Hortonworks Data Platform Release Notes (October 30, 2017)

Total Page:16

File Type:pdf, Size:1020Kb

Hortonworks Data Platform Release Notes (October 30, 2017) Hortonworks Data Platform Release Notes (October 30, 2017) docs.cloudera.com Hortonworks Data Platform October 30, 2017 Hortonworks Data Platform: Release Notes Copyright © 2012-2017 Hortonworks, Inc. Some rights reserved. The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open source platform for storing, processing and analyzing large volumes of data. It is designed to deal with data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks Data Platform consists of the essential set of Apache Software Foundation projects that focus on the storage and processing of Big Data, along with operations, security, and governance for the resulting system. This includes Apache Hadoop -- which includes MapReduce, Hadoop Distributed File System (HDFS), and Yet Another Resource Negotiator (YARN) -- along with Ambari, Falcon, Flume, HBase, Hive, Kafka, Knox, Oozie, Phoenix, Pig, Ranger, Slider, Spark, Sqoop, Storm, Tez, and ZooKeeper. Hortonworks is the major contributor of code and patches to many of these projects. These projects have been integrated and tested as part of the Hortonworks Data Platform release process and installation and configuration tools have also been included. Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and completely open source. We sell only expert technical support, training and partner-enablement services. All of our technology is, and will remain, free and open source. Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For more information on Hortonworks services, please visit either the Support or Training page. Feel free to contact us directly to discuss your specific needs. Except where otherwise noted, this document is licensed under Creative Commons Attribution ShareAlike 4.0 License. http://creativecommons.org/licenses/by-sa/4.0/legalcode ii Hortonworks Data Platform October 30, 2017 Table of Contents 1. HDP 2.6.3 Release Notes .............................................................................................. 1 1.1. Component Versions ......................................................................................... 1 1.2. New Features .................................................................................................... 2 1.3. Upgrading from IOP 4.2.5 to HDP 2.6.3 ............................................................ 3 1.3.1. Guidelines for Migrating from IOP to HDP .............................................. 3 1.3.2. Component Differences between HDP and IOP ...................................... 3 1.3.3. Fixed Issues for IOP ................................................................................ 7 1.3.4. Known Issues for IOP ............................................................................. 7 1.4. Deprecation Notices .......................................................................................... 8 1.4.1. Terminology ........................................................................................... 8 1.4.2. Deprecated Components and Product Capabilities .................................. 9 1.5. Unsupported Features ....................................................................................... 9 1.5.1. Technical Preview Features ................................................................... 10 1.5.2. Community Features ............................................................................. 11 1.6. Upgrading to HDP 2.6.3 .................................................................................. 12 1.6.1. Before you begin .................................................................................. 13 1.6.2. Upgrade options .................................................................................. 13 1.7. Behavioral Changes ......................................................................................... 13 1.8. Apache Patch Information .............................................................................. 16 1.8.1. Hadoop ................................................................................................ 16 1.8.2. Accumulo ........................................................................................... 210 1.8.3. Atlas ................................................................................................... 210 1.8.4. DataFu ............................................................................................... 220 1.8.5. Falcon ................................................................................................. 220 1.8.6. Flume ................................................................................................. 221 1.8.7. HBase ................................................................................................. 224 1.8.8. Hive .................................................................................................... 233 1.8.9. Kafka ................................................................................................. 257 1.8.10. Knox ................................................................................................. 258 1.8.11. Mahout ............................................................................................ 259 1.8.12. Oozie ................................................................................................ 260 1.8.13. Phoenix ............................................................................................ 266 1.8.14. Pig .................................................................................................... 273 1.8.15. Ranger .............................................................................................. 273 1.8.16. Slider ................................................................................................ 279 1.8.17. Spark ................................................................................................ 279 1.8.18. Sqoop ............................................................................................... 293 1.8.19. Storm ............................................................................................... 