almaden [email protected] [email protected] [email protected] ABSTRACT To understand HTAP, we first need to look into OLTP The popularity of large-scale real-time analytics applications and OLAP systems and how they progressed over the years. (real-time inventory/pricing, recommendations from mobile Relational databases have been used for both transaction apps, fraud detection, risk analysis, IoT, etc.) keeps ris- processing as well as analytics. However, OLTP and OLAP ing. These applications require distributed data manage- systems have very different characteristics. OLTP systems ment systems that can handle fast concurrent transactions are identified by their individual record insert/delete/up- (OLTP) and analytics on the recent data. Some of them date statements, as well as point queries that benefit from even need running analytical queries (OLAP) as part of indexes. One cannot think about OLTP systems without transactions. Efficient processing of individual transactional indexing support. OLAP systems, on the other hand, are and analytical requests, however, leads to different optimiza- updated in batches and usually require scans of the tables. tions and architectural decisions while building a data man- Batch insertion into OLAP systems are an artifact of ETL agement system. (extract transform load) systems that consolidate and trans- For the kind of data processing that requires both ana- form transactional data from OLTP systems into an OLAP lytics and transactions, Gartner recently coined the term environment for analysis. Hybrid Transactional/Analytical Processing (HTAP). Many After the seminal paper of Stonebraker [34] arguing for HTAP solutions are emerging both from the industry as well multiple specialized systems, the database field has seen an as academia that target these new applications. While some influx of specialized column-oriented OLAP systems, such as of these are single system solutions, others are a looser cou- BLU[30], Vertica [23], ParAccel, GreenPlumDB, Vectorvise, pling of OLTP databases or NoSQL systems with analytical as well as many in-memory OLTP systems, including VoltDB[35], big data platforms, like Spark. The goal of this tutorial is Hekaton [13], MemSQL [24] among others. The main driver to 1-) quickly review the historical progression of OLTP and for this re-surgency in database engines is the advances in OLAP systems, 2-) discuss the driving factors for HTAP, modern hardware. This second generation of OLAP and and finally 3-) provide a deep technical analysis of existing OLTP systems take better advantage of multi-core, various and emerging HTAP solutions, detailing their key architec- levels of memory caches, and large memories. tural differences and trade-offs. At the same time, the last decade seen an explosion of many big data technologies, driven by new generation appli- cations. NoSQL or key-value stores, such as Voldemort[32], 1. INTRODUCTION Cassandra[8], RocksDB [31], offer fast inserts and lookups, In this tutorial, we plan to survey existing and emerging and very high scale out, but lack in their query capabilities, HTAP (Hybrid Transactions and Analytics Processing) so- and offer only loose transactional guarantees (see Mohan's lutions. HTAP is a term created by Gartner to describe tutorial[25]). There have been also many SQL-on-Hadoop systems that can support both OLTP (On-line transaction [10] offerings, including Hive [36], Big SQL [15], Impala [20], processing) as well as OLAP (on-line analytics processing) and Spark SQL[3], that provide analytics capabilities over within a single transaction. However, the term HTAP is large data sets, focusing on OLAP queries only, and lacking currently used more broadly, even for solutions that sup- transaction support. Although all these systems support port insertions (not necessarily ACID transactions) as well queries over text and CSV files, their focus have been on as OLAP queries. Some of these systems have the ability to columnar storage formats, like ORCFile[27], and Parquet run analytical queries over the very recent data, while others need some delay before the queries see the latest data. [1]. Recent years have seen the need for more real-time ana- lytics. In addition, mobile and Internet of Things have given Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed rise to a new generation of applications that are character- for profit or commercial advantage and that copies bear this notice and the full cita- ized by heavy ingest rates, i.e. they produce large amounts tion on the first page. Copyrights for components of this work owned by others than of data in a short time, as well as their need for more real- ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re- time analysis. Enterprises are pushing for more real-time publish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]. analysis of their data to drive competitive advantage, and SIGMOD ’17, May 14–19, 2017, Chicago, IL, USA. as such they need the ability to run analytics on their oper- c 2017 ACM. ISBN 978-1-4503-4197-4/17/05. $15.00 ational data as soon as possible. DOI: http://dx.doi.org/sigt013 With these developments, there is now a lot of interest, data organizations for OLTP and OLAP workloads, respec- and research focus on providing HTAP solutions over big tively. data sets. In this tutorial, we plan to provide a quick histor- On the other hand, from the beginning, HyPer [19] was ical perspective into the progression of different technologies designed to support both fast transactions and analytics us- and discuss the current set of HTAP solutions. We will ex- ing one engine. Even though, initially it used row-wise pro- amine the different architectural aspects of the current so- cessing of data for both OLTP and OLAP, today it also lutions, identifying their strengths and weaknesses. We will provides the option for choosing a columnar format to be categorize existing systems along many technological dimen- able to run the analytical requests more efficiently. sions, and provide deep dives into a few representative sys- Finally, the recent academic project Pelaton [28] aims to tems. Finally, we will discuss existing research challenges to build an autonomous in-memory HTAP system. It provides realize true HTAP, where a single transaction can contain adaptive data organization [4], which changes the data for- both insert/update/delete statements, as well as complex mat at run-time based on the type of requests. OLAP queries. All these systems require converting the data between row and columnar formats for transactions and analytics. Due 2. HTAP SOLUTIONS: DESIGN OPTIONS to these conversions, the latest committed data might not HTAP solutions today follow a variety of design practices. be available to the analytical queries right away for these This part of the tutorial goes over them to highlight their types of systems. main trade-offs while giving examples from industrial offer- ings and academic solutions. 2.1.2 Same Data Organization for both OLTP and One of the major design decisions HTAP systems have OLAP to make is whether or not to use the same engine for both H2TAP [2] is an academic project that aims to build an OLTP and OLAP requests. HTAP system focusing mainly on the hardware utilization of a single node when running on heterogeneous hardware. 2.1 Single System for OLTP and OLAP It falls under this category since the system is designed as a The traditional relational databases (e.g., DB2, Oracle, row-store. Microsoft SQL Server) have the ability to support OLTP and Among the SQL-on-Hadoop systems, there has also been OLAP in one engine using single type of data organization HTAP solutions that extend existing OLAP systems with (mainly row-stores). However, they are not very efficient for the ability to update data. Hive, since version 0.13, has in- either of these workloads. troduced the transaction support (insert, update, and delete) Therefore, following the one size doesn't fit all rule [34], at the row level [18] for ORCFile, their columnar data for- the past decade has seen the rise of specialized engines for mat. However, the primary use cases are for updating di- OLTP and OLAP exploiting the advances in modern hard- mension tables and streaming data ingest. The integration ware (larger main-memory, multicores, etc.). Various ven- of Impala [20] with the storage manager Kudu [21], also dors and academic groups have built in-memory optimized allows the SQL-on-Hadoop engine to handle updates and row-stores (e.g., VoltDB [35], Hekaton [13], MemSQL [24], deletes. The same Kudu storage is also used for running Silo [37], ...) and column-stores (e.g., MonetDB [7], Ver- analytical queries. tica [23], BLU [30], SAP HANA [14], ...) specialized for Since these systems do not require conversion from one transactional and analytical processing, respectively. These data organization to another in order to perform transac- systems departed from traditional code-bases of relational tional and analytical requests, the OLAP queries can read databases, and built leaner engines from scratch to also avoid the latest committed data. However, they might face the the large instruction footprint of the traditional engines. same shortcomings the traditional relational engines faced. However, many of the systems optimized for one type of They do not have a data organization that is optimal for processing, later started adding support for the other type in both types of processing.