296 1.8.20. Tez ................................................................................................... 298 1.8.21. Zeppelin ........................................................................................... 301 1.8.22. ZooKeeper ........................................................................................ 302 1.9. Fixed Common Vulnerabilities and Exposures ................................................. 302 1.9.1. CVE-2017-3150 .................................................................................... 302 1.9.2. CVE-2017-3151 .................................................................................... 303 1.9.3. CVE-2017-3152 .................................................................................... 303 1.9.4. CVE-2017-3153 .................................................................................... 303 1.9.5. CVE-2017-3154 .................................................................................... 303 1.9.6. CVE-2017-3155 .................................................................................... 304 iii Hortonworks Data Platform October 30, 2017 1.9.7. CVE-2017-5646 .................................................................................... 304 1.9.8. CVE-2017-7676 .................................................................................... 304 1.9.9. CVE-2017-7677 .................................................................................... 305 1.9.10. CVE-2017-9799 .................................................................................. 305 1.9.11. CVE-2016-4970 .................................................................................. 305 1.9.12. CVE-2016-8746 .................................................................................. 305 1.9.13. CVE-2016-8751 .................................................................................. 306 1.9.14. CVE-2016-8752 .................................................................................. 306 1.10. Fixed Issues ................................................................................................. 306 1.11. Known Issues .............................................................................................. 323 1.12. Documentation Errata ................................................................................. 330 1.12.1. RangerUI: Escape of policy condition text entered in the policy form ............................................................................................................. 330 1.12.2. Workaround for Ranger service check failure .................................... 331 iv Hortonworks Data Platform October 30, 2017 List of Tables 1.1. Technical Previews ................................................................................................... 10 1.2. Community Features ............................................................................................... 11 1.3. Behavioral Changes ................................................................................................. 13 v Hortonworks Data Platform October 30, 2017 1. HDP 2.6.3 Release Notes This document provides you with the latest
Recommended publications
  • Java Linksammlung
    JAVA LINKSAMMLUNG LerneProgrammieren.de - 2020 Java einfach lernen (klicke hier) JAVA LINKSAMMLUNG INHALTSVERZEICHNIS Build ........................................................................................................................................................... 4 Caching ....................................................................................................................................................... 4 CLI ............................................................................................................................................................... 4 Cluster-Verwaltung .................................................................................................................................... 5 Code-Analyse ............................................................................................................................................. 5 Code-Generators ........................................................................................................................................ 5 Compiler ..................................................................................................................................................... 6 Konfiguration ............................................................................................................................................. 6 CSV ............................................................................................................................................................. 6 Daten-Strukturen
    [Show full text]
  • Oracle Metadata Management V12.2.1.3.0 New Features Overview
    An Oracle White Paper October 12 th , 2018 Oracle Metadata Management v12.2.1.3.0 New Features Overview Oracle Metadata Management version 12.2.1.3.0 – October 12 th , 2018 New Features Overview Disclaimer This document is for informational purposes. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described in this document remains at the sole discretion of Oracle. This document in any form, software or printed matter, contains proprietary information that is the exclusive property of Oracle. This document and information contained herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part of your license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates. 1 Oracle Metadata Management version 12.2.1.3.0 – October 12 th , 2018 New Features Overview Table of Contents Executive Overview ............................................................................ 3 Oracle Metadata Management 12.2.1.3.0 .......................................... 4 METADATA MANAGER VS METADATA EXPLORER UI .............. 4 METADATA HOME PAGES ........................................................... 5 METADATA QUICK ACCESS ........................................................ 6 METADATA REPORTING .............................................................
    [Show full text]
  • Apache Oozie Apache Oozie Get a Solid Grounding in Apache Oozie, the Workflow Scheduler System for “In This Book, the Managing Hadoop Jobs
    Apache Oozie Apache Oozie Apache Get a solid grounding in Apache Oozie, the workflow scheduler system for “In this book, the managing Hadoop jobs. In this hands-on guide, two experienced Hadoop authors have striven for practitioners walk you through the intricacies of this powerful and flexible platform, with numerous examples and real-world use cases. practicality, focusing on Once you set up your Oozie server, you’ll dive into techniques for writing the concepts, principles, and coordinating workflows, and learn how to write complex data pipelines. tips, and tricks that Advanced topics show you how to handle shared libraries in Oozie, as well developers need to get as how to implement and manage Oozie’s security capabilities. the most out of Oozie. ■ Install and confgure an Oozie server, and get an overview of A volume such as this is basic concepts long overdue. Developers ■ Journey through the world of writing and confguring will get a lot more out of workfows the Hadoop ecosystem ■ Learn how the Oozie coordinator schedules and executes by reading it.” workfows based on triggers —Raymie Stata ■ Understand how Oozie manages data dependencies CEO, Altiscale ■ Use Oozie bundles to package several coordinator apps into Oozie simplifies a data pipeline “ the managing and ■ Learn about security features and shared library management automating of complex ■ Implement custom extensions and write your own EL functions and actions Hadoop workloads. ■ Debug workfows and manage Oozie’s operational details This greatly benefits Apache both developers and Mohammad Kamrul Islam works as a Staff Software Engineer in the data operators alike.” engineering team at Uber.
    [Show full text]
  • Unravel Data Systems Version 4.5
    UNRAVEL DATA SYSTEMS VERSION 4.5 Component name Component version name License names jQuery 1.8.2 MIT License Apache Tomcat 5.5.23 Apache License 2.0 Tachyon Project POM 0.8.2 Apache License 2.0 Apache Directory LDAP API Model 1.0.0-M20 Apache License 2.0 apache/incubator-heron 0.16.5.1 Apache License 2.0 Maven Plugin API 3.0.4 Apache License 2.0 ApacheDS Authentication Interceptor 2.0.0-M15 Apache License 2.0 Apache Directory LDAP API Extras ACI 1.0.0-M20 Apache License 2.0 Apache HttpComponents Core 4.3.3 Apache License 2.0 Spark Project Tags 2.0.0-preview Apache License 2.0 Curator Testing 3.3.0 Apache License 2.0 Apache HttpComponents Core 4.4.5 Apache License 2.0 Apache Commons Daemon 1.0.15 Apache License 2.0 classworlds 2.4 Apache License 2.0 abego TreeLayout Core 1.0.1 BSD 3-clause "New" or "Revised" License jackson-core 2.8.6 Apache License 2.0 Lucene Join 6.6.1 Apache License 2.0 Apache Commons CLI 1.3-cloudera-pre-r1439998 Apache License 2.0 hive-apache 0.5 Apache License 2.0 scala-parser-combinators 1.0.4 BSD 3-clause "New" or "Revised" License com.springsource.javax.xml.bind 2.1.7 Common Development and Distribution License 1.0 SnakeYAML 1.15 Apache License 2.0 JUnit 4.12 Common Public License 1.0 ApacheDS Protocol Kerberos 2.0.0-M12 Apache License 2.0 Apache Groovy 2.4.6 Apache License 2.0 JGraphT - Core 1.2.0 (GNU Lesser General Public License v2.1 or later AND Eclipse Public License 1.0) chill-java 0.5.0 Apache License 2.0 Apache Commons Logging 1.2 Apache License 2.0 OpenCensus 0.12.3 Apache License 2.0 ApacheDS Protocol
    [Show full text]
  • Persisting Big-Data the Nosql Landscape
    Information Systems 63 (2017) 1–23 Contents lists available at ScienceDirect Information Systems journal homepage: www.elsevier.com/locate/infosys Persisting big-data: The NoSQL landscape Alejandro Corbellini n, Cristian Mateos, Alejandro Zunino, Daniela Godoy, Silvia Schiaffino ISISTAN (CONICET-UNCPBA) Research Institute1, UNICEN University, Campus Universitario, Tandil B7001BBO, Argentina article info abstract Article history: The growing popularity of massively accessed Web applications that store and analyze Received 11 March 2014 large amounts of data, being Facebook, Twitter and Google Search some prominent Accepted 21 July 2016 examples of such applications, have posed new requirements that greatly challenge tra- Recommended by: G. Vossen ditional RDBMS. In response to this reality, a