Recommended publications
  • Java Linksammlung
    JAVA LINKSAMMLUNG LerneProgrammieren.de - 2020 Java einfach lernen (klicke hier) JAVA LINKSAMMLUNG INHALTSVERZEICHNIS Build ........................................................................................................................................................... 4 Caching ....................................................................................................................................................... 4 CLI ............................................................................................................................................................... 4 Cluster-Verwaltung .................................................................................................................................... 5 Code-Analyse ............................................................................................................................................. 5 Code-Generators ........................................................................................................................................ 5 Compiler ..................................................................................................................................................... 6 Konfiguration ............................................................................................................................................. 6 CSV ............................................................................................................................................................. 6 Daten-Strukturen
    [Show full text]
  • Oracle Metadata Management V12.2.1.3.0 New Features Overview
    An Oracle White Paper October 12 th , 2018 Oracle Metadata Management v12.2.1.3.0 New Features Overview Oracle Metadata Management version 12.2.1.3.0 – October 12 th , 2018 New Features Overview Disclaimer This document is for informational purposes. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described in this document remains at the sole discretion of Oracle. This document in any form, software or printed matter, contains proprietary information that is the exclusive property of Oracle. This document and information contained herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part of your license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates. 1 Oracle Metadata Management version 12.2.1.3.0 – October 12 th , 2018 New Features Overview Table of Contents Executive Overview ............................................................................ 3 Oracle Metadata Management 12.2.1.3.0 .......................................... 4 METADATA MANAGER VS METADATA EXPLORER UI .............. 4 METADATA HOME PAGES ........................................................... 5 METADATA QUICK ACCESS ........................................................ 6 METADATA REPORTING .............................................................
    [Show full text]
  • Oracle Big Data SQL Release 4.1
    ORACLE DATA SHEET Oracle Big Data SQL Release 4.1 The unprecedented explosion in data that can be made useful to enterprises – from the Internet of Things, to the social streams of global customer bases – has created a tremendous opportunity for businesses. However, with the enormous possibilities of Big Data, there can also be enormous complexity. Integrating Big Data systems to leverage these vast new data resources with existing information estates can be challenging. Valuable data may be stored in a system separate from where the majority of business-critical operations take place. Moreover, accessing this data may require significant investment in re-developing code for analysis and reporting - delaying access to data as well as reducing the ultimate value of the data to the business. Oracle Big Data SQL enables organizations to immediately analyze data across Apache Hadoop, Apache Kafka, NoSQL, object stores and Oracle Database leveraging their existing SQL skills, security policies and applications with extreme performance. From simplifying data science efforts to unlocking data lakes, Big Data SQL makes the benefits of Big Data available to the largest group of end users possible. KEY FEATURES Rich SQL Processing on All Data • Seamlessly query data across Oracle Oracle Big Data SQL is a data virtualization innovation from Oracle. It is a new Database, Hadoop, object stores, architecture and solution for SQL and other data APIs (such as REST and Node.js) on Kafka and NoSQL sources disparate data sets, seamlessly integrating data in Apache Hadoop, Apache Kafka, • Runs all Oracle SQL queries without modification – preserving application object stores and a number of NoSQL databases with data stored in Oracle Database.
    [Show full text]
  • Hortonworks Data Platform Apache Spark Component Guide (December 15, 2017)
    Hortonworks Data Platform Apache Spark Component Guide (December 15, 2017) docs.hortonworks.com Hortonworks Data Platform December 15, 2017 Hortonworks Data Platform: Apache Spark Component Guide Copyright © 2012-2017 Hortonworks, Inc. Some rights reserved. The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open source platform for storing, processing and analyzing large volumes of data. It is designed to deal with data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, ZooKeeper and Ambari. Hortonworks is the major contributor of code and patches to many of these projects. These projects have been integrated and tested as part of the Hortonworks Data Platform release process and installation and configuration tools have also been included. Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and completely open source. We sell only expert technical support, training and partner-enablement services. All of our technology is, and will remain, free and open source. Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For more information on Hortonworks services, please visit either the Support or Training page. Feel free to contact us directly to discuss your specific needs. Except where otherwise noted, this document is licensed under Creative Commons Attribution ShareAlike 4.0 License. http://creativecommons.org/licenses/by-sa/4.0/legalcode ii Hortonworks Data Platform December 15, 2017 Table of Contents 1.