new way of creating and manipulating data Available online 30 July 2016 stores, known as NoSQL databases, has arisen. This paper reviews implementations of Keywords: NoSQL databases in order to provide an understanding of current tools and their uses. NoSQL databases First, NoSQL databases are compared with traditional RDBMS and important concepts are Relational databases explained. Only databases allowing to persist data and distribute them along different Distributed systems computing nodes are within the scope of this review. Moreover, NoSQL databases are Database persistence divided into different types: Key-Value, Wide-Column, Document-oriented and Graph- Database distribution Big data oriented. In each case, a comparison of available databases
    [Show full text]
  • The Dzone Guide to Volume Ii
    THE D ZONE GUIDE TO MODERN JAVA VOLUME II BROUGHT TO YOU IN PARTNERSHIP WITH DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA Dear Reader, TABLE OF CONTENTS 3 EXECUTIVE SUMMARY Why isn’t Java dead after more than two decades? A few guesses: Java is (still) uniquely portable, readable to 4 KEY RESEARCH FINDINGS fresh eyes, constantly improving its automatic memory management, provides good full-stack support for high- 10 THE JAVA 8 API DESIGN PRINCIPLES load web services, and enjoys a diverse and enthusiastic BY PER MINBORG community, mature toolchain, and vigorous dependency 13 PROJECT JIGSAW IS COMING ecosystem. BY NICOLAI PARLOG Java is growing with us, and we’re growing with Java. Java 18 REACTIVE MICROSERVICES: DRIVING APPLICATION 8 just expanded our programming paradigm horizons (add MODERNIZATION EFFORTS Church and Curry to Kay and Gosling) and we’re still learning BY MARKUS EISELE how to mix functional and object-oriented code. Early next 21 CHECKLIST: 7 HABITS OF SUPER PRODUCTIVE JAVA DEVELOPERS year Java 9 will add a wealth of bigger-picture upgrades. 22 THE ELEMENTS OF MODERN JAVA STYLE But Java remains vibrant for many more reasons than the BY MICHAEL TOFINETTI robustness of the language and the comprehensiveness of the platform. JVM languages keep multiplying (Kotlin went 28 12 FACTORS AND BEYOND IN JAVA GA this year!), Android keeps increasing market share, and BY PIETER HUMPHREY AND MARK HECKLER demand for Java developers (measuring by both new job 31 DIVING DEEPER INTO JAVA DEVELOPMENT posting frequency and average salary) remains high. The key to the modernization of Java is not a laundry-list of JSRs, but 34 INFOGRAPHIC: JAVA'S IMPACT ON THE MODERN WORLD rather the energy of the Java developer community at large.
    [Show full text]
  • Return of Organization Exempt from Income
    OMB No. 1545-0047 Return of Organization Exempt From Income Tax Form 990 Under section 501(c), 527, or 4947(a)(1) of the Internal Revenue Code (except black lung benefit trust or private foundation) Open to Public Department of the Treasury Internal Revenue Service The organization may have to use a copy of this return to satisfy state reporting requirements. Inspection A For the 2011 calendar year, or tax year beginning 5/1/2011 , and ending 4/30/2012 B Check if applicable: C Name of organization The Apache Software Foundation D Employer identification number Address change Doing Business As 47-0825376 Name change Number and street (or P.O. box if mail is not delivered to street address) Room/suite E Telephone number Initial return 1901 Munsey Drive (909) 374-9776 Terminated City or town, state or country, and ZIP + 4 Amended return Forest Hill MD 21050-2747 G Gross receipts $ 554,439 Application pending F Name and address of principal officer: H(a) Is this a group return for affiliates? Yes X No Jim Jagielski 1901 Munsey Drive, Forest Hill, MD 21050-2747 H(b) Are all affiliates included? Yes No I Tax-exempt status: X 501(c)(3) 501(c) ( ) (insert no.) 4947(a)(1) or 527 If "No," attach a list. (see instructions) J Website: http://www.apache.org/ H(c) Group exemption number K Form of organization: X Corporation Trust Association Other L Year of formation: 1999 M State of legal domicile: MD Part I Summary 1 Briefly describe the organization's mission or most significant activities: to provide open source software to the public that we sponsor free of charge 2 Check this box if the organization discontinued its operations or disposed of more than 25% of its net assets.