    [Show full text]
  • Schema Evolution in Hive Csv
    Schema Evolution In Hive Csv Which Orazio immingled so anecdotally that Joey take-over her seedcake? Is Antin flowerless when Werner hypersensitise apodictically? Resolutely uraemia, Burton recalesced lance and prying frontons. In either format are informational and the file to collect important consideration to persist our introduction above image file processing with hadoop for evolution in Capabilities than that? Data while some standardized form scale as CSV TSV XML or JSON files. Have involved at each of spark sql engine for data in with malformed types are informational and to finish rendering before invoking file with. Spark csv files just storing data that this object and decision intelligence analytics queries to csv in bulk into another tab of lot of different in. Next button to choose to write that comes at query returns all he has very useful tutorial is coalescing around parquet evolution in hive schema evolution and other storage costs, query across partitions? Bulk load into an array types across some schema changes, which the views. Encrypt data come from the above schema evolution? This article helpful, only an error is more specialized for apis anywhere with the binary encoded in better than a dict where. Provide an evolution in column to manage data types and writing, analysts will be read json, which means the. This includes schema evolution partition evolution and table version rollback all. Apache hive to simplify your google cloud storage, the size of data cleansing, in schema hive csv files cannot be able to. Irs prior to create hive tables when querying using this guide for schema evolution in hive.
    [Show full text]
  • Benchmarking Distributed Data Warehouse Solutions for Storing Genomic Variant Information
    Research Collection Journal Article Benchmarking distributed data warehouse solutions for storing genomic variant information Author(s): Wiewiórka, Marek S.; Wysakowicz, David P.; Okoniewski, Michał J.; Gambin, Tomasz Publication Date: 2017-07-11 Permanent Link: https://doi.org/10.3929/ethz-b-000237893 Originally published in: Database 2017, http://doi.org/10.1093/database/bax049 Rights / License: Creative Commons Attribution 4.0 International This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Database, 2017, 1–16 doi: 10.1093/database/bax049 Original article Original article Benchmarking distributed data warehouse solutions for storing genomic variant information Marek S. Wiewiorka 1, Dawid P. Wysakowicz1, Michał J. Okoniewski2 and Tomasz Gambin1,3,* 1Institute of Computer Science, Warsaw University of Technology, Nowowiejska 15/19, Warsaw 00-665, Poland, 2Scientific IT Services, ETH Zurich, Weinbergstrasse 11, Zurich 8092, Switzerland and 3Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17a, Warsaw 01-211, Poland *Corresponding author: Tel.: þ48693175804; Fax: þ48222346091; Email: [email protected] Citation details: Wiewiorka,M.S., Wysakowicz,D.P., Okoniewski,M.J. et al. Benchmarking distributed data warehouse so- lutions for storing genomic variant information. Database (2017) Vol. 2017: article ID bax049; doi:10.1093/database/bax049 Received 15 September 2016; Revised 4 April 2017; Accepted 29 May 2017 Abstract Genomic-based personalized medicine encompasses storing, analysing and interpreting genomic variants as its central issues. At a time when thousands of patientss sequenced exomes and genomes are becoming available, there is a growing need for efficient data- base storage and querying.