    [Show full text]
  • Oracle Big Data SQL Release 4.1
    ORACLE DATA SHEET Oracle Big Data SQL Release 4.1 The unprecedented explosion in data that can be made useful to enterprises – from the Internet of Things, to the social streams of global customer bases – has created a tremendous opportunity for businesses. However, with the enormous possibilities of Big Data, there can also be enormous complexity. Integrating Big Data systems to leverage these vast new data resources with existing information estates can be challenging. Valuable data may be stored in a system separate from where the majority of business-critical operations take place. Moreover, accessing this data may require significant investment in re-developing code for analysis and reporting - delaying access to data as well as reducing the ultimate value of the data to the business. Oracle Big Data SQL enables organizations to immediately analyze data across Apache Hadoop, Apache Kafka, NoSQL, object stores and Oracle Database leveraging their existing SQL skills, security policies and applications with extreme performance. From simplifying data science efforts to unlocking data lakes, Big Data SQL makes the benefits of Big Data available to the largest group of end users possible. KEY FEATURES Rich SQL Processing on All Data • Seamlessly query data across Oracle Oracle Big Data SQL is a data virtualization innovation from Oracle. It is a new Database, Hadoop, object stores, architecture and solution for SQL and other data APIs (such as REST and Node.js) on Kafka and NoSQL sources disparate data sets, seamlessly integrating data in Apache Hadoop, Apache Kafka, • Runs all Oracle SQL queries without modification – preserving application object stores and a number of NoSQL databases with data stored in Oracle Database.
    [Show full text]
  • Splitting the Load How Separating Compute from Storage Can Transform the Flexibility, Scalability and Maintainability of Big Data Analytics Platforms
    IBM Analytics Engine White paper Splitting the load How separating compute from storage can transform the flexibility, scalability and maintainability of big data analytics platforms 2 Splitting the load Contents Executive summary 2 Executive summary Hadoop is the dominant big data processing system in use today. It is, however, a technology that has been around for 10 3 Challenges of Hadoop design years, and the world of big data has changed dramatically over 4 Limitations of traditional Hadoop clusters that time. 5 How cloud has changed the game 5 Introducing IBM Analytics Engine Hadoop started with a specific focus – a bunch of engineers 6 Overcoming the limitations wanted a way to store and analyze copious amounts of web logs. They knew how to write Java and how to set 7 Exploring the IBM Analytics Engine architecture up infrastructure, and they were hands-on with systems 8 Use cases for IBM Analytics Engine programming. All they really needed was a cost-effective file 10 Benefits of migrating to IBM Analytics Engine system (HDFS) and an execution paradigm (MapReduce)—the 11 Conclusion rest, they could code for themselves. Companies like Google, 11 About the author Facebook and Yahoo built many products and business models using just these two pieces of technology. 11 For more information Today, however, we’re seeing a big shift in the way big data applications are being programmed and deployed in production. Many different user personas, from data scientists and data engineers to business analysts and app developers need access to data. Each of these personas needs to access the data through a different tool and on a different schedule.
    [Show full text]
  • Hybrid Transactional/Analytical Processing: a Survey
    Hybrid Transactional/Analytical Processing: A Survey Fatma Özcan Yuanyuan Tian Pınar Tözün IBM Resarch - Almaden IBM Research - Almaden IBM Research - Almaden [email protected] [email protected] [email protected] ABSTRACT To understand HTAP, we first need to look into OLTP The popularity of large-scale real-time analytics applications and OLAP systems and how they progressed over the years. (real-time inventory/pricing, recommendations from mobile Relational databases have been used for both transaction apps, fraud detection, risk analysis, IoT, etc.) keeps ris- processing as well as analytics. However, OLTP and OLAP ing. These applications require distributed data manage- systems have very different characteristics. OLTP systems ment systems that can handle fast concurrent transactions are identified by their individual record insert/delete/up- (OLTP) and analytics on the recent data. Some of them date statements, as well as point queries that benefit from even need running analytical queries (OLAP) as part of indexes. One cannot think about OLTP systems without transactions. Efficient processing of individual transactional indexing support. OLAP systems, on the other hand, are and analytical requests, however, leads to different optimiza- updated in batches and usually require scans of the tables. tions and architectural decisions while building a data man- Batch insertion into OLAP systems are an artifact of ETL agement system. (extract transform load) systems that consolidate and trans- For the kind of data processing that requires both ana- form transactional data from OLTP systems into an OLAP lytics and transactions, Gartner recently coined the term environment for analysis. Hybrid Transactional/Analytical Processing (HTAP).