    [Show full text]
  • Hortonworks Data Platform Release Notes (October 30, 2017)
    Hortonworks Data Platform Release Notes (October 30, 2017) docs.cloudera.com Hortonworks Data Platform October 30, 2017 Hortonworks Data Platform: Release Notes Copyright © 2012-2017 Hortonworks, Inc. Some rights reserved. The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open source platform for storing, processing and analyzing large volumes of data. It is designed to deal with data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks Data Platform consists of the essential set of Apache Software Foundation projects that focus on the storage and processing of Big Data, along with operations, security, and governance for the resulting system. This includes Apache Hadoop -- which includes MapReduce, Hadoop Distributed File System (HDFS), and Yet Another Resource Negotiator (YARN) -- along with Ambari, Falcon, Flume, HBase, Hive, Kafka, Knox, Oozie, Phoenix, Pig, Ranger, Slider, Spark, Sqoop, Storm, Tez, and ZooKeeper. Hortonworks is the major contributor of code and patches to many of these projects. These projects have been integrated and tested as part of the Hortonworks Data Platform release process and installation and configuration tools have also been included. Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and completely open source. We sell only expert technical support, training and partner-enablement services. All of our technology is, and will remain, free and open source. Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For more information on Hortonworks services, please visit either the Support or Training page.
    [Show full text]
  • Storage and Ingestion Systems in Support of Stream Processing
    Storage and Ingestion Systems in Support of Stream Processing: A Survey Ovidiu-Cristian Marcu, Alexandru Costan, Gabriel Antoniu, María Pérez-Hernández, Radu Tudoran, Stefano Bortoli, Bogdan Nicolae To cite this version: Ovidiu-Cristian Marcu, Alexandru Costan, Gabriel Antoniu, María Pérez-Hernández, Radu Tudoran, et al.. Storage and Ingestion Systems in Support of Stream Processing: A Survey. [Technical Report] RT-0501, INRIA Rennes - Bretagne Atlantique and University of Rennes 1, France. 2018, pp.1-33. hal-01939280v2 HAL Id: hal-01939280 https://hal.inria.fr/hal-01939280v2 Submitted on 14 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Storage and Ingestion Systems in Support of Stream Processing: A Survey Ovidiu-Cristian Marcu, Alexandru Costan, Gabriel Antoniu, María S. Pérez-Hernández, Radu Tudoran, Stefano Bortoli, Bogdan Nicolae TECHNICAL REPORT N° 0501 November 2018 Project-Team KerData ISSN 0249-0803 ISRN INRIA/RT--0501--FR+ENG Storage and Ingestion Systems in Support of Stream Processing: A Survey Ovidiu-Cristian Marcu∗, Alexandru
    [Show full text]
  • Enabling Geospatial in Big Data Lakes and Databases with Locationtech Geomesa
    Enabling geospatial in big data lakes and databases with LocationTech GeoMesa ApacheCon@Home 2020 James Hughes James Hughes ● CCRi’s Director of Open Source Programs ● Working in geospatial software on the JVM for the last 8 years ● GeoMesa core committer / product owner ● SFCurve project lead ● JTS committer ● Contributor to GeoTools and GeoServer ● What type? Big Geospatial Data ● What volume? Problem Statement for today: Problem: How do we handle “big” geospatial data? Problem Statement for today: Problem: How do we handle “big” geospatial data? First refinement: What type of data do are we interested in? Vector Raster Point Cloud Problem Statement for today: Problem: How do we handle “big” geospatial data? First refinement: What type of data do are we interested in? Vector Raster Point Cloud Problem Statement for today: Problem: How do we handle “big” vector geospatial data? Second refinement: How much data is “big”? What is an example? GDELT: Global Database of Event, Language, and Tone “The GDELT Event Database records over 300 categories of physical activities around the world, from riots and protests to peace appeals and diplomatic exchanges, georeferenced to the city or mountaintop, across the entire planet dating back to January 1, 1979 and updated every 15 minutes.” ~225-250 million records Problem Statement for today: Problem: How do we handle “big” vector geospatial data? Second refinement: How much data is “big”? What is an example? Open Street Map: OpenStreetMap is a collaborative project to create a free editable map of the world. The geodata underlying the map is considered the primary output of the project.