    [Show full text]
  • 4.3.0 Third Party License Files
    Third Party Terms Third Party License(s) of Terracotta Version 4.3 THE FOLLOWING THIRD PARTY COMPONENTS MAY BE UTILIZED, EMBEDDED, BUNDLED OR OTHERWISE INCLUDED IN SOME OF THE PRODUCTS ("Product") YOU HAVE LICENSED FROM TERRACOTTA, INC..THESE THIRD PARTY COMPONENTS MAY BE SUBJECT TO ADDITIONAL OR DIFFERENT LICENSE RIGHTS, TERMS AND CONDITIONS AND / OR REQUIRE CERTAIN NOTICES BY THEIR THIRD PARTY LICENSORS. SOFTWARE AG IS OBLIGED TO PASS ANY CURRENT AND FUTURE TERMS OF SUCH LICENSES THROUGH TO ITS LICENSEES. TP Product Name TP Product Version apache-commons-io 2.4 apache-commons-lang 2.5 apache-commons-logging 1.0.3 apache-jakarta-commons-beanutils 1.8.3 apache-jakarta-commons-cli 1.1 apache-jakarta-commons-collections 3.2.1 apache-jakarta-commons-logging 1.1.1 apache-log4j 1.2.17 apache-shiro 1.2.3 apache-xmlbeans 2.4.0 beanshell-project 2.0b4 commons-lang 2.6 fasterxml-jackson-annotations 2.3 gf.aopalliance-repackaged.jar 2.2.0 gf.hk2.api.jar 2.2.0 gf.hk2.locator.jar 2.2.0 Copyright (c) 2015 Software AG, Darmstadt, Germany Third Party License(s) of Terracotta Version 4.3 TP Product Name TP Product Version gf.hk2-utils.jar 2.2.0 gf.javax.annotation-api.jar 1.20 gf.javax.annotation.jar 1.1 gf.javax.inject.jar 2.2.0 gf.javax.jms.jar 1.1 gf.javax.mail.jar 1.4.4 (API 1.4) gf.javax.security.auth.message.jar 1.0 gf.javax.servlet-api.jar 3.0.1 gf.javax.transaction.jar 1.1 gf.javax.ws.rs-api.jar 2.00 gf.jersey-client.jar 2.6.0 gf.jersey-common.jar 2.6.0 gf.jersey-container-servlet-core.jar 2.6.0 gf.jersey-container-servlet.jar 2.6 gf.jersey-guava.jar
    [Show full text]
  • Hortonworks Data Platform Apache Spark Component Guide (December 15, 2017)
    Hortonworks Data Platform Apache Spark Component Guide (December 15, 2017) docs.hortonworks.com Hortonworks Data Platform December 15, 2017 Hortonworks Data Platform: Apache Spark Component Guide Copyright © 2012-2017 Hortonworks, Inc. Some rights reserved. The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open source platform for storing, processing and analyzing large volumes of data. It is designed to deal with data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, ZooKeeper and Ambari. Hortonworks is the major contributor of code and patches to many of these projects. These projects have been integrated and tested as part of the Hortonworks Data Platform release process and installation and configuration tools have also been included. Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and completely open source. We sell only expert technical support, training and partner-enablement services. All of our technology is, and will remain, free and open source. Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For more information on Hortonworks services, please visit either the Support or Training page. Feel free to contact us directly to discuss your specific needs. Except where otherwise noted, this document is licensed under Creative Commons Attribution ShareAlike 4.0 License. http://creativecommons.org/licenses/by-sa/4.0/legalcode ii Hortonworks Data Platform December 15, 2017 Table of Contents 1.
    [Show full text]