    [Show full text]
  • An Introduction to Big Data Technologies
    University of the Aegean Information and Communication Systems Engineering Intelligent Information Systems Thesis An Introduction to Big Data Technologies George Peppas supervised by Dr. Manolis Maragkoudakis October 18, 2016 Contents 1 Introduction 3 1.1 Why Big Data . .3 1.2 Big Data Applications Today . .9 1.2.1 Bioinformatics . .9 1.2.2 Finance . 10 1.2.3 Commerce . 12 2 Related work 15 2.1 Big Data Programming Models . 15 2.1.1 In-Memory Database Systems . 15 2.1.2 MapReduce Systems . 16 2.1.3 Bulk Synchronous Parallel (BSP) Systems . 22 2.1.4 Big Data and Transactional Systems . 22 2.2 Big Data Platforms . 23 2.2.1 Hortonwork . 23 2.2.2 Cloudera . 24 2.3 Miscellaneous technologies stack . 24 2.3.1 Mahout . 24 2.3.2 Apache Spark and MLlib . 27 2.3.3 Apache ORC . 29 2.3.4 Hadoop Distributed File System . 29 2.3.5 Hive . 33 2.3.6 Pig . 36 2.3.7 HBase . 37 2.3.8 Flume . 38 2.3.9 Oozie . 39 2.3.10 Ambari . 39 2.3.11 Avro . 40 2.3.12 Sqoop . 41 2.3.13 HCatalog . 43 2.3.14 BigTop . 47 2.4 Data Mining and Machine Learning introduction . 47 2.4.1 Data Mining . 48 2.4.2 Machine Learning . 49 2.5 Data Mining and Machine Learning Tools . 51 2.5.1 WEKA . 51 2.5.2 SciKit-Learn . 52 2.5.3 RapidMiner . 53 2.5.4 Spark MLlib . 53 2.5.5 H2O Flow .
    [Show full text]
  • Spark Guide Mar 1, 2016
    docs.hortonworks.com Spark Guide Mar 1, 2016 Spark Guide: Hortonworks Data Platform Copyright © 2012-2016 Hortonworks, Inc. Some rights reserved. The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open source platform for storing, processing and analyzing large volumes of data. It is designed to deal with data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, ZooKeeper and Ambari. Hortonworks is the major contributor of code and patches to many of these projects. These projects have been integrated and tested as part of the Hortonworks Data Platform release process and installation and configuration tools have also been included. Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and completely open source. We sell only expert technical support, training and partner-enablement services. All of our technology is, and will remain, free and open source. Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For more information on Hortonworks services, please visit either the Support or Training page. Feel free to contact us directly to discuss your specific needs. Except where otherwise noted, this document is licensed under Creative Commons Attribution ShareAlike 3.0 License. http://creativecommons.org/licenses/by-sa/3.0/legalcode ii Spark Guide Mar 1, 2016 Table of Contents 1.
    [Show full text]
  • Release Notes Date Published: 2020-10-13 Date Modified
    Cloudera Runtime 7.1.4 Release Notes Date published: 2020-10-13 Date modified: https://docs.cloudera.com/ Legal Notice © Cloudera Inc. 2021. All rights reserved. The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property rights. No license under copyright or any other intellectual property right is granted herein. Copyright information for Cloudera software may be found within the documentation accompanying each component in a particular release. Cloudera software includes software from various open source or other third party projects, and may be released under the Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms. Other software included may be released under the terms of alternative open source licenses. Please review the license and notice files accompanying the software for additional licensing information. Please visit the Cloudera software product page for more information on Cloudera software. For more information on Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your specific needs. Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor liability arising from the use of products, except as expressly agreed to in writing by Cloudera. Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered trademarks in the United States and other countries. All other trademarks are the property of their respective owners. Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA, CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH.
    [Show full text]